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Abstract

In this handout we review results concerning representation of partial or-
ders via stochastic orders and investigate their applications to some classes
of stochastic dominance conditions applied in inequality, poverty and welfare
measurement. The results obtained in an unidimensional framework are ex-
tended to multidimensional analysis. In particular we provide an overview
of the main issues concerning aggregation of multidimensional distributions
into synthetic indicators as the Human Development Index or Social Welfare
Functions. Moreover we explore the potential for multidimensional evalua-
tions based on the partial orders induced by different criteria of majorization.
The lecture is divided into 4 parts: (i) an introduction to basic results con-
cerning unidimensional evaluations of inequality, welfare and poverty (ii) an
illustration of the problems of aggregation of evaluations when applied in the
multidimensional context where individuals exhibit various attributes, (iii) the
discussion of the potentials and limits of the application of generalizations of
the majorization approach to comparisons of multidimensional distributions
(iv) a brief overview of some results on multidimensional stochastic orders.
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1 Introduction

When comparing income distributions in terms of inequality, the most common tool
adopted in applied works in the Lorenz curve. Comparisons made in terms of Lorenz
curves account for heterogeneity of views of policy makers or evaluators about the
degree of inequality aversion to adopt in the evaluation. It is indeed well known
that if a Lorenz curve of a distribution is above the one of another distribution then
inequality will be evaluated as lower for the former compared to the latter by a set of
inequality indices. A source of “discomfort” in applying the concept of dominance in
terms of the Lorenz curve relies instead on the fact that it induces a partial order, that
is, not all distributions can be unanimously compared since it is possible that for some
distributions the Lorenz curves intersect. The analysis of the dual aspect of “lack
of completeness” and “unanimity of evaluations” is one of the issues explored in the
first part of this lecture. We review results on the literature on “stochastic orders”
i.e. orders of distributions based on unanimous dominance in terms of family of
evaluation functions and investigate their properties and their application to welfare,
inequality and poverty measurement.1

The first part of the lecture will focus on the analysis of unidimensional distri-
butions, e.g. income or consumption vectors of a given population. However the
most interesting questions arise when facing comparisons based on multidimensional
distributions, where for instance also education, health, or endowment of bundles of
goods are taken into account. There exist therefore two different ways to approach
the multidimensional problem, the first one makes use of appropriate procedures to
embody all information within an unique money metric indicator (e.g. equivalence
scales or calculating budget income). Within this framework the different opinions
concerning the aggregating procedures could be taken into account and partial rank-
ing criteria could be specified in order to be consistent with a given range of admissible
aggregating functions.
From the second point of view, inequality, as well as poverty and welfare, are

explicitly considered as multidimensional phenomena. Therefore the domain of the
evaluation process is left multidimensional and ranking criteria are specified over
the set of all variables. Within this second framework it becomes natural to first
investigate whether it is more informative to focus first on the distribution of each at-
tributes across the individuals as done by the Human Development Index or consider
as a starting point the aggregation of each attribute per individual identifying the a
distribution of utilities or individual indicators of well being. In the second part of
the lecture we explore results on consistent aggregation obtained following these two

1Note that in what follows:
% denotes a binary relation over a set of alternative,
> denotes a stochastic order over distribution or random variables,
< denotes a stochastic dominance condition on distributions or random variables, while
≥ denotes the usual inequality symbol.
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procedures highlighting the implications for many indices currently adopted in the
literature. Then we move to the more demanding quest of focussing on comparisons
that use information on the whole matrix without filtering it through any interme-
diate aggregation. This second approach is based on the concept of majorization
[see Marshall and Olkin, 1974] that extends to the multivariate case the machinery
applied in the univariate case to obtain the Lorenz dominance criterion. A number
of critical issues arise in the multidimensional context and various criteria of domi-
nance can be adopted. We will explore some of then and then we will get back to the
stochastic orders framework illustrating some multidimensional results deriver in the
statistics/probability and decision theory literature.
The structure of the lecture can be divide into 4 parts: (i) an introduction to basic

results concerning unidimensional evaluations of inequality, welfare and poverty (ii)
an illustration of the problems of aggregation of evaluations when applied in the mul-
tidimensional context where individuals exhibit various attributes, (iii) the discussion
of the potentials and limits of the application of generalizations of the majorization
approach to comparisons of multidimensional distributions (iv) a brief overview of
some results on multidimensional stochastic orders. Each one of these parts can be
addressed almost separately, this is particularly the case for the distinction between
the unidimensional analysis (part (i)) and the multidimensional case (parts (ii), (iii),
(iv)).

1.0.1 Aims of the lecture

Overview of selected issues underlying the theory of measurement of inequality, wel-
fare, poverty and well being.
Two broad perspectives:

1. Unidimensional: Individuals/households are homogeneous in all ethically rel-
evant characteristics except consumption or income.

2. Multidimensional: heterogeneous individuals exhibiting differences in a num-
ber of "characteristics" (transferable and non transferable) e.g. income, health,
housing, bundles of goods, education, household size, level of needs.....

A number of interrelated perspectives of evaluation can be taken into account:

1. Inequality (focuses on dispersions across agents, i.e. considers how the cake
(e.g. GDP) is shared in the population),

2. Welfare (takes into account also the size of the cake, for instance each agent
can improve her situation in a world where the per-capita income is larger even
though is more unequally distributed)

3. Poverty (focuses on deprived agents, size and dispersion matters but the concern
is only for those deprived, e.g. with income below the poverty line)
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4. Well being: multidimensional perspective focussing on size and dispersion. A
more unequal distribution in one attribute across the population might com-
pensate for the unequal distributions in other attribute, i.e. it is not always the
case that an increase in inequality in one attribute reduces society well being.
This is clearly the case if agents that are better of in the distribution of some
attributes continue to be advantaged by the distribution of other attributes,
that is if the correlation between the distribution of the attributes is positive.

Evaluations can be formalized through:

1. Complete rankings, i.e. indices or welfare functions, or

2. Partial rankings, i.e. identification of dominance conditions that may not rank
any pair of distribution, this is the case for instance for the Lorenz dominance
condition based on comparisons of Lorenz curves. Dominance occurs in this case
if the Lorenz curve of one distribution is above the one of another distribution,
if these curve intersect the dominance test is not conclusive.

Our Concern is

• To provide some intuitions on the interrelations between the various concepts
in the unidimensional case and then move to the MORE INTERESTING mul-
tidimensional case.........

1.1 Unidimensional/Multidimensional set up.

Consider:

• n homogeneous individuals i = 1, 2, ..., n ≥ 2
• Rn

+ : n−dimensional (n) vector of non-negative (+) real numbers (R)
• d ≥ 1 characteristics, goods, attributes, attainments (e.g. income) j = 1, 2, 3, ..., d
• Distribution X ∈ Rn×d

+

X =


x11 ... ... x1(d−1) x1d
x21 x22 ... ... x2d
... · ...

xn1 xn2 ... ... xnd


Rows identify individuals/households and columns are associated with attributes
or characteristics

5



• x.j distribution of attribute j across all individuals, xi. distribution of all the
attributes for individual i, x ∈ Rd

+ generic vector of values for the attributes,
or x ∈ Rn

+ generic vector of distribution for n individuals.

• FX(x) or F (x)cumulative distribution function: percentage of individuals with
income not higher than x (unidimensional case) or in general FX(x) percentage
of individuals whose vector of attributes is not larger than x ∈ Rd

+ (multidi-
mensional case)

• µ(x.j) average of distribution x.j of attribute j (e.g. income) :

µ(x.j) =
Xn

i=1
xij/n.

• x̂.j ordered distribution of attribute j: x̂(1)j ≤ x̂(2)j ≤ ..x̂(i)j... ≤ x̂(n)j

• I(X) Inequality index, I : Rn×d
+ → R [function from the set of all admissible

distributions Rn×d
+ to (→) the set of real numbers (R)]

• W (X) Social Evaluation Function (SEF) it is defined over incomesW : Rn×d
+ →

R

• zj > 0 poverty line for attribute j, z ∈ Rd
+ vector of poverty lines for each

attribute.

• P (X,z) Poverty index, P : Rn×d
+ × Rd

++ → R [function from the set of all
admissible distributions (Rn×d

+ ) and from the set of positive values (R++) of
any poverty line zj , to (→) the set of real numbers (R)]

2 The Unidimensional case

2.0.1 Making use of distribution functions

As a starting point one might analyse distributions making use of statistical graphical
tools. For instance the primitive tool both for continuous or discrete distributions
can be the Cumulative Distribution Function. It can also be specified [later on] for
multidimensional distributions.

Definition 2.1 (Cumulative Distribution Function) F : R+ → [0, 1] Function
F (x) plotting the proportion of income units within the population with income at
most x.
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C.d.f. Fx(x) for x = (10, 20, 30, 30, 60)

It is possible to use the information in the C.d.f. in order to construct a dual
representation. Reversing the graphs we get the Pen’s Parade (or inverse distribu-
tion function): The parade of all the incomes in increasing order weighted by the
percentage of individuals to whom these incomes belong (sample weight).

Definition 2.2 (Inverse Distribution Function) F−1 : [0, 1] → R+. Function
F−1(p) plotting the income level corresponding to the pth quantile of the population
once incomes are ranked in ascending order, i.e. left continuous inverse distribution:

F−1(p) = inf{x ∈ R+ : F (x) ≥ p}.

Inv.d.f. F−1x (p) for x = (10, 20, 30, 30, 60)
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2.1 How to rank distributions?

2.1.1 Stochastic orders

We consider the issue of unanimous dominance for a set of indices or evaluation
functions. We focus on two broad families of functionals. commonly adopted in
inequality, welfare and risk analysis.

Definition 2.3 Additively decomposable order >U

X > U Y

⇔
Wu(X) =

Z
R
u(x)dFX(x) ≥

Z
R
u(x)dFY (x) =Wu(Y ), ∀u ∈ U

alternatively

1

n

nX
i=1

u(xi) ≥ 1

n

nX
i=1

u(yi) ∀u ∈ U

The key property of the utilitarian/expected utility representation is Indepen-
dence:

Definition 2.4 (Independence) Joining (or mixing) two distributions (or popu-
lations of individuals) with a third distribution (another group of individuals) the
ranking of the new distributions obtained is consistent with the ranking of the former
two distributions: Wu(X,Z) ≥Wu(Y,Z) if and only if Wu(X) ≥Wu(Y ).

The realization of each individual is transformed according to the function u while
his/her weight in the final formula enters linearly.
Next family is dual w.r.t. the previous and is based on weighted averages of the

realizations, where weight depends on the ranking of each realization.

Definition 2.5 Rank dependent (dual) order >V

X > V Y

⇔
Wv(X) =

Z 1

0

v(p) · F−1X (p)dp ≥
Z 1

0

v(p) · F−1Y (p)dp =Wv(Y ) ∀v ∈ V
alternatively

1

n

nX
i=1

vi · x̂(i) ≥ 1

n

nX
i=1

vi · ŷ(i) ∀v ∈ V

where vi ≥ 0; x̂(1) ≤ x̂(2) ≤ ... ≤ x̂(i) ≤ ... ≤ x̂(n)
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The key property this rank dependent/generalized Gini representation is Comonotonic
Independence:

Definition 2.6 (Comonotonic Independence) When adding to two distributions
(i.e. distributions of labour income) a third distribution (e.g. a distribution of capital
income) that is comonotonic w.r.t. the former two (i.e. capital income is ranked in
the same order as the labour incomes in the former distributions) then the two new
distributions obtained is consistent with the ranking of the former two distributions:
Wv(X + Z) ≥Wv(Y + Z) if and only if Wv(X) ≥Wv(Y ).

The realization of each individual is considered linearly in the final evaluation
while the individual weight in the final formula enters through vi according to his/her
position in the ranking of the attribute.

Remark 2.1 These criteria are partial orders i.e. they do not necessarily provide a
clear-cut ranking. For some distributions the answer may not be conclusive this is the
case when for instance Wv(X) > Wv(Y ) for some v ∈ V but Wv0(X) < Wv0(Y ) for
some others v0 ∈ V

2.2 Implementing stochastic orders:

2.2.1 Comparison Tests

Consider X income distribution of finite mean µ(X) [or µX ], defined on a bounded
support in R+.

• Is it possible to device tools that we can apply directly in order to test dominance
of one distribution over another?

The most common tools applied in inequality analysis to compare income distri-
butions are indeed the partial orders induced by the stochastic dominance conditions
(direct and inverse).
For instance typical dominance conditions are:

Definition 2.7 (Lorenz Dominance) Define the Lorenz curve for X:

LX(p) :=

Z p

0

F−1X (t)

µ(X)
dt.

Income profile X Lorenz dominates income profile Y, X <L Y, if and only if

LX(p) ≥ LY (p) for all p ∈ [0, 1] .
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That is the Lorenz curve is derived for distributions of incomes ranked in increas-
ing order and plots the proportion of total income belonging to the poorer 100pth

percentile of the population, in the case of discrete distributions for p = i/n we have

Lx(i/n) =

Pi
j=1 x̂(j)Pn
j=1 xj

where x̂(i) ≤ x̂(i+1)

for all the points in between i/n and (i+ 1) /n the Lorenz curve is a straight line
joining Lx(i/n) and Lx(i+1/n). We denote Lx(p), for p ∈ [0, 1] , the curve obtained
joining the points Lx(i/n)

Example 2.1 For distribution x ∈ Rn
+ = (10, 20, 30, 30, 60) we get

[(i/n, Lx(i/n))] =

·
(0, 0), (

1

5
,
1

15
), (
2

5
,
1

5
), (
3

5
,
2

5
), (
4

5
,
3

5
), (1, 1)

¸

Lorenz curve for x = (10, 20, 30, 30, 60)

Note that the Lorenz curve is obtained integrating the graph of the inverse distribution
function an dividing by the average income.
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Lorenz curve derived from inverse distribution.

Definition 2.8 (Generalized Lorenz Dominance) Define the generalized Lorenz
curve for X:

GLX(p) := µ(X) · LX(p).

Income profile X generalize Lorenz dominates income profile Y, X <GL Y, if and only
if

GLX(p) ≥ GLY (p) for all p ∈ [0, 1] .

See Kolm (1969), Shorrocks (1983). The notion of generalized Lorenz dominance
takes into account not only the distribution of the shares of income but also the "size
of the cake" i.e. the average income. Note that when p = 1, the top part of the
GL curve focusses on the average income: GLX(1) = µ(X). At the other extreme the
GL dominance for low values of p requires lexicographic dominance in terms of the
income of the poorest individuals.

Remark 2.2 If µ(X) = µ(Y ), <GL ⇐⇒ <L;
or let X/µX denote the income distribution X normalized by its mean µX then

X/µX <GL Y/µY ⇐⇒ X <L Y.

Example 2.2 Here is the plot the Generalized Lorenz curves for the distributions in
Rn
+

y = (3, 7, 11, 11) , x = (4, 8, 9, 19)
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Generalized Lorenz Curves for y = (3, 7, 11, 11) , x = (4, 8, 9, 19)

The GL curves intersect therefore there is no-dominance.

Next results introduce the various notions of stochastic dominance most common
in the risk/inequality literature and illustrate their connections and differences with
the Lorenz type dominance conditions, moreover we will explore their connections
with stochastic orders of the two families presented above.

2.2.2 Stochastic dominance conditions

“Direct” Stochastic Dominance (SD) is based on comparisons of distribution functions
or survival functions and their integrals.

∆F (x) = ∆1F (x) := FX(x) − FY (x) and ∆iF (x) :=
R p
0
∆i−1F (t)dt for for i =

2, 3, ...The SD condition of order i > 1 (<SD[i]) is obtained comparing the integral of
the inverse distribution functions derived recursively.
<SD[i]: Stochastic dominance condition of order i

Definition 2.9 (Stochastic Dominance) X <SD[i] Y iff ∆iF (x) ≤ 0 for all x ∈
[0, x̄] .

If instead of comparing distribution functions we follow the dual approach of
comparing inverse distributions we have the family of Inverse Stochastic Dominance
(ISD) conditions introduced in Muliere and Scarsini (1989).
Let ∆(p) = ∆1(p) := F−1X (p) − F−1Y (p) and ∆i(p) :=

R p
0
∆i−1(t)dt for i = 2, 3, ...

The ISD condition of order i > 1 (<ISD[i]) is obtained comparing the integral of the
inverse distribution functions derived recursively.
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Definition 2.10 (Inverse Stochastic Dominance) X <ISD[i] Y iff ∆i(p) ≥ 0 for
all p ∈ [0, 1] .
Remark 2.3 Note that X <ISD[1] Y denotes rank dominance (Saposnik, 1981) while
X <ISD[2] Y denotes generalized Lorenz dominance.

Remark 2.4 X <SD[i] Y =⇒ X <SD[i+1] Y ; X <ISD[i] Y =⇒ X <ISD[i+1] Y ;

Remark 2.5 X <SD[i] Y ⇐⇒ X <ISD[i+1] Y for i = 1, 2.
X <SD[i] Y 6=⇒6⇐= X <ISD[i+1] Y for i = 3, 4, 5....

2.2.3 Stochastic Orders and Stochastic Dominance: Integral Stochastic
orders

Consider random variables (income profiles)X defined on [0, x̄] the Integral Stochastic
Order (Additively decomposable) can be specified as

X >U Y ⇔
Z x̄

0

u(x)d[∆F (x)] ≥ 0 ∀u ∈ U . (1)

In order to investigate the relationships between stochastic orders >U and stochas-
tic dominance <SD[i] we focus on “nested” classes of utility functions u : [0, x̄]→ R.

U1 := {u continuous and non-decreasing}.
U2 := {u ∈ U1 : concave}.
U3 := {u ∈ U2 : u0 convex}.

Remark 2.6 Pα(X, z) =
R z
0
(z−x)αdFX is the absolute version of Foster, Greer and

Thorbecke (1984) poverty index [FGT] for α ≥ 0, where z > 0 denotes the poverty
line.
For discrete distributions ranked in increasing order x̂, with q individuals not above

the poverty line z the relative version of FGT index is P r
α = z−α · Pα :

P r
α(x,z) =

1

n

Xq

i=1

µ
z − x̂(i)

z

¶α

for α ≥ 0,

Thus

P0(x,z) =
q

n
, Head count ratio

P1(x,z) =
1

n

Xq

i=1

¡
z − x̂(i)

¢
P2(x,z) =

1

n

Xq

i=1

¡
z − x̂(i)

¢2
.

Dominance in terms of poverty indices for any poverty line can be related to stochastic
dominance conditions.
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Theorem 2.1 (Foster-Shorrocks (1988); Fishburn (1976)) Let n ∈ {1, 2, 3}.
The following statements are equivalent:
(i) Pk−1(X,z) ≤ Pk−1(X,z) for all poverty lines z ≤ x̄.
(ii) X <SD[k] Y .

See also Dardanoni and Lambert (1988) for n = 3. Less poverty as evaluated
according to the poverty index Pn−1 and for all possible poverty lines coincides with
stochastic dominance of order n.

Remark 2.7 Note that P0(X,x̄) = H(X, x̄) : the headcount of profile X evaluated at
the upper bound, i.e. the proportion of population with income not larger than x̄, thus
P0(X,x̄) = 1 = P0(Y ,x̄).

P1(X,x̄) ≤ P1(Y ,x̄)⇐⇒ µ(X) ≥ µ(Y )
If µ(X) = µ(Y ) then P2(X,x̄) ≤ P2(Y ,x̄) ⇐⇒ σ2(X) ≤ σ2(Y ) where σ2 denotes

the variance.

Next result clarifies a further relation between poverty and evaluations in term of
stochastic orders:

Theorem 2.2 Let k = 1, 2, 3, the following statements are equivalent:
(i) X >Uk Y
(ii) X <SD[k] Y [and µ(X) ≥ µ(Y ) for k = 3].

Concerning the role of variance it is also worth to point out that

Theorem 2.3 (Shorrocks-Foster (1987); Dardanoni-Lambert (1988)) If (a)
∆2F (x) changes sign once, (b) µ(X) = µ(Y ) and (c) X dominates Y in terms of
Leximin, then X <SD[3] Y ⇐⇒ σ2(X) ≤ σ2(Y ).

Remark 2.8 (Inequality Comparisons) Concerning inequality comparisons based
on relative inequality indices (i.e. scale invariant indices) then all previous statements
[except for <SD[1]] hold provided that income profiles X/µX and Y/µY are compared.
Here we take the view that for distributions with equal means welfare dominance

implies a reduction in inequality, more precisely X/µX <SD[n] Y/µY means that X
shows less inequality than Y.
Since X/µX and Y/µY exhibit the same mean equal to 1, then noticing that

X <SD[1] Y =⇒ µ(X) ≥ µ(Y ) it follows that either X/µX and Y/µY are not compa-
rable according to <SD[1] or they induce the same distribution function and therefore
they are equivalent for all orders of stochastic dominance.
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2.2.4 Stochastic Orders and Stochastic Dominance: Dual linear rank-
dependent stochastic orders

We focus directly on the specification of the stochastic order based on weighting
functions:

X > VY ⇔
Z 1

0

v(p) · F−1X (p)dp ≥
Z 1

0

v(p) · F−1Y (p)dp ∀v ∈ V

⇔
Z 1

0

v(p) ·∆(p)dp ≥ 0 ∀v ∈ V (2)

Before moving to the selection of the classes of weighting functions V we recall
some parametric classes of SEFs, the class of S-Gini [single parameter] SEFs Ξ(δ; .)
introduced in Donaldson and Weymark (1980, 1983) and Yitzhaki (1983). It is para-
meterized by δ ≥ 1 and is obtained letting v(p) = δ(1− p)δ−1 that is

Ξ(δ;X) : = δ

Z 1

0

(1− p)δ−1F−1X (p)dp (3)

=

Z
R+
[1− FX(t)]

δ dt. (4)

Note that Ξ(0;Xp) = limδ→0 Ξ(δ;X) = F−1X (p); Ξ(1;X) = µ(X) while for δ = 2 we
obtain the SEF associated with the Gini index G(.) i.e. Ξ(2;X) = µ(X) · [1−G(X)].
That is

G(X) := 1− Ξ(2;X)

µ(X)
=

Z 1

0

(2p− 1) · F
−1
X (p)

µ(X)
dp.

We investigate the relationships between stochastic orders >V and inverse sto-
chastic dominance <ISD[i] .
We focus on “nested” classes of weighting functions v : [0, 1]→ R+ integrating to

1, where

V1 := {v ∈ L1([0, 1]) : v ≥ 0, and
Z 1

0

v(t)dt = 1}
V2 := {v ∈ V1 : v non-increasing}
V3 := {v ∈ V2 : v convex}.

Definition 2.11 (Truncated income profiles Xp) Xp denotes the income profile
X truncated at quantile p such that F−1Xp

(t) = F−1X (t · p).
Then µ(Xp) is the incomplete mean of distribution X evaluated for the poorest p

fraction of individuals.

Theorem 2.4 (Maccheroni, Muliere, Zoli (2005)) Let k ∈ {1, 2, 3}. The fol-
lowing statements are equivalent:
(i) Ξ(k − 1;Xp) ≥ Ξ(k − 1;Yp) for all p ∈ [0, 1]
(ii) X <ISD[k] Y .
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Inverse stochastic dominance of order n is equivalent to dominance for S-Gini
indices where δ = n− 1 for distributions truncated at any p.
Remark 2.9 (Zoli (1999)) An interesting case: k = 3;

X <ISD[3] Y ⇐⇒ µ(Xp)[1−G(Xp)] ≥ µ(Yp)[1−G(Yp)] for all p ∈ [0, 1].
Note that if µ(X) = µ(Y ) then X <ISD[3] Y =⇒ G(X) ≤ G(Y ).

As a result we obtain as derived in Zoli (1999), Wang and Young (1998), and
Aaberge (2004)

Theorem 2.5 Let k = 1, 2, 3 the following statements are equivalent:
(i) X >Vk Y
(ii) X <ISD[k] Y [and µ(X) ≥ µ(Y ) for k = 3].

Concerning the role of the Gini index it is also worth to point out that

Theorem 2.6 (Zoli (1999)) If (a) ∆2(p) changes sign once, (b) µ(X) = µ(Y ) and
(c) X dominates Y in terms of Leximin, then X <ISD[3] Y ⇐⇒ G(X) ≤ G(Y ).

2.3 Relation with more general results on unidimensional
inequality and welfare

We start with inequality indices that satisfy the following conditions:

• I(x) is continuous in xi : small changes in incomes do not lead to big changes
in the value of the index.

• I(x) is normalized: that is I(µ, µ, .., µ) = 0.

2.3.1 Basic properties:

Axiom 2.1 (Symmetry (S)) I(x) is invariant with respect to permutation of the
incomes.

Axiom 2.2 (Pigou-Dalton Principle of Transfers (PT)) A transfer (of δ > 0)
from a rich person (j) to a poor person (i) : xj > xi, which leaves their relative posi-
tions unchanged (xj − δ > xi + δ) reduces inequality: I(y) < I(x) if xk = yk for all
k 6= i, j, xj > xi, yi = xi + δ, yj = xj − δ.

Progressive Transfer
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Such a transfer is called: PROGRESSIVE TRANSFER (the inverse type of trans-
fer, i.e. going in the opposite direction is called Regressive Transfer)

Axiom 2.3 (Relative Inequality (Rel)) Often called also Scale Invariance: I(x) =
I(λx) for λ > 0.

Theorem 2.7 (Hardy, Littlewood & Polya 1934 (HL&P)) Consider a fixed num-
ber of individuals n, let µ(x) = µ(y), the following statements are equivalent:

(1) For all k ≤ n,
Pk

i=1 x̂i ≥
Pk

i=1 ŷi with at least one strict inequality (>).

(2) x̂ can be obtained from ŷ through a finite sequence of progressive transfers.

(3) Let Wu(x) =
Pn

i=1 u(xi) the Utilitarian Social Evaluation Function, Wu(x) >
Wu(y) for all Wu(x) such that u(.) is increasing and strictly concave.

(4) Let Iφ(x) =
Pn

i=1 φ(xi) the additive inequality index Iφ(x) < Iφ(y) for all Iφ(x)
such that φ(.) is strictly convex.

Direct relation of HL&P theorem with results in term of inequality indices.

Theorem 2.8 (Dasgupta, Sen and Starret 1973) Let distributions x,y ∈ Rn
+

and µ(x) = µ(y), the following statements are equivalent:
1.a) I(x) < I(y) for all inequality indices I : Rn

+ → R satisfying Symmetry and
Principle of Transfers (strictly S-Convex indices)
2.a) x ÂL y

Extension to relative inequality comparisons of distributions with different mean
incomes.

Theorem 2.9 (Foster 1985) Let x,y ∈ Rn
+ the following statements are equivalent:

1) I(x) < I(y) for all inequality Relative indices I : Rn
+ → R satisfying Symme-

try and Principle of Transfers
2) x ÂL y.

2.3.2 Links between Inequality & Welfare

We consider Social Evaluation Function (SEF) W (x)

Definition 2.12 (Social Evaluation Function (SEF)) W : Rn
+ → R is a SEF if

for every income distribution in X provides a welfare evaluation.

SEFs differ from Social Welfare Functions because they provide a welfare evalua-
tion based on individuals’ income and not directly on individuals’ utility or well-being.

Axiom 2.4 (Inequality - Welfare Consistency (IWC)) If µ(x) = µ(y) then for
all x,y ∈ Rn

+

I(x) ≤ I(y)⇔W (x) ≥W (y).
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However the SEF should also be increasing in each individual income. As a result

Theorem 2.10 (Shorrocks (1983); Kolm (1969)) Let x,y ∈ Rn
+ the following

statements are equivalent:
(i) x ÂGL y
(ii) W (x) > W (y) for all increasing SEFs W (x) satisfying Symmetry,and Prin-

ciple of Transfers.
(iii) 1

n

Pn
i=1 u(xi) >

1
n

Pn
i=1 u(yi) for all Average Utilitarian SEFs where u(.) is

increasing and strictly concave.

2.4 Poverty Evaluations

Note that for a given poverty line z > 0 poverty dominance conditions can be specified
as integral stochastic orders, or a rank-dependent stochastic orders, respectively when
the family of indices

Pp(X, z) =

Z z

0

p(x, z)dFX (5)

or

Pv(X, z) =

Z 1

0

v(p) · £z − F−1X (p)
¤
+
dp (6)

are considered. The associated poverty stochastic orders >P can be specified as:

X > P
U Y ⇔ Pp(X, z) ≤ Pp(Y, z) ∀ − p(x, z) = uz(x) ∈ U

⇔
Z z

0

uz(x)dFX ≥
Z z

0

uz(x)dFY ∀uz ∈ U

⇔
Z z

0

uz(x)d∆F ≥ 0 ∀uz ∈ U (7)

Remark 2.10 Note that:
(i) X >P

U1 Y ⇐⇒ X <SD[1] Y on [0, z]
(ii) X >P

U2 Y ⇐⇒ X <SD[2] Y on [0, z] and P0(X,z) = H(X, z) ≤ H(Y, z) =
P0(Y ,z)

While for rank-dependent stochastic orders we have for [t]+ := max{t, 0}

X > P
VY ⇔ Pv(X, z) ≤ Pv(Y, z) ∀v ∈ V

⇔
Z 1

0

v(p) · £z − F−1X (p)
¤
+
dp ≤

Z 1

0

v(p) · £z − F−1Y (p)
¤
+
dp ∀v ∈ V

⇔
Z 1

0

v(p) ·∆z(p)dp ≥ 0 ∀v ∈ V (8)

where ∆z(p) =
£
z − F−1Y (p)

¤
+
− £z − F−1X (p)

¤
+
.

18



Remark 2.11 Note that:
(i) X >P

V1 Y ⇐⇒
£
z − F−1Y (p)

¤
+
≥ £z − F−1X (p)

¤
+
∀p ∈ [0, 1]

(ii) X >P
V2 Y ⇐⇒

R p
0

£
z − F−1Y (p)

¤
+
dp ≥ R p

0

£
z − F−1X (p)

¤
+
dp ∀p ∈ [0, 1]

Note that the integral condition in (ii) denotes dominance according to the ab-
solute version (i.e. multiplied by the value of the poverty line z > 0) poverty depri-
vation curve or absolute TIP curve (TIP stands for Three I’s of Poverty, because it
captures the Incidence, Intensity and Inequality aspects of the poverty evaluation)
derived in Spencer and Fisher (1992), Jenkins and Lambert (1997) and Shorrocks
(1998).

Definition 2.13 (TIP curve)

TIPX(p, z) :=
1

z

Z p

0

£
z − F−1X (t)

¤
+
dt.

The TIP curve plots relative income gaps
£
z − F−1X (p)

¤
+
/z that are ordered from

largest to smallest cumulatively against the population share (p).

Geometric derivation of TIP Curve

The TIP curve represents incidence, inequality and intensity:

• Incidence: the population share from which the curve becomes flat is the head-
count ratio H(X,z) (for continuous distributions) i.e. the proportion of pop-
ulation with income at most equal to z. The further in the p space the curve
become flat the larger is the proportion of poor individuals within the society.

• Intensity: the maximum height of the curve represents the poverty gap ratio
H(X,z) · I(X,z) = 1

z

R 1
0

£
z − F−1X (p)

¤
+
dp. The higher is the curve the larger is
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Figure 1: TIP curve

the average relative income (poverty) gap per person in the entire population. It
coincides with the relative income gap perceived by any individual in a society
where all individuals are poor and identical.

• Inequality: the curvature of the curve between the origin and the headcount
ratio - summarizes the rate at which the gap decreases as income rises. The
“higher” is the curvature the larger is the inequality between poor individuals.

The maximum poverty consistent with a fixed H(x,z) is obtained when each poor
individual has income 0 i.e. a poverty gap of z. In this case the TIP curve is a line of
45 degrees till H(x,z), then it is flat. Absence of poverty leads to a TIP curve that
coincides with the horizontal axis. The overall maximum poverty coincides with a 45
degree line for p ∈ [0, 1] .

3 Multidimensional Case

3.1 Consistency in Aggregation

Rubinstein, Fishburn (JET 1986): Algebraic aggregation theory; Dutta, Pattanaik, Xu (Economica 2003): On Mea-

suring Deprivation and the Standard of Living in a Multidimensional Framework on the Basis of Aggregate Data;

Gajdos, Maurin (JET 2004): Unequal uncertainties of uncertain inequalities: an axiomatic approach

• Question: Is it possible to obtain consistent ranking across matrices aggregat-
ing......
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1. first for each attribute taking the distribution across agents and then aggregat-
ing the summary Macro result across attributes (Procedure 1) (e.g. HDI)

2. for each agent obtaining an individual index of personal well being and then
aggregating the distribution of these indices for all the population (Procedure
2) (e.g. additively decomposable SWFs over multiattribute distributions)......

3.1.1 Consistent iterative aggregation

.......... moreover one would like to apply the same aggregator in each procedure when
aggregating across individuals and another on when aggregating across attributes for
instance for two attributes we have

X =

·
x11 x12
x21 x22

¸
Definition 3.1 Procedure 1: first columns then rows·

x11 x12
x21 x22

¸ ⇓
Aggr. ψ
↓£

ψ(x11;x21) ψ(x12;x22)
¤

=⇒ Aggregator φ
7−→ φ[ψ(x11;x21);ψ(x12;x22)]

Definition 3.2 Procedure 2: first rows then columns

=⇒ Aggregator φ·
x11 x12
x21 x22

¸
7−→

·
φ(x11;x12)
φ(x21;x22)

¸ ⇓
Aggr. ψ

↓
ψ[φ(x11;x12);φ(x21;x22)]

3.1.2 A result by Dutta et al. (2003):

Assumptions on φ and ψ:

Definition 3.3 (Consistency) φ ◦ ψ(X) ≥ φ ◦ ψ(Y ) iff ψ ◦ φ(X) ≥ ψ ◦ φ(Y )

moreover suppose that xij ∈ [cmin; cmax] and

• φ : [cmin; c
max]d → [0, 1]; φ(1cmin) = 0; φ(1c

max) = 1

• ψ : [cmin; c
max]n → [0, 1] : ψ(1cmin) = 0; ψ(1c

max) = 1

• φ and ψ are continuous and strictly increasing in each argument

• ψ is symmetric across agents
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• φ exhibit non increasing increments, that is

φ(x1, x2, ., xh, ..., xk + t, ..xn)− φ(x1, x2, ., xh..., xk, ..xn)

≤ φ(x1, x2, ., xh − τ , ..., xk + t, ..xn)− φ(x1, x2, ., xh − τ , ..., xk, ..xn)

for τ , t > 0.

Theorem 3.1 Given the assumptions on φ and ψ, the two procedures are consistent
iff

φ(xi.) =

Pd
j=1wj · xij − cmin

cmax − cmin
; where wj > 0,

dX
j=1

wj = 1

ψ(x.j) =
1
n

Pn
i=1 xij − cmin

cmax − cmin

We obtain essentially HDI types of indices that can be constructed as weighted
averages of normalized attributes evaluated across the whole population.

Correlation between attributes is lost indeed Y =

·
0 1
1 0

¸
and Z =

·
1 1
0 0

¸
are considered socially indifferent.

Remark 3.1 The assumption of non increasing increments (NII) per each agent
across attributes is crucial.

For instance here is an example without NII.

Example 3.1 Check that for given increasing functions fj : [cmin; cmax] → [0, 1] :
f(cmin) = 0; f(c

max) = 1 and the increasing function H : [0, 1] → [0, 1] the following
functional forms satisfy consistency and all other properties but not necessarily NII

φ(xi.) = H−1(
dX

j=1

wj ·H[fj (xij)]); where wj > 0,
dX

j=1

wj = 1

ψ(x.j) = H−1(
1

n

nX
i=1

H[fj (xij)]).

Property NII imposes linearity in H and fj.

Foster et. al. (JHD 2005) consider the case where H is isoelastic i.e. H(t) =
t1−ε/(1− ε) for ε ≥ 0 and wj = 1/d.
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If we let sij = fj (xij) the index "consistent in aggregation" is obtained for

φ(xi.) =

Ã
1

d

dX
j=1

[sij]
1−ε
!1/(1−ε)

; ψ(x.j) =

Ã
1

n

nX
i=1

[sij ]
1−ε
!1/(1−ε)

W (X) =

Ã
1

n

nX
i=1

1

d

dX
j=1

[sij]
1−ε
!1/(1−ε)

,

then H satisfies NII in terms of the distribution of y iff ε = 0.

• We use the notation W (.) for the final aggregator because our main focus in
this section is for a well-being evaluations. That is multidimensional welfare
indices.

Main positive features of the index is that it is Subgroup Consistent i.e. W (X,Y ) ≥
W (X,Z) iffW (Y ) ≥W (Z).Where (X,Y ) denotes that the population is partitioned
into two groups of individuals.

However the index still continues to consider Y =

·
0 1
1 0

¸
and Z =

·
1 1
0 0

¸
as

socially indifferent.

3.1.3 Possible alternative solutions

If any concern for correlation, i.e. dependency between the distributions of the at-
tributes is lost if consistency in aggregation is required then one may drop this as-
sumption and can take into account an average of the results arising from the two
procedures.
This has already been suggested in the literature on the measurement of inequality

under uncertainty.
Gilboa and Schmeidler (JMathE 1989): Maximin expected utility with non unique prior; Ben Porath et al. (JET

1997): On the measurement of inequality under uncertainty; Gajdos and Maurin (JET 2004): Unequal uncertainties

of uncertain inequalities: an axiomatic approach; Gajdos and Weymark (ET 2005): Multidimensional Generalized

Gini indices

We here review some related considerations formulating first the problem then
considering additive aggregation methods and finally moving to aggregation methods
that are non additive and do not satisfy consistency in aggregation.
Suppose for simplicity that we normalize each agent realization in a given space

with sij := f(xij) ∈ [0, 1] that is a score function associated with the realization of
agent i on space j. Moreover one can further assume that

• this normalization makes comparable scores of the same agent in different char-
acteristics (Symmetry between characteristics)

• and agents are all treated equally in the final evaluation (Anonymity)
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Alternative sequences. Some examples Consider the following distributions:

X =

·
0 1
0 1

¸
;X 0 =

·
1 0
1 0

¸
;

if attributes carry the same weight W (X) =W (X 0)

Z =

·
1 1
0 0

¸
;Z 0 =

·
0 0
1 1

¸
;

if agents are equally relevant W (Z) =W (Z 0)

Y =

·
0 1
1 0

¸
;Y 0 =

·
1 0
0 1

¸
;

if both previous considerations hold then W (Y ) =W (Y 0)
However linear symmetric aggregation functions as those required by consistent

aggregation value indifferent all distributions.
But this should not be the case in particular comparing Y, Y 0 with all other ma-

trices.

Problems with consistent additive decomposition The previous considera-
tions extend also to the additive decomposition of the matrices as in Foster et al.
(2005) or even in the more general result presented earlier on consistent aggrega-
tion....
The procedure was including considerations on inequality in the distribution across

agents but what is left aside is the correlation between the distributions of the at-
tributes

Z =

·
1 1
0 0

¸
;Y =

·
0 1
1 0

¸
;X =

·
0 1
0 1

¸
• It is possible to regain some considerations if we give up the issue of consistency
in aggregation...specifying a given order of aggregation and in an additive frame-
work consider different parameters ε in aggregating across distribution w.r.t.
those applied in aggregating across individuals. (Decancq, Decoster Schokkaert World Dev
2008)

......but what is left aside even in this case is the correlation between the distrib-
utions of the attributes in

Z =

·
1 1
0 0

¸
;Y =

·
0 1
1 0

¸
;X =

·
0 1
0 1

¸
.

More precisely:

24



• Depending on the order of aggregation if we start first deriving an individual
index of well being symmetric in attributes then W (Y ) =W (X).

• If we aggregate first across attributes deriving a Macro index of the distribution
across individuals then W (Y ) =W (Z) This second result is more controversial
and highlight some critical aspects underlying the procedure that first aggre-
gates across attributes. For more general results in this direction see Pattanaik
et al. (2008)

The general critical issue in comparing Y and Z is the increase in the correlation
between attributes in Z.

From Y =

·
0 1
1 0

¸
to Z =

·
1 1
0 0

¸
we have transferred attribute 1 from agent 2 to

agent 1 that now clearly dominates the latter.

Definition 3.4 (CIT) In general a Correlation Increasing Transfer CIT (i, j)
is a sequence of "rearrangements" of the distribution of attributes (one attribute per
step of the sequence) involving only two individuals (i, j) s.t. as the result of the
process one individual ends up being weakly dominated by the other in any attribute.

Epstein and Tanny (CanJEc1980), Tsui (JET 1995, SCW 1999)

Example 3.2 A sequence of CIT

Y 0 =

1 3 2
3 2 1
2 1 3

 =⇒
CIT (13)

1 1 2
3 2 1
2 3 3

 =⇒
CIT (12)

1 1 1
3 2 2
2 3 3

 =⇒
CIT (23)

1 1 1
2 2 2
3 3 3

 = Z 0

The last matrix (Z 0) is more unfair than the first one (Y 0) looking from the
individuals perspective.
All symmetric indices first aggregating across attributes will consider W (Y 0) =

W (Z 0)
Also inequality indices aggregating first across individuals may lead to I(Y 0) >

I(Z 0)
See Dardanoni (1995) comment on Maasaouni (1986) Multidimensional Inequality Index

Using non additive measures (Gini type welfare/inequality indices) We
use a functional [ψ in the previous discussion] in order to aggregate across individuals
their realizations in each attribute [aggregating vertically for each matrix column] and
another functional [φ in the previous discussion] in order to aggregate across attributes
per each individual [aggregating horizontally for each matrix row]. In particular we
consider Gini welfare evaluation over individuals [ψ = G] AND the average aggregator
over attributes [φ = µ]
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Definition 3.5 First procedure (average of Gini indices of the agents distribution
for each attribute): aggregating for each attribute taking the Gini index across agents
AND then averaging the obtained result.

Let v1 ≥ ... ≥ vi ≥ vi+1 ≥ ... ≥ vn ≥ 0 where
P

i vi = 1 let ŝ(i)j denote the
increased order of sij for each attribute j across agents i.e. ŝ(1)j ≤ ŝ(2)j ≤ ... ≤ ŝ(n)j
then

Gj(s.j) =
nX
i=1

vi · ŝ(i)j

averaging across all attributes we get

G1(S) =
1

d

dX
j=1

nX
i=1

vi · ŝ(i)j.

Remark 3.2 Note that we assume symmetry across attributes thus the weighting
function vi applied in Gj(s.j) is independent from j.

Second procedure with Gini type indices.

Definition 3.6 Second procedure (Gini index of average agent score): Average
over attributes for each agent AND Gini aggregation over individuals scores.

Average score of agent i :

µi = µ(si.) =
1

d

dX
j=1

sij;

let µ̂[i] denote the increased order of µi i.e. µ̂[1] ≤ µ̂[2] ≤ ... ≤ µ̂[n] and let β1 ≥ ... ≥
βi ≥ βi+1 ≥ ... ≥ βn ≥ 0 where

P
i βi = 1 then

G2(S) =
nX
i=1

βi · µ̂[i] =
nX
i=1

βi ·
Ã
1

d

dX
j=1

ŝ[i]j

!
=
1

d

dX
j=1

nX
i=1

βi · ŝ[i]j.

Remark 3.3 Note that the order of ŝ(i)j and ŝ[i]j does not necessarily coincide. In
particular for a given attribute j the elements ŝ(i)j are ranked in increasing order in
terms of values of sij, while the elements ŝ[i]j are ranked according to the increasing
order of the elements µi. Thus ŝ(i)j = ŝ[i]j only if the order of the scoring functions
sij for attribute j is the same as the order of the average scores µi.

• If the rank correlation of each attribute across agent is perfectly positive then
ŝ(i)j = ŝ[i]j for any i and j, thus G1(S) = G2(S) if βi = vi.

• However note that in general G1(S) = G2(S) only if βi = vi = 1/n.

26



Remarks on Gini indices Getting back to the original matrices

X =

·
0 1
0 1

¸
;Z =

·
1 1
0 0

¸
;Y =

·
0 1
1 0

¸
;

recall that X 0, Z 0, Y 0 are obtained permuting either rows or columns thus they obtain
the same evaluation of the symmetric distributions X,Z, Y respectively. Applying
the mentioned procedure one gets:

G1(X) = 1/2 G2(Z) = 1− β1
G1(Z) = G1(Y ) = 1− v1 G2(X) = G2(Y ) = 1/2

The final index that considers a weighted average of G1(.) and G2(.) according to

W (S) := α ·G1(S) + (1− α) ·G2(S)

will give:

W (Y ) = α · (1− v1) + (1− α) · 1/2 ≤ 1/2
W (X) = 1/2

W (Z) = α · (1− v1) + (1− α) · (1− β1) ≤ 1/2

recalling that (1− v1) ≤ 1/2 and (1− β1) ≤ 1/2.More precisely if α ∈ (0, 1), 1/2 < v1
and 1/2 < β1 then

W (X) > W (Y ) > W (Z).

Remark 3.4 Note this mixed procedure is different from Hicks (1997 World Dev.)
proposal of taking the average of the Gini welfare index of the distribution of each
attribute. (This measure coincides with the one obtained applying only the first pro-
cedure)

Remark 3.5 Gajdos and Weymark (ET 2005) characterize families of Generalized
averages across attributes of Gini indices across individuals per each attribute. (Again
in line with the application of the first procedure only)

However as already pointed out for these measures

Z =

·
1 1
0 0

¸
and Y =

·
0 1
1 0

¸
are considered socially indifferent thereby neglecting considerations based on corre-
lation in the distribution of the attributes.
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What about applying a Gini type evaluation to the overall matrix? A
problem arises due to comonotonic independence (across attributes). Consider ma-
trices

H =

·
1/2 0
0 0

¸
;H 0 =

·
0 0
1/2 0

¸
;K =

·
1/2 1/2
1/2 0

¸
;

note that K is comonotonic w.r.t. H and H 0 because the ranking of the attributes
is the same in all matrices: taken any pair of cells ij and i0j0 it is always true that
Hij ≥ Hi0j0 ⇐⇒ Kij ≥ Ki0j0 (similarly for comparisons of K and H 0).

• Comonotonic Independence is the key property characterizing Gini type (i.e.
rank dependent) evaluations!

By Comonotonic independence between K and H and K and H 0 it follows that
for a Gini index G

G(H +K) ≥ G(H 0 +K)⇐⇒ G(H) ≥ G(H 0)

...but G(H) = G(H 0) by anonymity (i.e. symmetry across individuals), thus

G(H +K) = G(H 0 +K)

where

H +K =

·
1 1/2
1/2 0

¸
;H 0 +K =

·
1/2 1/2
1 0

¸
.

Note that the general indication for the multivariate Gini index G(H + K) =
G(H 0+K) is in line with the one obtained following the first procedure of aggregation
first across individuals and then averaging across attributes that will lead to G1(H +
K) = G1(H 0+K). Once again correlation is neglected indeed H+K can be obtained
from H 0+K through a Correlation Increasing Transfer in the first attribute thus one
would expect that W (H +K) ≤ W (H 0 +K) as it is the case applying the previous
mixed two steps procedure.

• Open question...appropriate definition of multidimensional Gini functionals...

4 Multidimensional orders

In this section we move from multidimensional indices to dominance conditions.
The key component of interest in the multidimensional framework is still the

dependence between attributes
Different tools can be applied:

• Multidimensional Majorization.
• Multidimensional versions of Lorenz and Generalized Lorenz curves and related
dominance conditions.

• Multidimensional Stochastic dominance conditions based on stochastic orders
specified in the unidimensional framework.
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4.1 Multidimensional Majorization

Kolm (QJE 1977): Multidimensional egalitarianism; Koshevoy (SCW 1995): Multivariate Lorenz majorization; Ko-

shevoy, Mosler (JASA 1996): The Lorenz zonoid of a multivariate distribution; Koshevoy, Mosler (AStA 2007):

Multivariate Lorenz dominance based on zonoids; Marshall, A. W. and Olkin, I. (1979): Inequalities: Theory of

Majorization and Its Applications. New York: Academic Press; Weymark (2004) The normative approach to the

measurement of multidimensional inequality; Savaglio (2004) Multidimensional inequality: a survey

The Multidimensional Majorization criteria generalizes the majorization condi-
tions based on the application of bistochastic matrices moving the perspective from
the unidimensional case to multidimensional distributions where attributes are trans-
ferable between individuals (e.g. bundles of goods) see Marshall and Olkin (1979).
Consider matrices X,Y ∈ Rn×d for n individuals, d goods (characteristics) and

such that
Pn

i=1 xi =
Pn

i=1 yi where xi,yi ∈ Rd denote vectors of goods belonging to
individual i.

• Distribution of a fixed bundle of d goods across n individuals
Definition 4.1 Y multidimensionally majorizes X (in the weak sense)

Y >M X ⇐⇒ X = ΠY,

where Π is a n× n bistochastic matrix [all elements of Π are non-negative with row
sum and column sum equal to 1].

X is obtained from Y averaging the endowments vectors of the individuals, or in
other terms X shows less disparity in the distributions of the bundles of goods than
Y.

Example 4.1 Π =

0.1 0.2 0.7
0.2 0.6 0.2
0.7 0.2 0.1

 ;Y =
10 30
20 30
10 0

 =⇒ X = ΠY =

12 9
16 24
12 27


In the example the individual 3 situation [third row] inX is substantially improved

(she has overtaken individual 1) if compared to Y . This fact may make difficult to
agree on a reduction of dispersion in X w.r.t. Y but we need to rely on symmetric
evaluations across individuals (note that a permutation matrix is bistochastic) there-

fore one may find more immediate to compare Y =

10 30
20 30
10 0

 and X 0 =

12 27
16 24
12 9

 .
Not only for each attribute the distribution is less disperse but also disparities between
individuals bundles seem to be reduced.
Note however that all attributes are "mixed" in the same way for each individual

(i.e. they are multiplied by the same raw of Π) i.e. xi =
Pn

k=1 πik · yk thus the aver-
aging of every attribute is made using the same weights depending on the individuals
and not on the attribute itself. This operation reduces the disparities between the
individuals bundles.
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A welfare interpretation Consider matrices X,Y ∈ Rn×d such that
Pn

i=1 xi =Pn
i=1 yi

Theorem 4.1 Y >M X is equivalent to the following conditions
(I) φ(Y ) ≤ φ(X) for all φ : Rn×d→ R which are S-concave;
(II)

Pn
i=1 u(yi) ≤

Pn
i=1 u(xi) for all u : Rd→ R which are concave [they can also

be increasing].

S-Concave function: symmetric functions such that φ(Y ) ≤ φ(ΠY )
The distribution X of a fixed amount of resources improves welfare
Does it means that we have also less inequality in terms of the distribution of the

concave and increasing utilities u(yi)?
Will it be possible to decompose the change from Y to X in terms of progressive

transfers?

A controversial implication in terms of inequality Dardanoni (REI 1996) On multidi-

mensional inequality measurement

Example 4.2 Π =

1 0 0
0 0.5 0.5
0 0.5 0.5

 ;Y =
1 1
1 3
3 1

 =⇒ X = ΠY =

1 1
2 2
2 2


The utility of the poorest individual [agent 1] is left unchanged, while according

to any strictly concave utility agents 2 and 3 are better off.
There is more inequality as well as welfare even though the resources are fixed!!!

This outcome contradicts the link between welfare and inequality evaluations in the
unidimensional framework. For unidimensional distributions with fixed amount of
attributes (e.g. fixed income) an increase in inequality reduces welfare.

• If we consider majorization dominance as an ethically compelling criterion then
in evaluating inequality the approach that first aggregates in terms of individual
utilities might not be appropriate.

4.1.1 Relation with Progressive (Pigou Dalton) transfers

Relation with Progressive (Pigou Dalton) transfers
Will it be possible to decompose the change from Y to X in terms of progressive

transfers?

Definition 4.2 T transform (Pigou Dalton transfer)

Π2,3(λ) = λ ·
1 0 0
0 1 0
0 0 1

+ (1− λ) ·
1 0 0
0 0 1
0 1 0


=

1 0 0
0 λ (1− λ)
0 (1− λ) λ


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a convex combination of identity matrix and a permutation matrix involving a per-
mutation of 2 individuals.

These transformations are those underlying the Pigou Dalton progressive transfer
in the unidimensional case.
Will it be possible to decompose the change from Y to X in terms of progressive

transfers?

Remark 4.1 In general when n ≥ 3 not all bistochastic matrices Π can be obtained
as product of T transforms.
This issue is particularly crucial when d ≥ 2.

Example 4.3 The matrix Π =

0.5 0 0.5
0 0.5 0.5
0.5 0.5 0

, cannot be obtained as product of
T-transforms.

The 3 entries with 0 involving all individuals cannot be replicated by a chain of
T-transforms different from permutation matrices in which case we won’t be able to
obtain the 0.5 entries

Remark 4.2 Note however that in the unidimensional case the above mentioned
problem is not an issue because there exist always the possibility to obtain the final
distribution through T transforms even though they generate a different bistochastic
matrix. We check this statement in next example.

Example 4.4

0.5 0 0.5
0 0.5 0.5
0.5 0.5 0

3030
0

 =
1515
30

 =
0 0.5 0.5
0 0.5 0.5
1 0 0

3030
0

 thus
1515
30

 =
0 0 1
0 1 0
1 0 0

1 0 0
0 0.5 0.5
0 0.5 0.5

3030
0

 .
The above two matrices are T transforms Πi,j(λ) : the first is a permutation matrix an
coincides with Π1,3(0) while the second is Π2,3(0.5). The example clarifies that even

though the transition from

3030
0

 to
1515
30

 can be formalized through a bistochastic
matrix that cannot be decomposed into the product of T transforms, it can also be
obtained through the product of appropriately derived T transforms.

With two [or more] dimensions it is essential to be able to generate the specific
bistochastic matrix considered.
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A further weakness Multidimensional majorization is of no help in ranking matri-
ces capturing the notion of increase in correlation in the distributions of the attributes.

Recall the initial examples where Z =
·
1 1
0 0

¸
and Y =

·
0 1
1 0

¸
; these two distri-

butions cannot be ranked in terms of majorization. Even if one would argue that Y
is preferable to Z bot in terms of less inequality than in terms of higher welfare/well
being there is no bistochastic matrix Π s.t. Y = ΠZ. Indeed one can get that all
matrices Z 0 that (weakly) majorize Z are:

Z 0 =
·

λ (1− λ)
(1− λ) λ

¸
·
·
1 1
0 0

¸
=

·
λ λ

(1− λ) (1− λ)

¸
for λ ∈ [0, 1].

4.1.2 Tests for Multidimensional Majorization...

• Unfortunately SO FAR there exists no multidimensional generalization of the
Lorenz curve which could be used to rank matrices according to the >M pre-
order.

Standard majorization could be weakened in different ways in order to be applied
in different economic contexts. The most interesting device is the price majorization
criterion suggested in Kolm (QJE 1977).

Definition 4.3 The matrix Y is said to price majorize X that is

Y >P X ⇐⇒ Y p >M Xp ∀p ∈ Rd
+, (or ∀p ∈ Rd)

i.e. the distribution of potential incomes associated to X, and evaluated according to
the vector of prices p, Lorenz dominates the one associated to Y for all possible price
profiles [they can be also negative].

Price Majorization... According to >P the distribution of initial endowments X
is always preferred to Y by an inequality averse policy maker which is concerned in
maximizing the distribution of indirect utilities and attach to each individual the same
direct utility function, this evaluation is valid no matter what will be the equilibrium
price profile.

Y >M X ⇔ X = ΠY =⇒ Xp = ΠY p⇔ Y p >M Xp⇔ Y >P X

• thus >M=⇒>P but the converse is not always true.
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There exist multidimensional generalizations of the Lorenz curve that can be used
to test >Pboth when p ∈ Rd

+, and p ∈ Rd. They also work as analogous of generalized
Lorenz dominance over distributions of income budgets. The are the Lorenz Zonoid,
the Lift Zonoid and their extensions!!!
Before moving to the analysis of the construction of these dominance tests notice

that the price majorization condition can be useful to rank Z =

·
1 1
0 0

¸
and Y =·

0 1
1 0

¸
.

Consider
·
p1
p2

¸
= p ∈ R2 then Zp =

·
p1 + p2
0

¸
and Y p =

·
p2
p1

¸
then if either

p ∈ R2++ or p ∈ R2−−we can show that

Y p =

·
p2
p1

¸
=

·
λ (1− λ)

(1− λ) λ

¸ ·
p1 + p2
0

¸
= Zp

when λ =
p2

p1 + p2
∈ (0, 1)

thus Zp >M Y p.
On the other hand if for instance p1 < 0 < p2 is negative then either λ or (1− λ)

would be negative and thus the matrix above cannot be consider a bistochastic matrix
anymore. As a result price majorization does not hold.

• Price majorization with positive prices appears an interesting candidate for a
meaningful multidimensional dominance condition.

4.1.3 Lift Zonoid and Lorenz Zonoid (by Koshevoy & Mosler)

For empirical distributions the definition of the lift/Lorenz zonoid is the following:

Definition 4.4 The Lift Zonoid Z(X) is a convex compact set in the (d + 1) space
obtained as the weighted sum of segments xi ∈ Rd , for all possible sets of normalized
weights, that is

Z(X) =

(
nX
i=1

z0i;
nX
i=1

z0ixi : 0 ≤ z0i ≤ 1/n, i = 1, 2, ..., n
)
.

The Lorenz Zonoid LZ(X) is the Lift Zonoid evaluated over distribution

X̃ := (x.1/µ (x.1) ;x.2/µ (x.2) ; ...;x.d/µ (x.d))

where each attribute is normalized dividing it by its average: LZ(X) := Z(X̃).
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Zonoids: the intuition

• Take all subsets of the population of a given relative size z0 ∈ [0, 1] (e.g. 50%)
[where z0 = Σiz0i] what is the aggregate (divided by n) realization in the d
dimensional space of the resources of any of these subsets covering a z0 pro-
portion of population? Take the convex hull of all these distributions in the d
dimensional space. We have obtained the section of the Lift Zonoid for a
fixed value of population share z0. As z0 moves from 0 to 1 we construct
the Lift Zonoid. For finite populations it is necessary to "convexify" all sections
corresponding to adjacent proportions of population.

• In order to get the Lorenz Zonoid we need just to apply the same logic to
the normalized distributions of each attribute. So normalize each columns in
relative terms so that any aggregate amount sums to n.

Example 4.5 Lift zonoid of univariate distribution (2400,5600), example taken from
Koshevoy and Mosler (AStA2007) see figure

Note that when considering the 50% of the population the amount of resources (divided
by 2) owned by a group of that size ranges from 2400/2 to 5600/2. With a population
of n agents equally split between 50% of poors endowed with 2400 and 50% of riches
endowed with 5600 then any group of n/2 agents will own average resources (divided
by n) for np

n
· 2400+ nr

n
· 5600 where np+nr = n/2 and np ≤ n/2; nr ≤ n/2. Once np

and nr move from 0 to n/2 we obtain realizations that range between 1200 and 2800.

Example 4.6 Lorenz zonoid of univariate distribution (2400,5600) [in relative terms
(0.6; 1.4)] taken from Koshevoy and Mosler (AStA2007) see figure
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• Dominance is defined in terms of inclusion of Zonoids.
Example 4.7 For

Y =


0 6
0 4
4 0
1 4

 and X =


0 5
0 5
2 3
3 1


note that Z(X) ⊆ Z(Y ).
Moreover note that we have (Generalized) Lorenz dominance for each attribute!!

A graphical representation for Z(X) ⊆ Z(Y ) evaluated for z0 = 1/4 shows that
for z0 = 1/4 i.e. when we consider the realizations of each agent, the convex hull of
these realizations for distribution X (identified by the blue dots and the dotted lines)
is included in the convex hull of the realizations of Y (identified by the red dots and
the continuous lines).

 

4 

4

6

32

1 

1

3 

x.1 

x.2 

Z(X) ⊆ Z(Y ) for z0 = 1/4
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Clearly inclusion of the convex hull of the average realization of groups of a given size
should also be checked for z0 = 2/4, and z0 = 3/4 (for z0 = 1 the zonoids coincide
given that the aggregate total amount of resources is the same in X and Y ). Further
calculations will show that these conditions hold thus Z(X) ⊆ Z(Y ).

Remark 4.3 There is no (4× 4) bistochastic matrix Π such that X = ΠY for X
and Y presented in the previous example.
In order to accommodate for the transformation from Y to X involving the first

two individuals the only admissible matrix should be

Π =


0.5 0.5 0 0
0.5 0.5 0 0
0 0 a b
0 0 c d

 .
If we set a = 1/3; b = 2/3 in order to accommodate for the first attribute of the third
individual we cannot obtain the distribution in X of her second attribute!!!

This remark clarifies that

Z(X) ⊆ Z(Y ) 6=⇒ Y >M X.

A further example: Zonoids fail in taking into account the effect of corre-

lation increasing transformations If one considers Z =
·
1 1
0 0

¸
and Y =

·
0 1
1 0

¸
there is no inclusion relation between the Lift Zonoids of the two distributions. In
order to check it is sufficient to compare the graphical 3-dimensional representation
of the Zonoids of the two distributions (for convenience of exposition without loss of
generality we haven’t normalized the realizations of each group).

Lift Zonoid of Y Lift Zonoid of Z
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This problem is the logical counterpart of the lack of comparability of the two matrices
in terms of price majorization when also negative prices are taken into account as
discussed earlier.

Lorenz Dominance and Price Majorization The next theorem clarifies the
connection between Zonoids dominance and price majorization with positive and
negative prices

Theorem 4.2 The following conditions are equivalent:
(I) LZ(X) ⊆ LZ(Y ).
(Ia) LZ(XS) ⊆ LZ(YS) for the distributions of all the subsets S of attributes
(II) Ỹ >P X̃ (for all p ∈ Rd).
(III) X̃p Generalize Lorenz dominates Ỹ p for all p ∈ Rd. (Budget dominance)
(IV) ψ(Ỹ p) ≤ φ(X̃p) for all ψ : Rn→ R which are S-concave and all p ∈ Rd.
(V)

Pn
i=1 v(ỹi · p) ≤

Pn
i=1 v(x̃i · p) for all v : R→ R which are concave and all

p ∈ Rd.

• Is it possible to obtain conditions analogous to Generalized Lorenz dominance
of budgets when prices are only positive?

Budget dominance with positive prices The dominance tool requires to extend
the notion of Lift Zonoid.

Definition 4.5 The Extended Lift Zonoid eZ(X) is obtained extending the vol-
ume of the Lift Zonoid taking all points below it for the coordinate relative to the
population share and all points above the Lift Zonoid in the d dimensional space of
the attributes. Thus for instance any two dimensional section of Z(X) for a given
population share z0 the extension requires to take all points north-east w.r.t. each
point in Z(X) associated with the distribution of the attributes of each groups of
agents covering the share z0. In general eZ(X) := Z(X) + (R−×Rd

+).

• Price dominance with positive prices can be implemented through the Extended
Lift Zonoid also for distributions with different total amounts of attributes.

The result:

Theorem 4.3 The following conditions are equivalent:
(I) eLZ(X) ⊆ eLZ(Y ).
(II) Xp Generalize Lorenz dominates Y p for all p ∈ Rd

+. (Budget dominance)
(III) ψ(Y p) ≤ φ(Xp) for all ψ : Rn→ R which are increasing and S-concave and

all p ∈ Rd
+.

(IV)
Pn

i=1 v(yi · p) ≤
Pn

i=1 v(xi · p) for all v : R+→ R which are increasing and
concave and all p ∈ Rd

+.
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If for each share of population the upper contour set of the section of the Lift
Zonoid of X in the d dimensional space is included into the same set for Y then
social welfare is larger in X than in Y for SWFs that are increasing and inequality
averse.

Getting back to the previous examples comparing Z =
·
1 1
0 0

¸
and Y =

·
0 1
1 0

¸
.

It has already been shown that Zp >M Y p for p ∈ R2+ thus according to the previous
theorem it is also true that eLZ(Y ) ⊆ eLZ(Z). One can check this last condition
extending the graphical representation of the zonoids of Z and Y depicted in the
previous figures.

eLZ(Y ) : volume below the shaded area eLZ(Z) : volume below the shaded area

The extension to eLZ(Y ) simply requires to consider all points below the surface
representing LZ(Y ), given that the extension to all points in the attributes space
located north east of each point on the surface still identifies points that are below
the surface. For the extension to eLZ(Z) it becomes also relevant to consider the
extension to all points in the attributes space that are north east w.r.t. those on the
LZ(Z) surface, in this case it is particularly relevant the extension of all points in
LZ(Z) located on the segment from (1/2, 0, 0) to (1, 1, 1).

4.2 Multidimensional Stochastic orders

Integral Stochastic Orders can be applied also in a multidimensional framework where
for instance are considered distributions in Rd

+.
Here we focus on very few stochastic orders, identifying some key aspects and

referring to Shaked and Shanthikumar (1994) and Müller and Stoyan (2002) for a
survey of the relevant literature.
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Let X = (X.j : j = 1, 2, ..., d) denote the marginal distributions of each attribute
j with generic realization x = (x1, x2, ..., xd) identifying a d dimensional vector of
realizations one for each attribute with

• Cumulative Distribution Function:
FX(x) := P (X ≤ x) := P (X.j ≤ xj for all j = 1, 2, 3, ..., d)

with marginals FX.j(x) for j = 1, 2, 3, ..., d.

• Survival Function:
F̄X(x) := P (X > x) := P (X.j > xj for all j = 1, 2, 3, ..., d)

• In this framework probabilities logically correspond to proportions of popula-
tions in the multidimensional distribution setup.

A first result

• Let u : Rd
+ → R denote an "utility" [evaluation] function over d dimensional

attributes realizations x and

dU1 := {u : u non-decreasing}
i.e. if x ≥ x0 then u(x) ≥ u(x0). Thus >dU1 denotes the following integral
stochastic order

Definition 4.6 The multidimensional (d-dimensions) integral stochastic order for
functionals in dU1 requires that

X >dU1 Y ⇐⇒
Z
Rd+

udFX ≥
Z
Rd+

udFY ∀u ∈ dU1

Definition 4.7 (Upper Set) The set U ∈ Rd
+ is an upper set iff for all x ∈ Rd

+ if
x ∈ U then y ∈ U if y ≥ x.
Theorem 4.4 The following statements are equivalent:
(i) X >dU1 Y
(ii) P (X ∈ U) ≥ P (Y ∈ U) for all upper set U in Rd

+.

An analogous result can be obtained when focussing on comparisons of budgets
where attributes are evaluated in terms of non negative "prices".

Definition 4.8 Let P := {p ∈ Rd
+ : p1 + p2 + ...+ pd = 1}

X >1P Y ⇐⇒
Z
Rd+

g(Xp)dFX ≥
Z
Rd+

g(Y p)dFY ∀g ∈ 1U1 ∀p ∈ P.
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The following statements are equivalent (Muliere and Scarsini, 1989):

Theorem 4.5 (i) X >1P Y
(ii) P (Xp > t) ≥ P ((Y p > t) for all t > 0. (Dominance for all upper sets whose

boundary is an hyperplane)

Problem 4.1 Is it possible to add to the list of equivalent conditions also those on
comparisons of FX and FY or of F̄X and F̄Y?

Definition 4.9 (Upper Orthant order) X <uo Y ⇐⇒ F̄X(t) ≥ F̄Y(t) for all
t ∈ Rd

+.

Definition 4.10 (Lower Orthant order) X <lo Y ⇐⇒ FX(t) ≤ FY(t) for all
t ∈ Rd

+.

• X <uo Y and X <lo Y are independent.

• X >dU1 Y =⇒ [X <uo Y and X <lo Y ]

• [X <uo Y and X <lo Y ] 6=⇒ X >dU1 Y.

• [X <uo Y and X <lo Y ] give the Concordance order X <c Y , i.e. an order of
association between variables

Solution 4.1 From last set of remarks is clear that the answer to the question posed
in the formation of the previous problem is NO!

Note that by construction Upper Sets are unions of Upper Orthants, but as pre-
viously stated dominance for all Upper Orthants is not sufficient to guarantee domi-
nance for all Upper Sets.

Definition 4.11 (∆−monotone functions) Consider the function u : Rd
+ → R,

let ε > 0, 1 := (1, 1, 1, 1, ..., 1) and 1i := (0, 0, 0, 1i, 0, ..., 0)

∆ε
iu (x) := u (x+ ε1i)− u (x) .

Function u is ∆−monotone if for every set {i1, i2, .., ik} ⊂ {1, 2, 3, ..., d} and every
εi > 0 for i ∈ {1, 2, 3, .., k} then

∆ε1
i1
∆ε2

i2
...∆εk

ik
u (x) ≥ 0.

Definition 4.12 d∆M is the set of all bounded ∆−monotone functions u : Rd
+ → R.

Definition 4.13 d∆A is the set of all bounded ∆ − antitone functions u : Rd
+ → R

i.e. u(x) ∈ d∆A ⇔ −u(−x) ∈ d∆M.
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Remark 4.4 Note: ∆− antitone functions satisfy decreasing increments.

Theorem 4.6 (i) X <uo Y ⇐⇒ X >d∆M Y
(ii) X <lo Y ⇐⇒ X >d∆A Y .

Definition 4.14 (Supermodular functions) The function u : Rd
+ → R, is super-

modular if for all x,y ∈ Rd
+

u (max{x1, y1}; ..;max{xd, yd}) + u (min{x1, y1}; ..; min{xd, yd})
≥ u (x) + u (y) .

alternatively if u is twice differentiable ∂2u
∂xi∂xj

≥ 0 for all i, j ∈ {1, 2, 3, .., d}, i 6= j.

Remark 4.5 A function u : Rd
+ → R is supermodular if and only if

R
Rd+

udFX ≥R
Rd+

udFY whenever X is obtained from Y through a Correlation Increasing Transfor-

mation. (It is an indicator of dependence across attributes)

Definition 4.15 The set of supermodular functions is dUSM .

Consider the bivariate case:

Theorem 4.7 Let d = 2, the following statements are equivalent:
(i) X >2USM∩ 2U1 Y,
(ii) X <uo Y and X.j <1 Y.j for j = 1, 2

Theorem 4.8 Let d = 2, the following statements are equivalent:
(i) X >2USM Y
(ii) Y <lo X and X.j = Y.j for j = 1, 2
(iii) X <uo Y and X.j = Y.j for j = 1, 2

Related results can be found in Atkinson and Bourguignon (1987), Bourguignon
and Chakravarty (2002), Athey (2000, 2002).
For d > 2 some of the equivalences may break.

Theorem 4.9 Let d = 2, and X.j = Y.j for j = 1, 2 the following statements are
equivalent:
(i) X >2USM Y ;
(ii) Y <lo X
(iii) X <uo Y
(iv) Cov[f1(X.1), f2(X.2)] ≥ Cov[f1(Y.1), f2(Y.2)] for increasing functions f1, f2;
(v) X >d∆M Y.

One more result by Scarsini (J appl. Prob 1998), it relates to comparisons of
multidimensional distributions (not necessarily bivariate) with common marginals.

Theorem 4.10 If X.j = Y.j for all j = 1, 2, .., d then Y >dUSM X implies that Xp
Lorenz dominates Y p for all p ∈ Rd

+.

With common marginals stochastic dominance in terms of supermodular functions
implies price dominance (with positive prices).
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A closer look at dependence between variables. The dependence structure of
a distribution can be represented by a Copula (a random vector uniformly distributed
between [0, 1])
Consider for the Frechet class Γ(FX.1, FX.2 , ...., FX.d) of d dimensional distributions

with FX.1 , FX.2 , ...., FX.d as marginals.
Given a FX ∈ Γ(FX.1 , ..., FX.d) there exist a copula C : [0, 1]d → [0, 1] s.t. for all

x ∈ Rd

FX(x) = C[FX.1(x1), FX.2(x2), ..., FX.d
(xd)]

and can be constructed if FX is continuous as:

C[u] := FX [F
−1
x.1
(u1);F

−1
x.2
(u2); ..., F

−1
x.d
(ud)] u ∈ [0, 1]d.

This result clarifies a connection between comparisons of marginals when the associ-
ation between the variable represented by the copula is fixed.

Theorem 4.11 If X and Y have a common copula then X.j <1 Y.j for all j =
1, 2, ..., d implies X >dU1 Y .

Thus with common copula (association) then dominance in terms of the distrib-
utions of each attribute is sufficient to guarantee multivariate dominance!

5 Suggested Readings

Surveys on Stochastic Orders: Shaked, M. and Shanthikumar, J. G. (1994); Müller,
A. and Stoyan, D. (2002).
References for Inequality, Welfare and Poverty measurement:
Books: Sen (1997); Lambert, (2001); Chakravarty, (1990);
Surveys: Mosler and Muliere (1998); Zheng (1997, 2000); Cowell, F. A. (2000)

Chakravarty and Muliere, (2003, 2004);
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