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Abstract

Suppose that a group of agents having divergent expectations can share risks
efficiently. We examine how this group should behave collectively to manage
these risks. We show that the beliefs of the representative agent are in gen-
eral wealth-dependent. We prove that the probability distribution used by
the representative agent is biased in favor of the beliefs of the more risk tol-
erant agents in the group. From this central result, we show that increasing
disagreement on the state probability raises the state probability of the rep-
resentative agent. It implies that when most disagreements are concentrated
in the tails of the distribution, the perceived collective risk is magnified. This
can help to solve the equity premium puzzle.
Keywords: aggregation of beliefs, state-dependent utility, efficient risk

sharing, disagreement, asset pricing, portfolio choices.



1 Introduction

People have divergent opinions on a wide range of subjects, from the growth
rate of the economy next year, the profitability of a new technology to the
risk of global warming. Suppose that this heterogeneity of beliefs does not
come from asymmetric information but rather from intrinsic differences in
how to view the world. People agree to disagree, which implies that prices
and observed behaviors of other market participants do not generate any
Bayesian updating of individual beliefs. We examine how the group as a
whole will behave towards risk. Aggregating beliefs when agents differ on
their expectations is useful to solve various economic questions, from asset
pricing to cost-benefit analyses of collective risk prevention.
The attitude towards risk of a group of agents depends upon how risk

is allocated in the group. For example, if an agent is fully insured by other
agents, it is intuitive that this agent’s beliefs should not affect the social
welfare function. Only those who bear a share of the risk should see their
expectations be taken into account on the collective risk decision. In this
paper, we assume that risks can be allocated in a Pareto-efficient way in
the group. In such a situation, the willingness to take risk is increasing in
the Arrow-Pratt index of absolute risk tolerance. It implies that the beliefs
of agents with a larger risk tolerance should have a larger impact on how
individual expectations are aggregated. At the limit, those with a zero risk
tolerance do not influence the group’s expectations.
The properties of the socially efficient probability distribution are derived

from the characteristics of the efficient allocation of risk in the group, such as
the one derived from the competitive allocation with complete Arrow-Debreu
markets. Borch (1960,1962), Wilson (1968) and Rubinstein (1974) were the
first to characterize the properties of Pareto-efficient risk sharing. Wilson
(1968), Lintner (1969), and more recently Calvet, Grandmont and Lemaire
(2001), Jouini and Napp (2003) and Chapman and Polkovnichenko (2006),
showed that the standard methodology of the representative agent can still be
used when agents have heterogeneous beliefs. Leland (1980) examined the
competitive equilibrium asset portfolios when agents have different priors
on the distribution of state probabilities. Bossaerts, Ghirardato and Zame
(2003) determine the equilibrium collective attitude towards risk when people
have multiple priors and have different degrees of ambiguity aversion.
The cornerstone result of this paper is to compare two states of nature
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for which the distribution of individual probabilities are different. Consider
for example a situation where all agents believe that state s2 has the same
probability of occurrence than another state s1, except agent θ. Suppose
that this agent has a subjective probability for s2 that is 1 percent larger
than for s1. By how much should we increase the probability of state s2 with
respect to s1 in the collective decision making? We show that the collective
probability should be increased by x percents, where x is the percentage share
of the aggregate risk that is borne by agent θ, or the agent θ0s tolerance to risk
expressed as a percentage share of the group’s risk tolerance. More generally,
the rate of change of the collective probability is a weighted mean of the
rate of change of the individual probabilities. The weights are proportional
to the individual risk tolerances. More risk tolerant agents see their beliefs
better represented in the collective decision making under uncertainty. This
intuitive result has several important consequences.
Observe first that, as initially observed by Hylland and Zeckhauser (1979),1

the efficient aggregation of beliefs cannot be disentangled from the risk at-
titude of the group’s members. Except in the case of constant absolute risk
aversion, this individual risk attitudes depends upon the allocation of con-
sumption in the group. It implies that the efficient collective probability
distribution will be a function of the wealth per capita in the group. The
representative agent has state-additive preferences as under the standard ex-
pected utility model, but the different terms of the sum cannot be written
as a product of a probability that would depend only upon the state by a
utility that would depend only upon consumption. Equivalently, this means
that the representative agent has a state-dependent utility function, despite
the fact that all members of the group have state-independent preferences.2

Drèze (2001) and Drèze and Rustichini (2001) examine the effect of the state
dependency of the utility function for risk management and risk transfers.
Another way to interpret this result is that the collective probability distrib-
ution depends upon the aggregate wealth level. Wilson (1968) showed that
this wealth effect vanishes only when agents have an absolute risk tolerance
that is linear with the same slope. We reexamine this wealth effect when this

1See also Mongin (1995), Gilboa, Samet and Schmeidler (2001), and Gajdos, Tallon
and Vergnaud (2005). Our work differs much from this branch of the literature by taking
into account of risk-sharing opportunities within the group.

2Karni (1993) examines the problem of disentangling beliefs and tastes with state-
dependent preferences.
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condition is not fulfilled.
The efficient aggregation result for beliefs states that the rate of change of

the collective probability between two states is a weighted mean of the rate
of changes of individual probabilities. This result must be compared to the
observation that the state probability used by the representative agent does
not need to be in between the smallest and the largest state probabilities
of the agents. Notice however that when deciding about transfers of wealth
across states, what really matters are relative state prices per unit of prob-
ability. Thus the rate of change in the probabilities — or differences in log
probabilities — is the relevant information for determining the collective risk
exposure, and our aggregation formula provides exactly that information.
The main objective of the paper is to determine how the divergence of

opinions about the true probability distribution of the states of nature affects
the perception of risk by the representative agent, the optimal collective risk
exposure, and the equilibrium asset prices. It is an immediate consequence
of the independence axiom that the aggregation rule for beliefs is homoge-
neous of degree 1. When comparing two states of nature, if all individual
probabilities for the second state are k percents larger than those of the first
state, then the collective probability will also be k percents larger for the
second state than for the first one. In other words, a uniform translation of
individual log probabilities yields an equivalent translation in the collective
probability. On this basis, we say that there is a relative increase in disagree-
ment between two states if the distribution of individual log probabilities is
more dispersed in one state than in the other. If this relative increase in
disagreement preserves the mean log probabilities, we show that it raises
the collective probability if and only if absolute risk aversion is decreasing
(DARA). To illustrate, suppose that Mrs Jones has a larger subjective prob-
ability for a flood to occur this year than Mr Jones. Compared her own
beliefs about floods, Mrs Jones has a subjective probability for the risk of
an earthquake that is k percents larger, whereas Mr Jones has a subjective
probability for an earthquake that is k percents smaller than his estimate
of the probability of a flood. Thus, the mean log probabilities in the couple
is the same for the two potential damages, but there is more disagreement
about the likelihood of an earthquake than for a flood. Under DARA, it im-
plies that, when Mr and Mrs Jones decide about their collective prevention
efforts and insurance, they should use a larger probability of occurrence for
an earthquake than for a flood.
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Varian (1985) and Ingersoll (1987) answered to another related question:
under which condition does a relative increase in disagreement that preserve
the mean individual probability raises the collective probability? To illus-
trate, suppose again that Mr and Mrs Jones have a subjective flood proba-
bility of respectively pMr and pMrs > pMr. Suppose also that for earthquake,
Mr Jones has a probability pMr−k, and Mrs Jones has a probability pMrs+k.
Here, the arithmetic means of individual probabilities are the same for the
two events but, as before, there is more relative disagreement for an earth-
quake than for a flood. Varian (1985) proved that, if relative risk aversion
is larger than unity, the collective probability for an earthquake should be
smaller than for a flood.
These results describe how the heterogeneity of beliefs affects the differ-

ence in collective probabilities for any pair of states. Going from this partial
analysis to a more global one, it is necessary to describe the structure of
disagreements across states. More precisely, it would be useful to determine
whether conflicts of opinion in the population raise the risk perceived by the
representative agent, in the sense of the first or second stochastic dominance
order. If the answer to this question is positive, this could help to solve the
equity premium puzzle, as explained by Cecchetti, Lam and Mark (2000) and
Abel (2002). Contrary to us, they assume that all agents have the same be-
liefs that are biased with respect to what could be inferred from the existing
data. In this paper, we endogenize the bias of the representative agent.
We use our main result to measure the impact of the heterogeneity of be-

liefs on the equity premium. We suppose that there are two groups of agents
in the economy. Both groups believe that the growth rate of consumption per
capita is lognormally distributed, but the optimistic group believe that the
expected growth rate is larger than what is believed by the pessimistic group.
We show that it implies that the relative degree of disagreement is increasing
towards the extreme states. Because increasing relative disagreement raises
the collective probability, we conclude that such a conflict of opinions makes
the tails of the distribution heavier. Because the representative agent per-
ceives a riskier macroeconomic risk, the equity premium is increased. In a
plausible simulation, the conflict of opinions multiplies the equity premium
by 4. Calvet, Grandmont and Lemaire (2001) also examine the effect of het-
erogeneous beliefs on the equity premium. They are able to sign this effect
when the relative risk aversion of the representative agent is decreasing with
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average wealth.3 Jouini and Napp (2003) examine a continuous-time model
with constant relative risk aversion, allowing them to discuss the effect of the
heterogeneity of beliefs on the risk-free rate.
The structure of the paper is as follows. Section 2 is devoted to the

description of the aggregation problem when agents have heterogeneous
preferences and beliefs. In section 3, we solve the risk-taking decision problem
of the representative agent, assuming that collective preferences are known.
We show how to aggregate individual risk tolerances and individual beliefs
in this framework in section 4. In section 5, we show how the aggregate
wealth in the group affects the aggregation rule of individual probabilities.
In section 6, we describe the social efficient aggregation rule in the special
case of exponential utility functions, and we apply it when individual beliefs
are all normally distributed. In section 7, we define our concept of increasing
disagreement, and we determine its effect on the perception of risk by the
representative agent. Section 8 is devoted to the analysis of the effect of the
heterogeneity of beliefs on the equity premium. We compare our results to
Varian (1985)’s one in section 9. Finally, we present concluding remarks in
section 10.

2 The aggregation problem

We consider an economy or a group of N heterogeneous agents indexed by
θ = 1, ..., N. Agents extract utility from consuming a single consumption
good. The model is static with one decision date and one consumption date.
At the decision date, there is some uncertainty about the state of nature
s that will prevail at the consumption date. There are S possible states
of nature, indexed by s = 1, ..., S. Agents are expected-utility maximizers
with a state-independent utility function u(., θ) : R→ R where u(c, θ) is the
utility of agent θ consuming c. We assume that uc = ∂u/∂c is continuously
differentiable and concave in c. As in Calvet, Grandmont and Lemaire
(2001), we focus on interior solutions. To guarantee this, we assume that

3Hara and Kuzmics (2001) obtained independently results about how to aggregate risk
aversion when beliefs are homogeneous.
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limc→0 ∂u/∂c = +∞ and that limc→+∞ ∂u/∂c = 0.
We also assume that each agent θ has beliefs that can be represented by

a vector (p(1, θ), ..., p(S, θ)), where p(s, θ) > 0 is the probability of state s
assumed by agent θ, with

PS
s=1 p(s, θ) = 1. Agents differ not only on their

utility and beliefs, but also on their state-dependent wealth: ω(s, θ) denotes
the wealth of agent θ in state s.
The group must take a decision towards a collective risk. This can be a

portfolio choice, or a decision to invest in a prevention activity to reduce a
global risk. In any case, the problem is to transfer wealth across states at
an exogenously given exchange rate. The standard paradigm to analyze this
problem is the Arrow-Debreu framework. We assume that there is a complete
set of Arrow-Debreu securities in the economy. The equilibrium price of the
Arrow-Debreu security associated to state s is denoted π(s) > 0. It means
that agent θ must pay π(s) ex-ante to receive one unit of the consumption
good if and only if state s occurs. Because our model is static, we can
normalize prices in such a way that

PS
s=1 π(s) = 1.

A consumption plan is described by a function C(., .) where C(s, θ) is the
consumption of agent θ in state s. The consumption per capita in state s is
denoted z(s) :

1

N

NX
θ=1

C(s, θ) = z(s) (1)

for all s = 1, ..., S. The mean initial endowment is denoted ω(s) =
PN

θ=1 ω(s, θ)/N.
When the group is active on contingent markets, z and ω need not be equal.
The crucial assumption of this paper is that the group can allocate risks

efficiently among its members. An allocation C is Pareto-efficient if it is
feasible and if there is no other feasible allocation that raises the expected
utility of at least one member without reducing the expected utility of the
others. This is a very general assumption. A special case is the competitive
solution, which will be examined in section 9. In this paper as in Wil-
son (1968), we characterize the properties of all Pareto-efficient allocations.
For a given vector of positive Pareto weights (λ(1), ..., λ(N)), normalized in
such a way that N−1PN

θ=1 λ(θ) = 1, the group would select the portfolio
of Arrow-Debreu securities and the allocation of the risk within the group
that maximize the weighted sum of the members’ expected utility under the
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feasibility constraint:

max
C

NX
θ=1

λ(θ)
SX
s=1

p(s, θ)u(C(s, θ), θ) (2)

s.t.
SX
s=1

π(s)
NX
θ=1

C(s, θ)− ω(s, θ)

N
= 0. (3)

3 The cake-sharing problem

In this section, we decompose the decision problem presented in the previous
section into two problems: a cake-sharing problem and a portfolio choice
problem. We begin with the cake sharing problem. Consider a specific wealth
per capita z and a vector P = (p(1), ..., p(N)) of N positive scalars. For this
pair (z, P ), define the following cake-sharing problem:

v(z, P ) = max
x(.)

NX
θ=1

λ(θ)p(θ)u(x(θ), θ) s.t.
1

N

NX
θ=1

x(θ) = z, (4)

The solution of this program is denoted x∗(.) = c(z, P, .). The interpretation
of this program is straightforward. A cake of size Nz must be shared among
the N members of the group. The sharing rule is selected in order to maxi-
mize a weighted sum of the individual utility functions. In this well-behaved
cake-sharing problem, z represents the consumption per capita, and v(z, P )
is the maximum sum of the members’ utility weighted by the product of
the Pareto weights (λ(1), ..., λ(N)) and the vector P . Our notation makes
explicit that the efficient allocation c and the value function v depend upon
the vector P . Notice that by construction, v is homogeneous of degree 1 with
respect to P.
The other problem is a collective portfolio problem in which the group

selects the state-dependent sizes of the cake that maximizes the sum of v
across the states:

max
z(.)

SX
s=1

v(z(s), P (s)) s.t.
SX
s=1

π(s) (z(s)− ω(s)) = 0, (5)
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where P (s) = ((p(s, 1), ..., p(s,N)) is the vector of subjective state proba-
bilities across agents. The interpretation of this problem is also straightfor-
ward. An agent — hereafter referred to as the ”representative agent” of the
group — with initial endowment (ω(1), ..., ω(S)) selects a portfolio of Arrow-
Debreu securities (z(1), ..., z(S)) that maximizes the ex-ante objective func-
tion

PS
s=1 v(z(s), P (s)) subject to the standard budget constraint.

Obviously, combining these two-stage problems generates the solution to
program (2), with C(s, θ) = c(z(s), P (s), θ). Our solution strategy is thus
simple. In section 4, we will show which characteristics of the v function are
useful to characterize the efficient collective risk exposure that solves (5). In
the remaining sections, we will link these properties of the v function to the
primitive characteristics of individual preferences and beliefs. This will be
done by focusing on the cake-sharing problem that defines the v function.
Notice that this function describes the risk attitude and beliefs of the repre-
sentative agent in the sense of Constantinides (1982). As we will see latter
on, it is not true in general that the representative agent has preferences
and beliefs that are multiplicatively separable as in the standard expected
utility model. In other words, the representative agent has beliefs that are
wealth-dependent, or equivalently, he has in general a state-dependent utility
function. Following Wilson (1968), v will hereafter be referred to as the val-
uation function. We summarize the findings of this section in the following
proposition.

Proposition 1 Consider an economy characterized by price kernel π(.), and
a group of risk-averse expected-utility-maximizing agents θ = 1, ..., N charac-
terized by their concave utility function u(., θ), beliefs p(., θ) and endowment
ω(., θ). Suppose that the group allocates risk in a Pareto-efficient way by
using Pareto weights λ(.). There exists a valuation function v : R+ × [0, 1]N
such that the aggregate optimal portfolio z(.) = N−1PN

θ=1C(., θ) solves pro-
gram (5). This valuation function is defined by the cake-sharing program
(4).

In the following section, we exhibit the properties of the valuation function
v that drive the optimal risk exposure.
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4 Efficient collective risk exposure

In this section, we examine the determinants of the efficient collective risk
exposure, assuming that the valuation function v is known. We postpone the
aggregation problem to the next section. The optimal collective risk exposure
solves problem (5). A state of nature is defined by the state price π and by
the vector P of individual probabilities associated to that state. The optimal
collective risk exposure can thus be characterized by a function Z(π, P ) that
must satisfy the following first-order condition:4

vz(Z(π, P ), P ) = ξπ, (6)

for all (π, P ), where ξ is the Lagrange multiplier associated to the budget
constraint of program (5). The optimal solution to program (5) is then
described as z(s) = Z(π(s), P (s)) for all s ∈ S. We now characterize the
properties of Z. To do this, we first define function T v as the absolute risk
tolerance of the group, i.e.,

T v(z, P ) = − vz(z, P )

vzz(z, P )
. (7a)

Function R(z, P, θ) is the elasticity of the marginal valuation vz(z, P ) to
change in p(θ) :

R(z, P, θ) =
∂ ln vz(z, P )

∂ ln p(θ)
=

p(θ)vzp(θ)(z, P )

vz(z, P )
. (8)

Because vz is homogeneous of degree 1 in P by definition, it must be that

NX
θ=1

R(z, P, θ) = 1.

We consider the effect on Z of a marginal change of the state price π and of
the vector P of individual probabilities. Fully differentiating the first-order
condition (6) and eliminating the Lagrange multiplier yields the following
result.

4The second-order condition is satisfied because v is concave in z.
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Proposition 2 Given the valuation function v : R+×[0, 1]N of the represen-
tative agent, the optimal aggregate portfolio z(.) is characterized by a function
z(s) = Z(π(s), P (s)). The optimal collective portfolio risk is measured by

dZ = T v(Z, P )

"
NX
θ=1

R(z, P, θ)
dp(θ)

p(θ)
− dπ

π

#
. (9)

Equation (9) describes how the optimal consumption per capita varies
across states as a function of the distribution of individual beliefs and of state
prices. Seen from ex-ante, it describes the efficient risk exposure of the group.
We see from (9) that the optimal collective risk exposure is proportional to
the degree of absolute risk tolerance of the group which is measured by T v.
When all agents have the same beliefs, equation (9) simplifies to

dZ = T v(Z, p)

∙
dp

p
− dπ

π

¸
. (10)

When π is proportional to p, asset prices are actuarial, and full insurance
is optimal (Z is constant). On the contrary, when π(s0)/p(s0) is larger than
π(s)/p(s), state s0 is more expensive than state s. It is then optimal to
consume less in s0 than in s. When agents have different beliefs, equation
(9) tells us how to aggregate beliefs. Function R tells us how a change in the
subjective probability of agent θ affects the demand for the corresponding
state consumption. Namely, an increase of the subjective probability of agent
θ by k percents has the same effect on the collective demand for consumption
as a uniform increase of individual probabilities by Rk percents. Thus, by
definition, R(z, P, θ) measures the weight of agent θ0s beliefs in the formation
of aggregate beliefs. By analogy to the homogeneous case (10),

P
θRd ln p

can be interpreted as a change in the collective probability derived from a
change in the distribution of individual probabilities.
Keeping in mind equation (9), the remainder of the paper is devoted to

this characterization of T v(z, P ) and R(z, P, θ) of the collective valuation
function v, which is defined by the cake-sharing program (4). Its first-order
condition is written as

λ(θ)p(θ)uc(c(z, P, θ), θ) = ψ(z, P ) = vz(z, P ), (11)

for all (z, P ), and for all θ = 1, ..., N, where ψ is the Lagrange multiplier
associated to the feasibility constraint of program (4). The second equality
comes from the envelop theorem.
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5 The aggregation rules

In this section, we characterize the group’s degree of tolerance to risk on the
wealth per capita z and the group’s beliefs as functions of the primitives of
the model, i.e., the set of individual utility functions u(., θ) and beliefs p(., θ).
The collective attitude towards risk depends upon how this collective risk

is allocated to the members’ risk on consumption. This is characterized by
∂c/∂z. Fully differentiating first-order condition (11) with respect to z and
using the feasibility constraint

PN
θ=1 c(z, P, θ)/N = z yields the following

well-known Wilson (1968)’s result:

∂c

∂z
=

T u(c(z, P, θ), θ)

N−1PN
θ0=1 T

u(c(z, P, θ0), θ0)
, (12)

where T u(c, θ) = −uc(c, θ)/ucc(c, θ) is the absolute risk tolerance of agent θ.
One can interpret this property of the efficient risk-sharing rule as follows:
suppose that there are two states of nature that are perceived to be identical
by all agents (p(s, θ) = p(s0, θ) for all θ), expect for the mean income z.
Equation (12) shows how to allocate the collective wealth differential in the
two states. Observe that the positiveness of the right-hand side of (12) means
that individual consumption levels are all comonotone. More risk-tolerant
agents should bear a larger fraction of the collective risk.
From this efficient collective risk-sharing rule, it is easy to derive the

degree of risk tolerance of the group as a whole. Wilson (1968) obtains that

T v(z, P ) =
NX

θ0=1

T u(c(z, P, θ0), θ0). (13)

The group’s absolute risk tolerance is the mean of its members’ tolerance.
There is no bias in the aggregation of individual risk tolerances. We conclude
that this rule already valid in the simpler Wilson’s model is robust to the
introduction of heterogeneous expectations.
In the classical case with homogeneous beliefs, an important property of

any Pareto-efficient allocation of risk is the so-called mutuality principle. It
states that efficient individual consumption levels depend upon the state only
through the wealth per capita z. Its economic interpretation is that all diver-
sifiable risks are eliminated through sharing. In this classical case, the wealth
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level per capita z is a sufficient statistic for efficient individual consumption
levels. The mutuality principle is obviously not robust to the introduction
of heterogeneous beliefs because efficient allocation plans c(z, P, θ) depend
also upon the distribution of individual subjective probabilities associated to
the state. For example, agents will find mutually advantageous exchanges of
zero-sum lotteries in order to gamble on states that they believe to be more
likely than their counterpart. In the following, we examine the effect of a
change in the distribution of individual probabilities P on the allocation of
wealth and on the marginal valuation vz.
The aggregation of beliefs cannot be disentangled from how the hetero-

geneity of beliefs affects the allocation of risk in the group. In the following
proposition, we derive altogether the aggregation rule of beliefs and the al-
location of diversifiable risks. The comparative exercise there and in the
remainder of the paper consists in comparing two states of nature s and s0

with P (s0) = P (s)+∆P. It does not consist in increasing the subjective prob-
ability of state s by agent θ.We do not modify the structure of the beliefs in
the economy.

Proposition 3 The elasticity of the collective state probability to the sub-
jective state probability of agent θ is proportional to agent’s θ risk tolerance.
More precisely, we have that

R(z, P, θ) =
∂ ln vz(z, P )

∂ ln p(θ)
=

T u(c(z, P, θ), θ)

T v(z, P )
, (14)

where function T v is defined in (13). The efficient allocation of consumption
satisfies the following condition:

∂c(z, P, θ)

∂ ln p(θ0)
=

⎧⎪⎪⎨⎪⎪⎩
T u(c(z, P, θ), θ)

∙
1− T u(c(z, P, θ), θ)

T v(z, P )

¸
if θ = θ0

−T
u(c(z, P, θ), θ)T u(c(z, P, θ0), θ0)

T v(z, P )
if θ 6= θ0. (15)

Proof: Fully differentiating the first-order condition (11) with respect to
p(θ0) and dividing both side of the equality by λpuc = ψ yields

dc(z, P, θ) = −T u(c(z, P, θ), θ)
dψ

ψ
(16)
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for all θ 6= θ0, and

dc(z, P, θ0) = T u(c(z, P, θ0), θ0)

∙
dp(θ0)

p(θ0)
− dψ

ψ

¸
. (17)

By the feasibility constraint, it must be that
PN

θ=1 dc(z, P, θ) = 0. Replacing
dc(z, P, θ) by its expression given above allows us to rewrite this equality as

dψ

ψ
=

T u(c(z, P, θ0), θ0)

T v(z, P )

dp(θ0)

p(θ0)
. (18)

Combining (16), (17) and (18) yields (15). By the envelop theorem, we also
know that vz(z, P ) = ψ(z, P ). It implies that

d ln vz(z, P ) =
dψ

ψ
. (19)

Combining equations (18) and (19) yields property (14).¥
Let us first focus on property (15). Ceteris paribus, an increase in the

state probability by agent θ increases his efficient consumption and it reduces
the consumption by all other members of the group. Ex-ante, this means
that the members take risk on their consumption even when there is no
social risk, i.e., when z is state independent. Agents take a long position on
states that they perceive to have a relatively larger probability of occurrence
relative to the other members of the group. This illustrates the violation of
the mutuality principle. Notice that the size of these side bets among the
members of the group is proportional to the members’ risk tolerance. At the
limit, if an agent θ has a zero tolerance to risk, it is not efficient for him to
gamble with others in spite of the divergence of opinions in the group.
Condition (14) provides a nice characterization of the aggregation of indi-

vidual beliefs in groups that can share risk efficiently. The weight R of agent
θ0s beliefs in the formation of aggregate beliefs is proportional to that agent’s
degree of absolute risk tolerance. Thus, the aggregation of individual beliefs
is biased in favor of those agents who are more risk tolerant. Combining
properties (14) and (12), we obtain that

R(z, P, θ) =
1

N

dc(z, P, θ)

dz
. (20)
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The collective probability distribution is biased towards those who actually
bear the collective risk in the group.
In the remainder of the paper, we use the aggregation rule (14) to derive

properties of the collective probability distribution.

6 Wealth effect on the aggregation of beliefs

The fact that all members of the group have a multiplicatively separable val-
uation function p(s, θ)u(c, θ) does not imply that the valuation function of
the representative agent inherits this property from them. In other words, it
is not necessarily true that v(z, P ) = pv(P )h(z), where pv(P ) could be inter-
preted as the collective probability of a state whose distribution of subjective
state probabilities across agents is P = (p(1), ..., p(N)), and h(z) would be
the utility of mean wealth z. This non-separability implies that the collec-
tive tolerance to risk T v is a function of P , and that the aggregation rule R
for beliefs depends upon wealth z. The equivalence between these two non-
separability properties of the valuation function is expressed by the following
equality:

∂(−1/T v(z, P ))

∂p(θ)
=

∂R(z, P, θ)

∂z
.

When the valuation function is not multiplicatively separable, one can say
that the representative agent has a state-dependent utility function, or equiv-
alently, that its subjective probability distribution is sensitive to changes in
aggregate wealth.
We start with a rephrasing of another Wilson’s result where such a wealth

effect does not exist. It corresponds to situations where the derivative of indi-
vidual risk tolerances ∂T u/∂c are all identical and consumption independent.
The corresponding set of utility functions is referred to as ISHARA. A utility
function has an Harmonic Absolute Risk Aversion (HARA) if its absolute risk
tolerance is linear in consumption: ∂T u/∂c(c, θ) = 1/γ(θ) for all c. A set of
utility functions satisfies the Identically Sloped HARA (ISHARA) property if
their absolute risk tolerances are linear in consumption with the same slope:
γ(θ) = γ for all θ. The set of utility functions that satisfies these conditions
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must be parametrized as follows:

u(c, θ) = κ

µ
c− a(θ)

γ

¶1−γ
(21)

These utility functions are defined over the consumption domain such
that γ−1( c− a(θ)) > 0. When γ > 0, parameter a(θ) is often referred to as
the minimum level of subsistence. This preference set includes preferences
with heterogeneous exponential utility functions u(c, t, θ) = − exp(−A(θ)c)
when γ tends to +∞, and a(θ)/γ tends to −1/A(θ). Taking a(θ) = 0 for all
θ, it also includes the set of power (and logarithmic) utility functions with
the same relative risk aversion γ for all θ.

Proposition 4 The aggregation rule R for beliefs is independent of the wealth
per capita in the group if and only if the members of the group have ISHARA
preferences (21):

∂R(z, P, θ)

∂z
= 0 ∀(z, P, θ) ⇐⇒ ∂T u(c, θ)

∂c
is independent of c and θ.

Proof: Fully differentiating equation (14) with respect to z and using
property (12) yields that ∂R/∂z evaluated at (z, P ) has the same sign that

∂T u

∂c
(c(z, P, θ), θ)−

NX
θ0=1

T u(c(z, P, θ0), θ0)

T v(z, P )

∂T u

∂c
(c(z, P, θ0), θ0),

(22)

For ISHARA preferences, ∂T u/∂c is a constant, which implies that the above
expression is uniformly equal to zero, implying that R is independent of the
per capita wealth in the group. Reciprocally, R independent of z implies that

∂T u

∂c
(c(z, P, θ), θ) =

NX
θ0=1

T u(c(z, P, θ0), θ0)

T v(z, P )

∂T u

∂c
(c(z, P, θ0), θ0)

for all θ and P . This can be possible only if ∂T u/∂c is independent of c and
θ, which means that the group has ISHARA preferences.¥
The ISHARA condition guarantees that R remains constant when the

wealth level changes in the group. This result is equivalent to the property
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that efficient sharing rules are linear in z in ISHARA groups with homo-
geneous beliefs. In Appendix A, we derive an analytical solution to the
aggregation problem when the ISHARA condition is satisfied.
In Proposition 4, we assumed that the derivative of individual absolute

risk tolerances be identical across agents. In the next Proposition, we show
that agents with a large sensitivity of risk tolerance to changes in consump-
tion have a share R in the aggregation of beliefs that is increasing with
wealth.

Proposition 5 To each vector (z, P ), there exists a scalar m belonging to
[minθ ∂T

u(c(z, P, θ), θ)/∂c,maxθ ∂T
u(c(z, P, θ), θ)/∂c] such that

∂R(z, P, θ)

∂z
≥ 0 if and only if ∂T

u(c(z, P, θ), θ)

∂c
≥ m(z, P ).

Proof: This is a direct consequence of the fact that ∂R/∂z has the same
sign than (22), taking

m(z, P ) =
NX

θ0=1

T u(c(z, P, θ0), θ0)

T v(z, P )

∂T u

∂c
(c(z, P, θ0), θ0).¥

Agents with a large sensitivity of risk tolerance to changes in consumption
are those who increase their bearing of the collective risk when the group’s
wealth increase. The result follows from the fact that the share R of agent
θ0s beliefs in the aggregation of beliefs is proportional agent θ’s share in the
group’s risk.
In the special case of utility functions exhibiting constant relative risk

aversion (CRRA), viz. u(c, θ) = c1−γ(θ)/(1 − γ(θ)), there is a negative re-
lationship between relative risk aversion γ(θ) and ∂T u(c, θ)/∂c = 1/γ(θ).
Thus, the above Proposition applied in the case of CRRA utility functions
means that less risk-averse agents have a share R in the aggregation of beliefs
that is increasing with wealth. To illustrate, suppose that there are two agents
in the group, respectively with constant relative risk aversion γ(θ1) = 1 and
γ(θ2) = 2. In Figure 1, we have drawn the share R of agent θ1’s beliefs in the
collective beliefs has a function of z, for P such that λ(θ1)p(θ1) = λ(θ2)p(θ2).
Because agent 1 is relatively less risk-averse than agent 2, this curve is upward
sloping.
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Figure 1: The share R of the beliefs of a low risk-averse agent in the collective
beliefs as a function of the group’s wealth per capita.

7 The socially efficient aggregation rule in

the CARA case

As a benchmark, let us assume that absolute risk aversion is independent
of consumption: T u(c, θ) = a(θ). As seen in the previous section, it implies
that the valuation function v(z, P ) can be written as a product of a collective
utility h(z) by a collective probability pv(P ). It implies also that equation
(14) can be rewritten in this special case as

d ln pv(P ) =
NX
θ=1

a(θ)PN
θ0=1 a(θ

0)
d ln p(θ). (23)

This yields

pv(P ) = K
NY
θ=1

p(θ)
a(θ)

N
θ0=1 a(θ

0) , (24)

where K is a normalizing constant that guarantees that
PS

s=1 p
v(P (s)) = 1.

In the CARA case, the efficient collective state probabilities are proportional
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to the geometric mean of the individual state probabilities. Aggregation rule
(24) in the CARA case is due to Rubinstein (1974).
This aggregation rule is particularly easy to use when all individual be-

liefs are normally distributed. Suppose that agent θ, θ = 1, ..., N, believes
that states are normally distributed with mean µ(θ) and variance σ2(θ). A
direct consequence of (24) is that the collective beliefs pv are also normally
distributed with mean

µv =

PN
θ=1

a(θ)µ(θ)
σ2(θ)PN

θ=1
a(θ)
σ2(θ)

, (25)

and variance

σv
2

=

"PN
θ=1

a(θ)
σ2(θ)PN

θ=1 a(θ)

#−1
. (26)

The collective mean is an average of the individual means weighted by the
ratios a/σ2of the individual absolute risk tolerance by the individual variance.
The collective variance is the harmonic mean of the individual variances
weighted by the corresponding individual risk tolerance. This very simple
result due to Lintner (1969) can serve only as a benchmark, because there
is a clear consensus in our profession that constant absolute risk aversion is
not a realistic assumption.

8 The effect of increasing disagreement on

the demand for Arrow-Debreu securities

In this section, we want to determine the effect of the divergence of opinions
on the collective attitude towards risk. The efficient collective risk exposure is
governed by how vz fluctuates with the distribution of individual probabilities
P. We want to determine the sign of vzp(θ)(z, P ), or to compare vz(z, P

0) to
vz(z, P ) in the large. If vz(z, P

0) is larger than vz(z, P ), the demand for the
contingent claim is increased in the state whose individual state probabilities
is P 0 than in the state whose individual probabilities is P. Because the wealth
per capita is constant in this comparative statics exercise, the increase in
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the marginal valuation vz can be interpreted as an increase in the collective
probability associated to the state with P 0.
The effect of a shift in distribution on the collective probability depends

upon the dispersion of individual beliefs in a complex way. As a benchmark,
consider the proportional shift in distribution with P 0 = (1 + k)P . Each
member of the group believes that state s0 is k time more likely than state s.
The decision problem (4) is unchanged by this multiplicative change in the
parameters of the problem. The efficient allocation of z will be the same in
the two states, and vz(z, (1+k)P ) = (1+k)vz(z, P ), for all z and P . Thus, as
stated before, v and its partial derivatives with respect to z are homogeneous
of degree 1 in the vector of individual probabilities P . In the following, we
define a family of shifts in P that are not proportional.

8.1 Relative increase in disagreement

In this subsection, we want to define a notion of increasing disagreement,
keeping in mind that a purely multiplicative spread of individual probabili-
ties has no effect on the collective probability. We hereafter define a concept
of increasing disagreement that is based on the Monotone Likelihood Ratio
(MLR) order. However, the main ingredient in this section is not the in-
dividual subjective probabilities p(θ), but rather the Pareto-weighted ones
q(θ) = λ(θ)p(θ). We say that a marginal shift dP from an initial vector of
individual probabilities P yields increasing disagreement if those agents with
a larger initial q(θ) also have a larger rate of increase d ln q(θ) = d ln p(θ).
Compared to a proportional increase, the distribution of individual proba-
bilities becomes more dispersed. Thus, there is an increase in disagreement
relative to a proportional shift in individual probabilities.

Definition 1 Consider a specific distribution of individual probabilities P =
(p(1), ..., p(N)) and a specific Pareto-weight vector (λ(1), ..., λ(N)). We say
that a marginal shift dP yields a relative increase in disagreement if q(θ) =
λ(θ)p(θ) and d ln q(θ) are comonotone: for all (θ, θ0) :

[q(θ0)− q(θ)] [d ln q(θ0)− d ln q(θ)] ≥ 0. (27)

In Appendix B, we show how to generalize our definition of increasing
disagreement ”in the small” to non-marginal changes of individual probabil-
ities. The definition states that those with a larger subjective probability
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also have a larger rate of increase of their probability. If we assume without
loss of generality that q is increasing in θ, this is equivalent to require that
p(θ0)/p(θ) be increased by the shift whenever θ0 > θ. This is a MLR property.
Notice that our definition of increasing disagreement does not constrain in
any way how the mean (log) (Pareto-weighted) probability is affected by the
shift in distribution. In the following Proposition, we show that increasing
disagreement generates a Rothschild-Stiglitz (1970) spread in the distribution
of Pareto-weighted individual log probabilities.

Proposition 6 Any marginal shift dP that preserves the mean N−1PN
θ=1 ln q(θ)

is a relative increase in disagreement if and only if it generates a Rothschild-
Stiglitz spread of (ln q(1), ..., ln q(N)).

Proof: See Appendix C.
To illustrate, let us consider two examples. There are two agents, θ = 1

and θ = 2. In the first example, there is a continuum of states of nature
s ∈ S = [0, 1]. The beliefs of agent θ is represented by an exponential density
function p(s, θ) = δθ exp[δθs]/(exp[δθ] − 1). This means that agent θ has a
constant rate of increase δθ = d ln p(s, θ)/ds of his state probabilities . In
Figure 2, we draw the two dashed curves q(., 1) and q(., 2) by assuming that
δ1 = −δ2 = 5 and λ(1) = λ(2). In this environment, the mean log individual
probabilities is constant through the states of nature. Moreover, because

d ln q(s, 2)−d ln q(s, 1) = −2δ1ds < 0 and q(s, 2)−q(s, 1)
½

> 0 if s < 0.5
< 0 if s > 0.5,

increasing s at the margin everywhere between 0 and 0.5 decreases dis-
agreement in the group, whereas marginally increasing s everywhere be-
tween 0.5 and 1 increases disagreement. Because the mean log probabili-
ties is constant across states, this is also an example of Rothschild-Stiglitz
increases/decreases in risk of ln q.
In our second example described in Figure 3, the two agents believe that

states are normally distributed with variance σ2, but their beliefs differ on
the mean µ(θ), with µ(2) > µ(1). Considering for simplicity the Pareto-
allocation with λ(1) = λ(2), we have that

q(s, 2)−q(s, 1) = 1√
2πσ

∙
e−

(s−µ(2))2
2σ2 − e−

(s−µ(1))2
2σ2

¸½
< 0 if s < 0.5(µ(1) + µ(2))
> 0 if s > 0.5(µ(1) + µ(2))
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Figure 2: Heterogenous density functions with p(s, 1) = 5 exp[5s]/(exp[5]−1)
and p(s, 2) = −5 exp[−5s]/(exp[−5]− 1).

and

d ln q(s, 2)− d ln q(s, 1) =
µ(2)− µ(1)

σ2
ds > 0.

It implies that a marginal increase in s yields a relative decrease in disagree-
ment whenever s < 0.5(µ(1)+µ(2)), otherwise it yields a relative increase in
disagreement. In these two examples, relative disagreement is the largest in
the extreme states.

8.2 Our main results

In order to isolate the effect of heterogeneous beliefs, we hereafter assume
that preferences are homogeneous in the population in the sense that all
agents have the same utility function. Consider an initial distribution P =
(p(1), ..., p(N)) of individual probabilities, and a shift dP = (dp(1), ..., dp(N))
in this distribution. Using Proposition 3 together with the assumption that
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Figure 3: Normal heterogenous beliefs with σ2(1) = σ2(2) = 1, µ(1) = −2
and µ(2) = 2.

all agents have the same utility function, this can be rewritten as

d ln vz(z, P ) =
NX
θ=1

T u(c(z, P, θ))

T v(z, P )
d ln p(θ), (28)

assuming dz = 0. The left-hand side of this equality can be interpreted as
the rate of increase in the collective probability. Equation (28) states that it
is a weighted mean of the rate of increase in the individual probabilities. The
weights are proportional to the individual absolute risk tolerance. As seen
before, in the special case of constant and identical absolute risk aversion
(ICARA), equation (28) can be rewritten as

d ln vz(z, P ) = N−1
NX
θ=1

d ln p(θ). (29)

This means that relative increases in disagreement have no effect on the
collective probability in the ICARA case. It implies for example that when
the agents have exponential densities as in Figure 2, the (dotted) collective
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density function is uniform. When they have normal beliefs with the same
variance as in Figure 3, the (dotted) collective beliefs is normal with a mean
equaling the average individual means. In this section, we suppose that the
social planner takes this geometric aggregation rule of individual beliefs into
consideration, and we determine the error that it generates when the ICARA
condition on individual preferences is not satisfied.
Suppose that, compared to a reference state, we examine an alternative

state where the probability of Mr Jones is increased by k + ε% and the
probability of Mrs Jones is reduced by k−ε%. The couple using the geometric
mean approach would increase the probability of this alternative state by
k% without taking into account of their increased divergence of opinions.
However, the socially efficient rule would increase the collective probability
by ηk, where η is defined by

η(z, P, dP ) =
d ln vz(z, P )

1
N

PN
θ=1 d ln p(θ)

.

When η is larger (smaller) than unity, using the geometric aggregation rule
would underestimate (overestimate) the rate of increase of the collective
probability. Thus η − 1 measures the error of using the geometric rule.
We see that η(z, P, dP ) is larger than unity if and only if

N−1
NX
θ=1

T u(c(z, P, θ))d ln p(θ) ≥
"
N−1

NX
θ=1

T u(c(z, P, θ))

# "
N−1

NX
θ=1

d ln p(θ)

#
.

(30)

When it is T u is not constant, the allocation of consumption in the group
will affect the weights in the aggregation formula (28). Suppose without loss
of generality that q(θ) = λ(θ)p(θ) is increasing in θ. Combining the first-
order condition (11) with risk aversion implies that c(z, P, θ) is increasing in
θ. Under decreasing absolute risk aversion (DARA), it implies in turn that
T u(c(z, P, θ)) is also increasing in θ. In short, the definition of increasing
disagreement just guarantees that T u and d ln p be comonotone under DARA.
Applying the covariance rule to E [T ud ln p] directly implies (30), or η ≥ 1.
Of course, switching to either increasing absolute risk aversion or decreasing
disagreement would yield η ≤ 1.

Proposition 7 Suppose that the individual utility functions are identical.
The following two conditions are equivalent:
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1. For any wealth z, any initial distribution of individual probabilities P
and any shift dP yielding a relative increase in disagreement, the rate
of increase of the collective probability is larger than the mean rate of
increase of individual probabilities: η(z, P, dP ) ≥ 1;

2. Absolute risk aversion is decreasing: ∂T u/∂c ≥ 0.

Proof: The sufficiency of DARA has been proved above. Suppose now
by contradiction that T u is locally decreasing in the neighborhood B of c0.
Then, take z = c0 and an initial distribution P (ε) such that λ(θ)p(θ) =
k + εθ for all θ. When ε = 0, c(z, P (0), θ) = c0 for all θ. Take a small
ε such that c(z, P (ε), θ) remains in B for all θ. By assumption, the shift
dP exhibits increasing disagreement, which means that c(z, P (ε), θ) and
d ln p(θ) are comonotone. This implies that T u(c(z, P (ε), θ)) and d ln p(θ)
are anti-comonotone, thereby reversing the inequality in (30). This implies
that DARA is necessary for property 1.¥
Under DARA, a mean-preserving spread in log probabilities always raises

the collective probability. The intuition of this result is easy to derive from
the central property (14) of the aggregation of heterogeneous beliefs. Under
DARA, this property states that those who consume more see their beliefs
better represented in the aggregation. But by definition of an increase in
disagreement, those who consume more are also those who have a larger rate
of increase in their subjective probability. We conclude that, because of the
bias in favor of those who consume more, an increase in disagreement raises
the collective probability even when the mean rate of increase in individual
probabilities is zero.
Proposition 7 provides a local result. We can also use it to obtain a result

”in the large” about how heterogeneous beliefs transform the riskiness of the
collective distribution. Suppose that, as in the two examples illustrated in
Figures 2 and 3, the relative degree of disagreement be decreasing for small
s, and increasing for larger ones. Under DARA, this implies that the slope
of the efficient collective density is smaller than the slope of the collective
density obtained by the geometric rule for small s, and that it is larger than
it for larger s. In other words, the tails of the efficient collective density are
heavier than the collective density obtained by the geometric rule.

Corollary 1 Suppose that absolute risk aversion is decreasing. Suppose also
that S ⊂ R and that there exists bs such that an increase in s yields a relative

24



decrease (resp. increase) in disagreement when s is smaller (resp. larger)
than bs. It implies that the efficient collective beliefs are a mean-preserving
spread of the collective beliefs based on the geometric rule.

When absolute risk aversion is increasing, or when relative disagreement
is first increasing and then decreasing, the opposite result holds.
In order to illustrate Proposition 7 and the above corollary, let us re-

consider the case represented in Figure 2 with two agents having symmetric
exponential densities. Remember that the mean rate of increase in probabil-
ities is uniformly zero in this example. Suppose that relative risk aversion is
a constant γ = 0.1.5 The U-curve in Figure 2 describes the collective density
function in this case. Because when s > 0.5 a marginal increase in s yields
a relative increase in disagreement, DARA implies that the collective prob-
ability is increasing in s in this region. The slope of the collective density
function is very similar to the slope of the density function of agent θ = 1.
This is because most of the aggregate wealth is consumed by that agent in
these states, as seen in Figure 4. This implies that the social planner who
considers transferring wealth across states in this region will mostly be con-
cerned by the beliefs of that agent. In region s < 0.5 on the contrary, the
collective probability is decreasing in s because a larger s yields less relative
disagreement. Most of the aggregate wealth is consumed by agent θ = 2 in
these states, which implies that the social planner who consider transferring
wealth across these states will use beliefs whose sensitivity to changes in s is
close to the one of the subjective density function of that agent. Comparing
this solution to the CARA case where disagreements have no effect on the
collective beliefs that would be uniform in that case, the collective density is
heavier in the tails. In terms of collective risk management, a social planner
using the geometric rule would not purchase enough insurance for the states
with the largest relative degree of disagreement, i.e., extreme states in this
example.
Let us now turn to the more interesting case illustrated by Figure 3, where

the two types of agents have beliefs that are normally distributed with the
same variance σ2 = 1, µ(1) = −2 and µ(2) = 2.We know that the geometric
aggregation rule — which is efficient in the CARA case — yield a (dotted)

5This unrealistically low level of relative risk aversion is selected for a pedagogical
purpose. It yields frenzy side bets between the pessimistic and optimistic agents, as seen
in Figure 4.
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Figure 4: Optimal allocation of risk when c(1, P (s), θ), when λ(1) = λ(2),
p(s, 1) = 5 exp[5s]/(exp[5] − 1), p(s, 2) = −5 exp[−5s]/(exp[−5] − 1), and
relative risk aversion equals γ = 0.1.

collective belief that is normal with a zero mean. Suppose alternatively that
relative risk aversion is constant and is equal to γ = 10, yielding DARA.
The plain bell curve in this figure describes the efficient collective density
function in this case. We know that the relative degree of disagreement is
decreasing for negative states, and that it is increasing for positive states.
Proposition 7 implies that the slope of the collective density will be smaller
than the slope of the ”geometric” (dotted) density for negative states, and it
will be larger than it for positive states. As in the previous example, because
relative disagreement is larger in the tails, DARA implies that the collective
density is heavier in the tails than under the geometric aggregation rule.
In Figure 5, we show how the efficient collective density is related to

the degree of relative risk aversion γ. When relative risk aversion tends to
infinity, absolute risk aversion becomes constant, and the collective beliefs
become normal with a zero mean. On the contrary, when relative risk aver-
sion is reduced, more and more side bets among optimistic and pessimistic
agents become efficient. For very low γ, agent 1 consumes most of the cake
in negative states, and agent 2 does the same for positive states. For the
reasons explained above, it implies that the collective density will be almost
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Figure 5: Efficient collective density functions when relative risk aversion γ is
constant, and when both agents have normal beliefs with the same variance
σ2 = 1, assuming µ(1) = −2, µ(2) = 2.

proportional to p(s, 1) for negative states, and to p(s, 2) for positive states
(see equation (40) in Appendix A). This is why we obtain collective density
functions with two modes and heavy tails when γ is small.
These examples also illustrate another important feature of the aggre-

gation of beliefs. Contrary to the intuition, the collective probability of any
state s needs not to belong to the interval bounded by minθ∈Θ p(s, θ) and
maxθ∈Θ p(s, θ). This is in sharp contrast with the rate of increase in the col-
lective probability, which is a weighted mean of the rate of increase in the
individual probabilities, as stated by equation (28).

9 Asset pricing with heterogeneous beliefs

What are the implications of these results on the forward price of equity and
the equity premium?We answer this question by reinterpreting the ”group”
that we considered earlier in this paper as the set of all consumers in an
exchange economy à la Lucas (1978). This implies that the equilibrium con-
dition is ω(s) = z(s) for all s, where ω(s) and z(s) are respectively the
mean endowment and the consumption per capita in state s. The first-order
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condition of program (5) can be rewritten as an equilibrium condition as
follows:

vz(ω(s), P (s)) = π(s),

where π(s) is the price of the Arrow-Debreu security associated to state
s. We normalized the Lagrange multiplier to unity. Proposition 7 directly
implies that the price of this asset is increasing in the relative disagreement
of individual probabilities associated to the corresponding state. If there are
two states with the same average log probability, the Arrow-Debreu security
associated to the state with the larger degree of relative disagreement has a
larger equilibrium price.
The price of equity equals

P e =

PS
s=1 ω(s)π(s)PS

s=1 π(s)
=

PS
s=1 ω(s)vz(ω(s), P (s))PS

s=1 vz(ω(s), P (s))
.

Suppose that the ISHARA condition holds, which implies that vz(z, P ) =
pv(P )h0(z). The representative agent then perceives an equity premium
equaling

φ = −1 +

hPS
s=1 p

v(P (s))ω(s)
i hPS

s=1 p
v(P (s))h0(ω(s))

i
PS

s=1 p
v(P (s))ω(s)h0(ω(s))

.

We are interested in determining the effect of the heterogeneity of beliefs on
this price of macroeconomic risk. Corollary 1 shows that when relative dis-
agreements are concentrated in the tails, the representative agent perceives a
distribution of states that is more dispersed than the distribution generated
by using the intuitive geometric aggregation rule. In Abel (2002)’s termi-
nology, the representative agent has some doubts about the distribution of
equity returns. If ω is monotone in s, this increased dispersion in the state
space S corresponds to an increased perceived dispersion in consumption,
i.e., to an increased perceived macroeconomic risk. Because of risk aversion,
this should induce a reduction in the demand for equity. Eventually, at equi-
librium, this should yield a reduction in the price of equity, and to an increase
in the equity premium φ.
The idea that a mean-preserving spread in the perceived distribution of

equity returns should raise the equity premium is very intuitive. However, as
initially observed by Rothschild and Stiglitz (1971), it is not true in general
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that risk-averse agents reduce their demand for the risky asset when its re-
turn undergoes an increase in risk. Gollier (1995) derives the necessary and
sufficient condition for a change in risk to reduce the demand for this risk
by all risk-averse investors. There is a wide literature summarized in Gollier
(1995) that provides various sufficient conditions. Assuming constant rela-
tive risk aversion and lognormal returns, Abel (2002) shows that an increase
in the variance of the perceived equity payoffs raises the equity premium.
In the remainder of this section, we examine a purely hypothetical situ-

ation of conflicts in beliefs. Our aim is to show that conflicts in beliefs have
the potential to have a sizeable effect on the equity premium. Suppose that
all agents have the same constant relative risk aversion γ. Consider as a
benchmark that all agents believe that the growth rate ω of consumption is
lognormally distributed, i.e., that

ω(s) = exp s and s ∼ N(µ, σ2).

In order to fit the historical U.S. data with an expected growth rate of con-
sumption Eω − 1 = 1.8% per year and a standard deviation equaling 3.56%
per year, we take µ = 0.017 and σ = 0.035. Such a specification implies that
the equity premium equals φ = −1 + exp(γσ2). For the reasonable relative
risk aversion γ = 2, the equity premium is only 0.25% per year, far below
the 6% observed equity premium observed during the last century. Hence the
equity premium puzzle.
Suppose alternatively that there are two equally-sized groups with het-

erogeneous beliefs. The first group is pessimistic: its members believe that s
is N(µp, σ) with µp < 0.017. The other group is optimistic, with beliefs on s
distributed as N(µo, σ). We select µp and µo in such a way that 0.5(µp+µo)
equals µ = 0.017 as in the homogeneous economy. Thus, the two groups of
agents have wrong beliefs, but they are right ”on average”. This work thus
differs much from Abel (2002) who examines how does a systematic bias in
beliefs affect asset prices.
In the calibration presented in Figure 6, we duplicate the degree of het-

erogeneity of Figures 3 and 5 by assuming that µp = −0.053 and µo = 0.087
are separated by 4 times the standard deviation. We see that the effect of
the divergence of opinions has a sizeable positive effect on the equity pre-
mium. For example, for γ = 2, the equity premium goes from φ = 0.25% with
the homogeneous beliefs µ = 0.017, whereas it goes up to φ = 1.11% with
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Figure 6: The equity premium φ (in % per year) as a function of relative risk
aversion γ, withµp = −5.3% and µo = 8.7%. The dashed curve corresponds
to the homogeneous case with µ = 1.7%.

µp = −0.053 and µo = 0.087. Thus, the heterogeneity of beliefs multiplies
the equity premium by 444%. Of course, to obtain such a result, we took a
rather extreme assumption, since optimistic agents believe that the expected
growth rate of consumption is 9.2% per year, whereas pessimistic ones believe
that expected consumption decreases at a yearly rate of 5.1%. In Figure 7,
we show how the equity premium varies with the degree of heterogeneity of
beliefs. This relationship is convex. Observe in particular that introducing
heterogeneous beliefs has no effect on the equity premium at the margin.

10 The arithmetic aggregation rule

We have seen that the geometric aggregation rule is useful to obtain com-
parative statics properties, in particular when individual beliefs belong to
the family of normal distributions. An alternative benchmark aggregation
rule would be to use an arithmetic mean of individual probabilities, state by
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Figure 7: The equity premium φ (in % per year) as a function of the expected
growth rate µp (in % per year) of the pessimistic group with γ = 2.

state:

pv(P ) = k
1

N

NX
θ=1

λ(θ)p(θ), (31)

or d ln pv(P ) = d ln
³
N−1PN

θ=1 q(θ)
´
. In Appendix A, we show that this

arithmetic aggregation rule is efficient when all agents have the same loga-
rithmic utility function. In such a group, the efficient rule to aggregate het-
erogeneous beliefs consists in computing for each state the Pareto-weighted
mean of the individual subjective probabilities. If two states have the same
weighted mean, they should have the same collective probability. If agents do
not have a logarithmic utility, this arithmetic aggregation rule is inefficient.
The associated error can be estimated by

φ(z, P, dP ) =
d ln vz(z, P )

d ln
³
N−1PN

θ=1 q(θ)
´ . (32)

When φ is larger than unity, using the arithmetic aggregation rule would
underestimate the rate of increase in the collective probability generated by
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the marginal shift dP. It is easy to check that when dP represents a relative
increase in disagreement with respect to P, φ is smaller than η. It implies
that φ > 1 is a more demanding property than η > 1. In a previous version of
this paper6, I proved the following proposition using the efficient aggregation
rule (28).

Proposition 8 Suppose that the individual utility functions are identical.
The following two conditions are equivalent:

1. For any wealth z, any initial distribution of individual probabilities P
and any shift dP yielding a relative increase in disagreement, the rate
of increase in the collective probability is larger than the rate of increase
of the mean individual probabilities: φ(z, P, dP ) ≥ 1;

2. The derivative of absolute risk tolerance with respect to consumption is
larger than unity: T u

c (c) ≥ 1 for all c.

Varian (1985) and Ingersoll (1987) proved that 2 implies 1. Comparing
this proposition with Proposition 7 clarifies the main difference between our
work with the existing literature. Whereas Varian and Ingersoll compared
the rate of increase of the collective probability to the rate of increase of the
mean individual probabilities, we compare it to the mean rate of increase in
individual probabilities. For many applications as the one presented in the
previous section with lognormal beliefs, our approach is more useful. More-
over, our condition on preferences to obtain an unambiguous comparative
property is much simpler. Notice that

T u
c (c) =

P u(c)

Au(c)
− 1 with Au(c) = −u

00(c)

u0(c)
and P u(c) = −u

000(c)

u00(c)
.
(33)

Au and P u are respectively the degree of absolute risk aversion and absolute
prudence. Kimball (1990) shows that absolute prudence is useful to measure
the impact of risk on the marginal value of wealth. Namely, he shows that
the effect of risk on the marginal value of wealth is equivalent to a sure
reduction of wealth that is approximately proportional to the product of the
variance of the risk by P u. Using equation (33), the derivative of absolute

6See Gollier (2003).
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risk tolerance is larger than unity if and only if absolute prudence is larger
than twice the absolute risk aversion:

T u
c (c) ≥ 1⇔ P u(c) ≥ 2Au(c). (34)

There is a simple intuition to Proposition 8. It states that, everything
else unchanged, the group should devote more effort to finance aggregate
consumption in states with more disagreement if P u is larger than 2Au. The
paradigm of the veil of ignorance is useful for this intuition, using Proposition
6. Under the veil of ignorance, the cake sharing problem (4) is equivalent to
an Arrow-Debreu portfolio problem. More disagreement in the cake sharing
problem can be reinterpreted as more risk in the portfolio problem, which
has two conflicting effects on the marginal value of aggregate wealth vz.
The first effect is a precautionary effect. The increase in risk has an effect
on vz that is equivalent to a sure reduction of aggregate wealth which is
approximately proportional to absolute prudence. But this does not take into
account of the fact that the group does rebalance consumption towards those
who have a larger probability. This endogenous negative correlation between
the weighted probability q(θ) and individual consumption is favorable to the

expected consumption Eλ(eθ)p(s, eθ)c(z, s, eθ). Under the veil of ignorance,
this makes the representative agent implicitly wealthier, thereby reducing
the marginal value of wealth. This wealth effect is proportional to the rate
at which marginal utility decreases with consumption. It is thus proportional
to Au. Globally, more disagreement raises the marginal value of wealth if the
precautionary effect dominates the wealth effect, or if absolute prudence is
sufficiently larger than absolute risk aversion. This provides an intuition to
condition P u ≥ 2Au, or T u

c ≥ 1.7
The assumption that agents have decreasing absolute risk aversion is a

widely accepted hypothesis in our profession. The plausibility of condition
T u
c ≥ 1 is more questionable. In fact, most specialists in the field believe
that T u

c is smaller than unity. The argument goes as follows. In the absence
of any direct estimate of the sensitivity of absolute risk tolerance to changes
in wealth, we usually consider the CRRA specification u(c) = c1−γ/(1 − γ)
for which T u(c) = c/γ. It implies that T u

c ≥ 1 if and only if γ is smaller than
7In the Arrow-Debreu portfolio context, Gollier (2002) shows that condition Pu ≥ 2Au

is necessary and sufficient for a mean-preseving spread in the distribution of state price
per unit of probability to raise the marginal value of wealth.
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unity. Relying on asset pricing data and the equity premium puzzle, one must
conclude that relative risk aversion must be much larger than unity. There-
fore, Proposition 8 should be interpreted by considering their contraposition
with T u

c (c) ≤ 1!

11 Conclusion

Our aim in this paper was to characterize the beliefs that should be used for
collective decision making when individuals differ about their expectations.
To examine this question, we assumed that agents can share risk efficiently,
thereby relying on techniques borrowed from the theory of finance. The basic
ingredient behind our results is that, in aggregating individual beliefs, one
should favor the beliefs of agents that bear a larger share of the risk. How-
ever, the allocation of risk in the economy is endogenous and it depends upon
individual beliefs. Therefore, efficient risk allocations are more difficult to
characterize under expectations disagreement. For example, it is not neces-
sarily efficient to wash out diversifiable risks in that case. It may be efficient
for agents to gamble against each others in spite of their risk aversion. Horse-
track betting is Pareto-improving when agents have different beliefs about
the chances of the competing horses.
In an Arrow-Debreu framework, the risk exposure of an individual is a lo-

cal concept that is measured by differences in state consumption levels across
states. As is well-known, the socially efficient local risk exposure for an agent
is proportional to his local degree of absolute risk tolerance which measures
the rate at which marginal utility decreases with consumption. We showed
that this result remains true with heterogeneous beliefs. The key property
of the aggregation of beliefs is that an increase in the subjective state prob-
ability of agent θ should raise the collective probability also proportionally
to agent θ0s degree of absolute risk tolerance. If an agent bears a percentage
share x of the collective risk, a one percent increase in his subjective prob-
ability should raise the collective probability by x percents. This result has
several important consequences.
First, it implies that the socially efficient collective probability distribu-

tion depends upon the aggregate wealth level of the group. This is because
the aggregate wealth level affects the way risks should be allocated in the
group. However, when agents have the same HARA utility function, changes
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in aggregate wealth has no effect on the allocation of risks. This implies that
the collective probability distribution is independent of wealth in that case.
We showed that the identically-sloped HARA case is the only case in which
such separability property between beliefs and utility holds. In all other
cases, the representative agent has a state-dependent utility function.
Second, we derived various results that are useful to understand the ef-

fect of the divergence of opinions on the shape of the collective probability
distribution. To do this, we defined the concept of increasing relative dis-
agreement. In short, there is more relative disagreement about state s0 than
about state s if the individual subjective probabilities are more dispersed in
state s0 than in state s. We showed that, with such a shift in the distribution
of individual probabilities, the rate of increase of the collective probability is
larger than the mean rate of increase of individual probabilities if and only
if absolute risk aversion is decreasing. It must be stressed that this result is
purely local. It does not provide a global view about how the beliefs of the
representative agent are affected by the heterogeneity of beliefs.
The last step is to link the structure of disagreement at the global level to

the global properties of the collective probability distribution. When most
disagreements are concentrated in the tails of the distribution, the collective
distribution function is dominated by the average individual probability dis-
tribution in the sense of second-order stochastic dominance. This tends to
raise the equity premium. We showed in a simple numerical example that the
heterogeneity of individual beliefs may have a sizeable effect on the equity
premium.
The critical assumption of this model is that the group can allocate risk

efficiently. This assumption is difficult to test. For example, the efficient
coverage of earthquake coverage in various regions can be interpreted in two
ways. The optimistic view is that homeowners are more pessimistic than
insurers about the risk, which implies that the low insurance coverage is
socially efficient. But alternatively, it could be interpreted as a proof that
markets are incomplete. A similar problem arises to explain the insurance
crisis after 9/11/01, or about the difficulty to share the risk related to global
warming on an international basis. A possible extension of this work would
be to consider an economy with incomplete markets.
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Drèze, J.H., (2001), Loss reduction and implicit deductibles in
medical insurance, CORE discussion paper, U. of Louvain.
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Appendix A: The case of ISHARA preferences

In this appendix, we examine the special case of ISHARA preferences (21)
for which we know from proposition 4 that R is independent of z. It implies
that vz(z, P ) is separable into a product pv(P )h0(z). Moreover, ISHARA
preferences (21) yield an analytical solution for the aggregation problem.
Indeed, in this particular case, the first-order condition to state-dependent
the Pareto program (4) implies that

c(z, P, θ)− a(θ) = k [λ(θ)p(θ)]1/γ .

Since T u(c, θ) = (c−a(θ))/γ, property (14) can be rewritten in the ISHARA
case as

R(z, P, θ) =
[λ(θ)p(θ)]1/γ

NE
h
λ(eθ)p(eθ)i1/γ , (35)

where Ef(eθ) = N−1PN
θ=1 f(θ). The definition of R applied to the ISHARA

case implies that

R(z, P, θ) =
p(θ)pvθ(P )

pv(P )
, (36)

where pvθ = ∂pv/∂p(θ). Combining (35) and (36) yields

pvθ(P )

pv(P )
=

λ(θ)1/γp(θ)−1+1/γ

NE
h
λ(eθ)p(eθ)i1/γ (37)

for θ = 1, ..., N. The solution to this system of partial differential equations
has the following form:

pv(P ) = C

∙
E
h
λ(eθ)p(eθ)i1/γ¸γ , (38)

where C is a constant. In order for pv to be a probability distribution, we
need to select the particular solution with

pv(P (s)) =

∙
Eθ

h
λ(eθ)p(s, eθ)i1/γ¸γ

PS
t=1

∙
Eθ

h
λ(eθ)p(t, eθ)i1/γ¸γ . (39)
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Calvet, Grandmont and Lemaire (2001) obtained the same solution. Rubin-
stein (1974) derives it in the special cases γ = 1 and γ = +∞.8 Chapman and
Polkovnichenko (2006) derived this result in the special case of CRRA. Thus,
in the ISHARA case, we can directly compute the socially efficient proba-
bility distribution of risk as a function of individual beliefs p, the Pareto
weights λ, and the concavity coefficient γ. Two special cases are worthy to
examine. Consider first the case with γ tending to zero. This corresponds
to risk-neutral preferences above a minimum level of subsistence. Under this
specification, condition (39) is rewritten as

pv(P (s)) = pn(P (s)) =def
maxθ∈Θ λ(θ)p(s, θ)PS
t=1maxθ∈Θ λ(θ)p(t, θ)

for all s. (risk-neutral case)
(40)

With risk-neutral preferences, the efficient allocation produces a flip-flop
strategy where the cake in state s is entirely consumed by the agent with
the largest Pareto-weighted probability associated to that state. It implies
that the group will use a state probability pn proportional to it to determine
its attitude toward risk ex ante.
In the case of logarithmic preferences (γ = 1), the denominator in (39)

equals Eλ(eθ) since
SX
t=1

Eθλ(
eθ)p(t, eθ) = Eθ

"
λ(eθ) SX

t=1

p(t, eθ)# = Eλ(eθ) = 1.
It implies that

pv(P (s)) = pln(P (s)) =def Eλ(eθ)p(s, eθ) for all s. (logarithmic case)
With these Bernoullian preferences, the efficient probability that should be
associated to any state s is just the weighted mean pln(s) of the individual
subjective probabilities of that state s. This is the limit case T u

c ≡ 1 of the
result presented in Proposition 8.

Appendix B: Increasing disagreement in the large

8The CARA caseγ = +∞ is described in section 7.
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In this Appendix, we extend our definition of increasing disagreement in
the small to non-marginal changes in individual probabilities. We examine
non marginal changes in distribution by comparing two distributions P0 and
P1. Our definition of an increase in disagreement ”in the large” is as follows.

Definition 2 Consider a specific Pareto-weight vector (λ(1), ..., λ(N)). We

say that P1 yields more disagreement than P0 if q0(eθ) = λ(eθ)p0(eθ) and
ln q1(eθ)− ln q0(eθ) are comonotone: for all (θ, θ0) :

[q0(θ
0)− q0(θ)]

∙
ln

q1(θ
0)

q0(θ0)
− ln q1(θ)

q0(θ)

¸
≥ 0.

If q0 is increasing in θ, this is equivalent to require that (P0, P1) satisfies
the Monotone Likelihood Ratio (MLR) property that p1(θ)/p0(θ) be increas-
ing in θ. Because agents with a larger lnq under P0 get a larger increase in
log probabilities under P1, it implies that the distribution of log probabilities
under P1 is a spread of the individual log probabilities under P0. Thereby, it
amplifies the dispersion of q(eθ).
It is useful to decompose any shift in distribution from P0 to P1 as a se-

quence of infinitesimal changes in probabilities dP (τ) = (dp(τ, 1), ..., dp(τ,N))
indexed by τ going from 0 to 1 with

P (t) = P0 +

Z t

0

dP (τ) ≥ 0 and P (1) = P1.

Among the various ways to do this, we are interested in the paths P (.) that
preserve the property of increasing disagreement for each infinitesimal change
dP (τ) in the vector of individual probabilities. The following Lemma proves
that such paths exist.

Lemma 1 If P1 exhibits more disagreement than P0, there exists a path P (.)
linking P0 to P1 in which each increment dP (τ) yields an increase in dis-
agreement.

Proof: We check that P (t) = P t
1P

1−t
0 = P0 exp[t lnP1/P0] satisfies this

property. Define q(t, θ) = λ(θ)p(t, θ) = λ(θ)p1(θ)
tp0(θ)

1−t. It implies that

d ln q(t, θ) = ln
p1(θ)

p0(θ)
dt, (41)
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which is independent of t. Without loss of generality, suppose that P0 is such
that q0(1) ≤ q0(2) ≤ ... ≤ q0(N). Because P1 exhibits more disagreement
than P0, it must be that p1(θ)/p0(θ) = q1(θ)/q0(θ) be increasing in θ. Com-
bining this with equation (41) implies that the right bracketed term in (27)
is positive if θ0 > θ. It remains to prove that λ(θ)p1(θ)

tp0(θ)
1−t is increasing

in θ. This is immediate from the observation that

λ(θ)p1(θ)
tp0(θ)

1−t = q1(θ)
tq0(θ)

1−t = q0(θ)

∙
q1(θ)

q0(θ)

¸t
is the product of two positive increasing functions of θ. Notice that this
implies that λ(θ)p(t, θ) increases with θ at a rate that increases with t,or
that λ(θ)p(t, θ) is logsupermodular. ¥
This Lemma is useful because it allows us to focus on marginal changes in

distribution. Any result holding for increasing disagreement in the small can
be extended to increases in disagreement in the large. For example, because
a sequence of increases in risk is an increase in risk, Proposition 6 implies
that P1 is riskier than P0 in the sense of Rothschild-Stiglitz if P1 exhibits
more disagreement than P0 and Eq1(eθ) = Eq0(eθ).

Appendix C: Proof of Proposition 6

We check that for any concave function h, N−1PN
θ=1 h(ln q(θ)) is reduced

by the marginal shift dP . Suppose without loss of generality that q is increas-
ing in θ. Because dP is an increase in disagreement, we have that d ln q(θ) is
increasing in θ. By the covariance rule, it implies that

N−1d
NX
θ=1

h(ln q(θ)) = N−1
NX
θ=1

h0(ln q(θ))d ln q(θ)

≤ N−1
NX
θ=1

h0(ln q(θ))

"
N−1

NX
θ0=1

d ln q(θ0)

#
= 0.(42)

The last equality comes from the assumption that dP preserves the mean
of ln q(θ). This proves the sufficiency part of the proposition. The proof
of necessity is by contradiction. Suppose that d ln q(θ) is decreasing in a
neighborhood of some θ0. Then, inequality (42) is reversed for any function
h that is linear outside this neighborhood and concave inside it, thereby
contradicting the condition that dP yields a Rothschild-Stiglitz spread of
(ln q(1), ..., ln q(N)). ¥

42


