

The genetic lottery goes to school: gene-environment interactions in the school context

Paul Hufe*

* University of Bristol

January 7, 2026

Motivation

- **Education** is a core determinant of life outcomes (Acemoglu and Autor, 2011; Hanushek and Woessmann, 2008; Krueger and Lindahl, 2001).
- **Equity** of education systems as a central policy goal:

Most fundamental, of course, is the question of how well schools reduce the inequity of birth by providing children an equitable foundation of mental skills and knowledge [...].

Coleman Report, p.36

- Effective education policies require understanding of the **production function**:

$$Y = f(\underbrace{G}_{\text{Nature}}, \underbrace{F}_{\text{Nurture}}, \underbrace{I^S}).$$

Motivation

- **Education** is a core determinant of life outcomes (Acemoglu and Autor, 2011; Hanushek and Woessmann, 2008; Krueger and Lindahl, 2001).
- **Equity** of education systems as a central policy goal:

Most fundamental, of course, is the question of how well schools reduce the inequity of birth by providing children an equitable foundation of mental skills and knowledge [...].

Coleman Report, p.36

- Effective education policies require understanding of the **production function**:

$$Y = f(\underbrace{G}_{\text{Nature}}, \underbrace{F}_{\text{Nurture}}, \underbrace{I^S}).$$

Why genes? Why now?

1. Genes account for **40% of variation in years of education** (Branigan et al., 2013).
2. Genes matter for **distributive justice** (Koellinger and Harden, 2018).
3. Recent **advances in molecular genetics** now allow us to study the role of genes for education (Benjamin et al., 2024).

Why genes? Why now?

1. Genes account for **40% of variation in years of education** (Branigan et al., 2013).
2. Genes matter for **distributive justice** (Koellinger and Harden, 2018).
3. Recent **advances in molecular genetics** now allow us to study the role of genes for education (Benjamin et al., 2024).

Why genes? Why now?

1. Genes account for 40% of variation in years of education (Branigan et al., 2013).
2. Genes matter for distributive justice (Koellinger and Harden, 2018).
3. Recent advances in molecular genetics now allow us to study the role of genes for education (Benjamin et al., 2024).

A research agenda

Research question

Do better schools increase or decrease the effect of genes on educational attainment?

- Evidence from the US:

B. Arold, P. Hufe, and M. Stoeckli (in press). "Genetic Endowments, Educational Outcomes and the Moderating Influence of School Quality". *Journal of Political Economy: Microeconomics*

- Evidence from Norway:

N. T. Borgen, R.G. Cheesman, P. Hufe, A.M.J. Sandor (2025). "The Genetic Lottery Goes to School: Better Schools Compensate for the Effects of Students Genetic Differences". *Proceedings of the National Academy of the Sciences* 122 (43), e2511715122

A research agenda

Research question

Do better schools increase or decrease the effect of genes on educational attainment?

- **Evidence from the US:**

B. Arold, P. Hufe, and M. Stoeckli (in press). "Genetic Endowments, Educational Outcomes and the Moderating Influence of School Quality". *Journal of Political Economy: Microeconomics*

- **Evidence from Norway:**

N. T. Borgen, R.G. Cheesman, P. Hufe, A.M.J. Sandor (2025). "The Genetic Lottery Goes to School: Better Schools Compensate for the Effects of Students Genetic Differences". *Proceedings of the National Academy of the Sciences* 122 (43), e2511715122

A research agenda

Research question

Do better schools increase or decrease the effect of genes on educational attainment?

- **Evidence from the US:**

B. Arold, P. Hufe, and M. Stoeckli (in press). "Genetic Endowments, Educational Outcomes and the Moderating Influence of School Quality". *Journal of Political Economy: Microeconomics*

- **Evidence from Norway:**

N. T. Borgen, R.G. Cheesman, P. Hufe, A.M.J. Sandor (2025). "The Genetic Lottery Goes to School: Better Schools Compensate for the Effects of Students Genetic Differences". *Proceedings of the National Academy of the Sciences* 122 (43), e2511715122

A a closely related research agenda (that I will not talk about)

Research question

Does more schooling increase or decrease the effect of genes on educational attainment?

R. Ahlskog, J. Beauchamp, A. Okbay, S. Oskarsson, and K. Thom (2024). Testing for treatment effect heterogeneity: Educational reform, genetic endowments, and family background. Revise and Resubmit at *Nature Communications*.

S. Barcellos, L. Carvalho, and P. Turley (2021). "The Effect of Education on the Relationship between Genetics, Early-Life Disadvantages and Later-life SES". *NBER Working Paper 28750*.

A a closely related research agenda (that I will not talk about)

Research question

Does more schooling increase or decrease the effect of genes on educational attainment?

R. Ahlskog, J. Beauchamp, A. Okbay, S. Oskarsson, and K. Thom (2024). Testing for treatment effect heterogeneity: Educational reform, genetic endowments, and family background. Revise and Resubmit at *Nature Communications*.

S. Barcellos, L. Carvalho, and P. Turley (2021). "The Effect of Education on the Relationship between Genetics, Early-Life Disadvantages and Later-life SES". *NBER Working Paper 28750*.

A a closely related research agenda (that I will not talk about)

Research question

Does more schooling increase or decrease the effect of genes on educational attainment?

R. Ahlskog, J. Beauchamp, A. Okbay, S. Oskarsson, and K. Thom (2024). Testing for treatment effect heterogeneity: Educational reform, genetic endowments, and family background. Revise and Resubmit at *Nature Communications*.

S. Barcellos, L. Carvalho, and P. Turley (2021). "The Effect of Education on the Relationship between Genetics, Early-Life Disadvantages and Later-life SES". *NBER Working Paper 28750*.

A a closely related research agenda (that I will not talk about)

Research question

Does more schooling increase or decrease the effect of genes on educational attainment?

R. Ahlskog, J. Beauchamp, A. Okbay, S. Oskarsson, and K. Thom (2024). Testing for treatment effect heterogeneity: Educational reform, genetic endowments, and family background. Revise and Resubmit at *Nature Communications*.

S. Barcellos, L. Carvalho, and P. Turley (2021). "The Effect of Education on the Relationship between Genetics, Early-Life Disadvantages and Later-life SES". *NBER Working Paper 28750*.

Outline

Measuring genetic factors

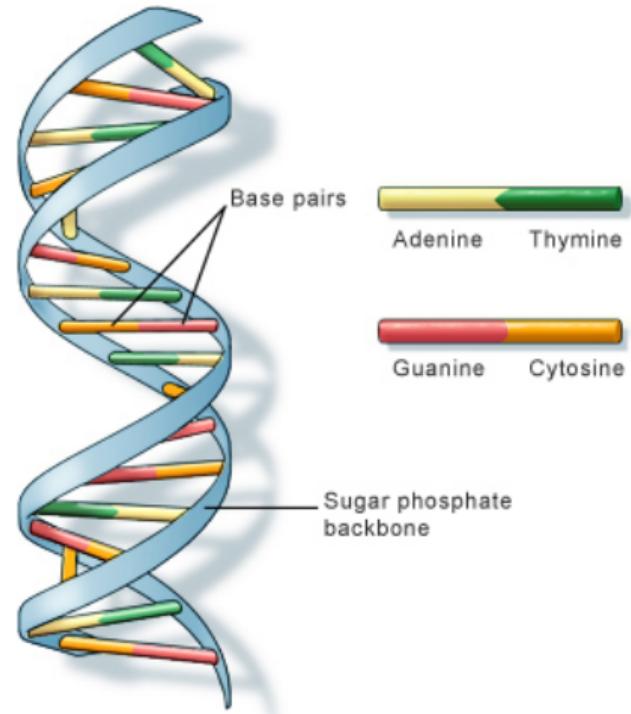
Evidence from the US

Evidence from Norway

Conclusion

Roadmap

Measuring genetic factors


Evidence from the US

Evidence from Norway

Conclusion

Genetics 101

- Human genetic information stored in **23 chromosome pairs**.
- Each chromosome consists of a molecule called **DNA**.
- The “rungs of the ladder” of the DNA are **acid-base pairs**.
- **Genes** are sequences of acid-base pairs that are protein-coding.
 - There are 3.3 bn “rungs in the ladder.”
 - > 99.5% are the same for all human beings.

Identification

- Estimation:

$$Y_i = \alpha PGI_i^{EA} + \beta Q_i + \kappa (PGI_i^{EA} \times Q_i) + \mathbf{X}_i \gamma + \epsilon_i$$

- Identification:

Requirement	Potential bias	Affected parameters	Potential solutions
Exogenous PGI ^{EA}	indirect genetic effects	α, κ	genetic trios sibling design adoption design ...
Exogenous Q	selection into schools	β, κ	admission lotteries border discontinuities value-added estimates ...
Independent PGI ^{EA} , Q	gene-environment correlation	κ	-

Roadmap

Measuring genetic factors

Evidence from the US

Evidence from Norway

Conclusion

Genetic Endowments, Educational Outcomes and the Moderating Influence of School Quality

B. Arold, P. Hufe, and M. Stoeckli

Journal of Political Economy: Microeconomics

National Longitudinal Study of Adolescent to Adult Health (Add Health)

- Initial information for a sample of adolescents ($N = 20,745$) collected in 1994/95.
- Nationally **representative** sample for students in grades 7-12.
- Follow up waves in **1996, 2001/02, 2008/09, 2016/18**.
- We restrict the sample to students of **European descent**.

Data inputs

- Recall our **estimation model**:

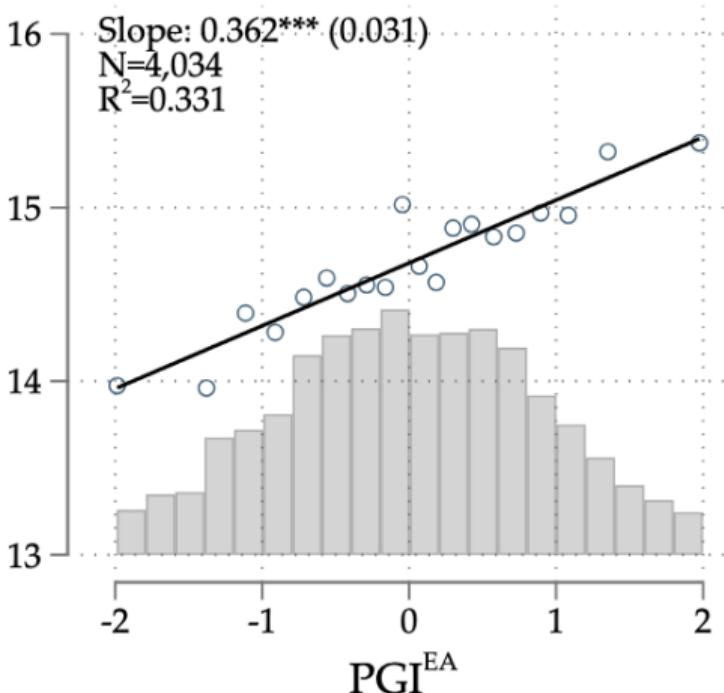
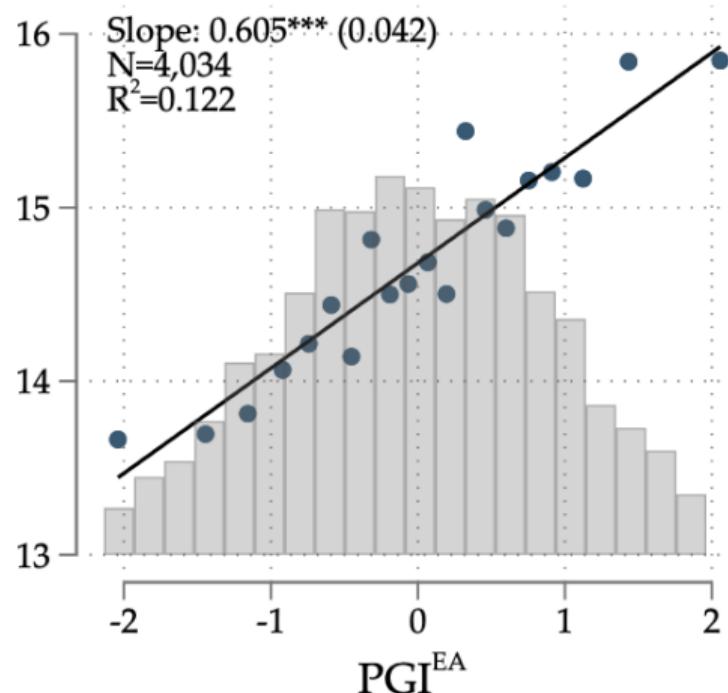
$$Y_i = \alpha PGI_i^{EA} + \beta Q_i + \kappa (PGI_i^{EA} \times Q_i) + \mathbf{X}_i \gamma + \epsilon_i$$

► Educational outcomes Y_i

► Genetic factors PGI_i^{EA}

► School quality Q

► Control \mathbf{X}_i

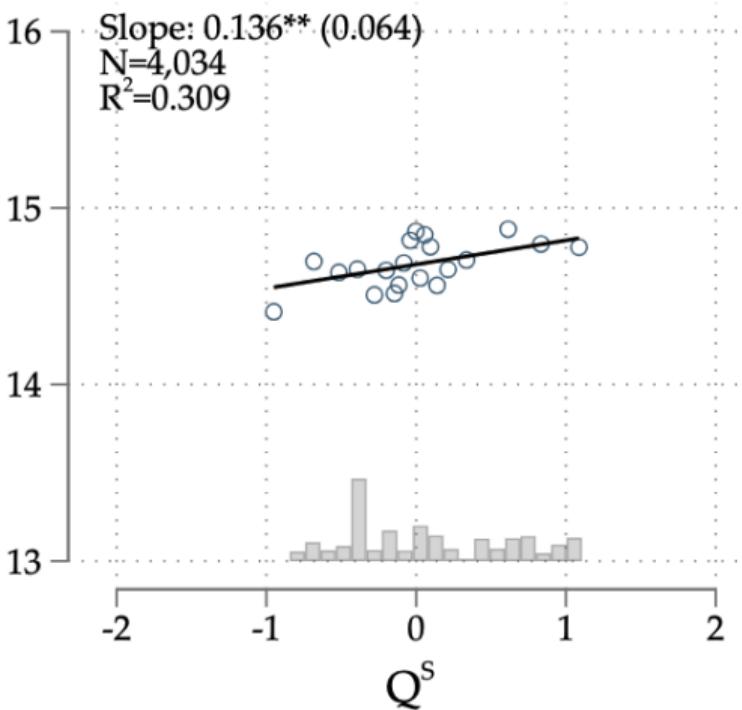
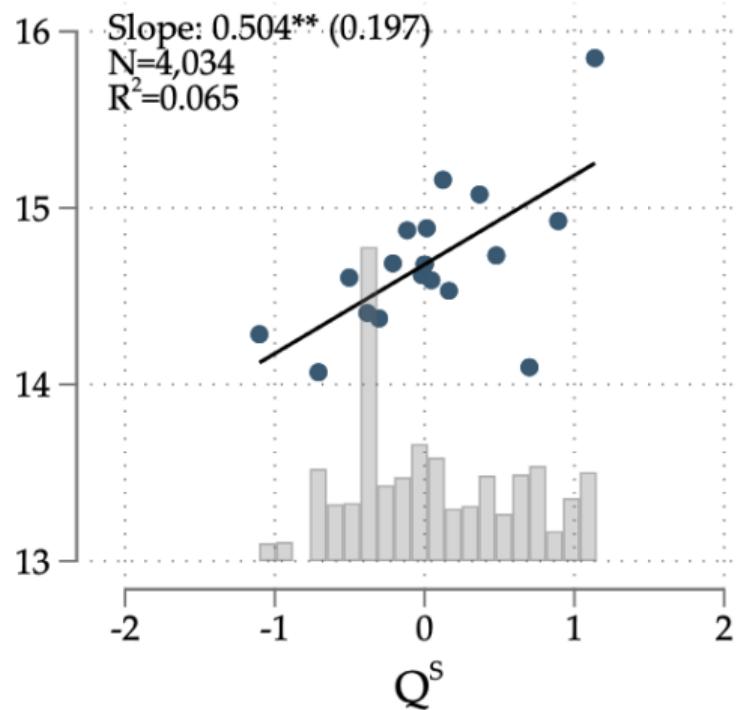


N=4,034; High Schools=72

	Mean	SD	Min	Max
Educational Attainment				
Years of Education	14.68	2.27	8.00	20.00
High School Degree	0.96	0.20	0.00	1.00
2-year College Degree	0.50	0.50	0.00	1.00
4-year College Degree	0.39	0.49	0.00	1.00
Post-Graduate Degree	0.14	0.35	0.00	1.00
Child and Family Characteristics				
PGI ^{EA}	0.00	1.00	-4.18	3.40
Female	0.54	0.50	0.00	1.00
Firstborn	0.48	0.50	0.00	1.00
Age in Months (Wave 1)	192.41	19.62	144.00	256.00
Maternal Age at Birth	25.33	4.83	16.00	46.08
Christian	0.82	0.38	0.00	1.00
Education Mother (in Years)	13.54	2.48	0.00	19.00
Education Father (in Years)	13.56	2.68	0.00	19.00
School Quality Indicators				
Q	0.00	1.00	-2.79	1.83
Teacher w/ MA (%)	51.20	24.11	0.00	95.00
Experienced Teacher (%)	66.65	23.43	0.00	98.00
New Teacher (%)	7.88	7.28	0.00	47.00
Class Size	24.40	4.50	12.00	38.00

Recap on identifying assumptions

1. No **indirect genetic effects** (α, κ).
2. No **selection into schools** (β, κ).
3. **Independent variation** in PGI^{EA} and Q (κ).

Identifying genetic effects

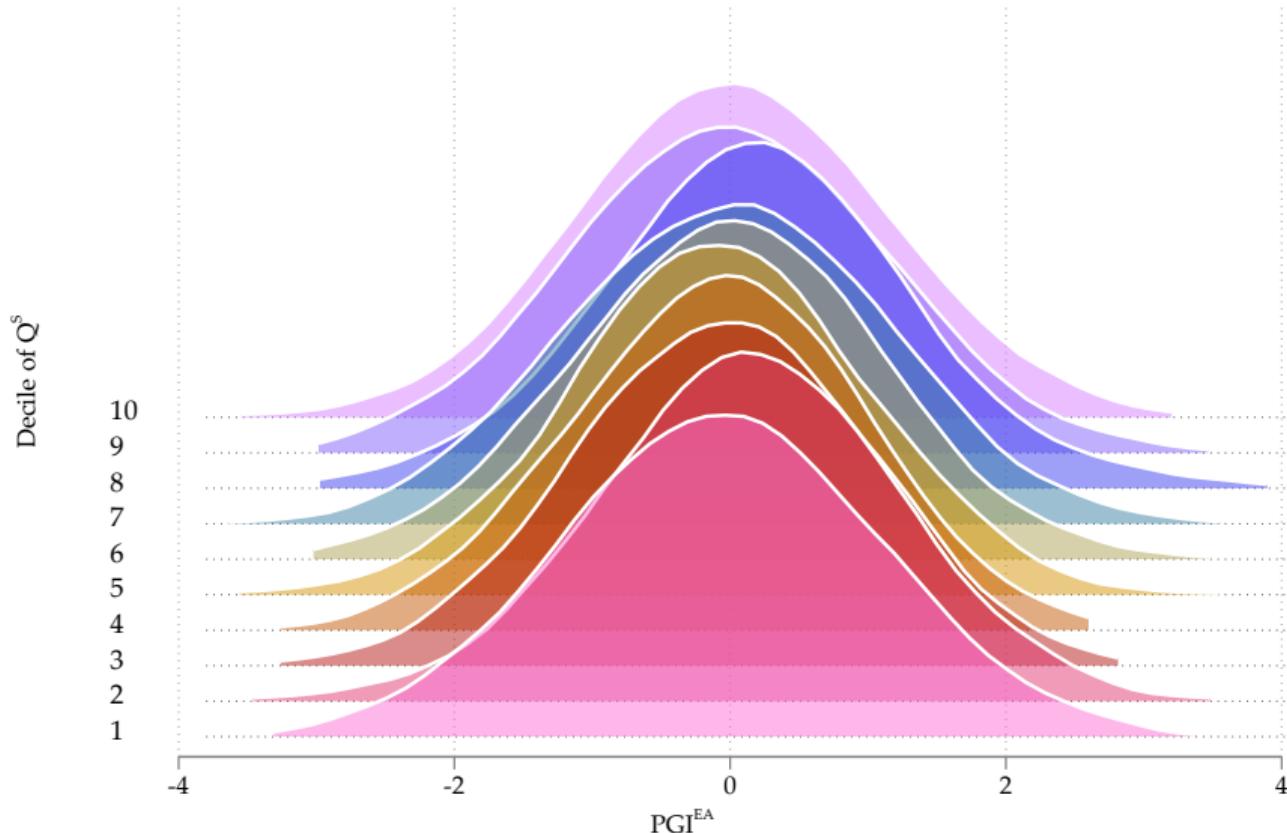


Identifying genetic effects

	Years of Education: Between- vs. Within-Family		Predicted Years of Education: w/o vs. w/ Control Function	
	(1)	(2)	(3)	(4)
PGI ^{EA}	0.415*** (0.085)	0.432*** (0.141)	-	-
Q	-	-	0.264** (0.129)	0.014 (0.050)
Difference in coefficients		-0.017 (0.129) [-0.269, 0.236]		0.250** (0.115) [0.023, 0.476]
Child Controls	✓	✓	✗	✗
Family Controls	✓	✓	✗	✗
Control Function	✓	✓	✗	✓
Sibling Fixed Effect	✗	✓	✗	✗
N	677	677	4,034	4,034
R ²	0.420	0.795	0.084	0.184
Outcome Mean	14.722	14.722	14.681	14.681
Outcome SD	2.277	2.277	1.163	1.163

Recap on identifying assumptions

- ✓ No **indirect genetic effects** (α, κ).
- 2. No **selection into schools** (β, κ).
- 3. **Independent variation** in PGI^{EA} and Q (κ).

Identifying school effects


Identifying school effects

	Years of Education: Between- vs. Within-Family		Predicted Years of Education: w/o vs. w/ Control Function	
	(1)	(2)	(3)	(4)
PGI ^{EA}	0.415*** (0.085)	0.432*** (0.141)	–	–
Q	–	–	0.264** (0.129)	0.014 (0.050)
Difference in coefficients	–0.017 (0.129) [-0.269, 0.236]	–	0.250** (0.115) [0.023, 0.476]	–
Child Controls	✓	✓	✗	✗
Family Controls	✓	✓	✗	✗
Control Function	✓	✓	✗	✓
Sibling Fixed Effect	✗	✓	✗	✗
N	677	677	4,034	4,034
R ²	0.420	0.795	0.084	0.184
Outcome Mean	14.722	14.722	14.681	14.681
Outcome SD	2.277	2.277	1.163	1.163

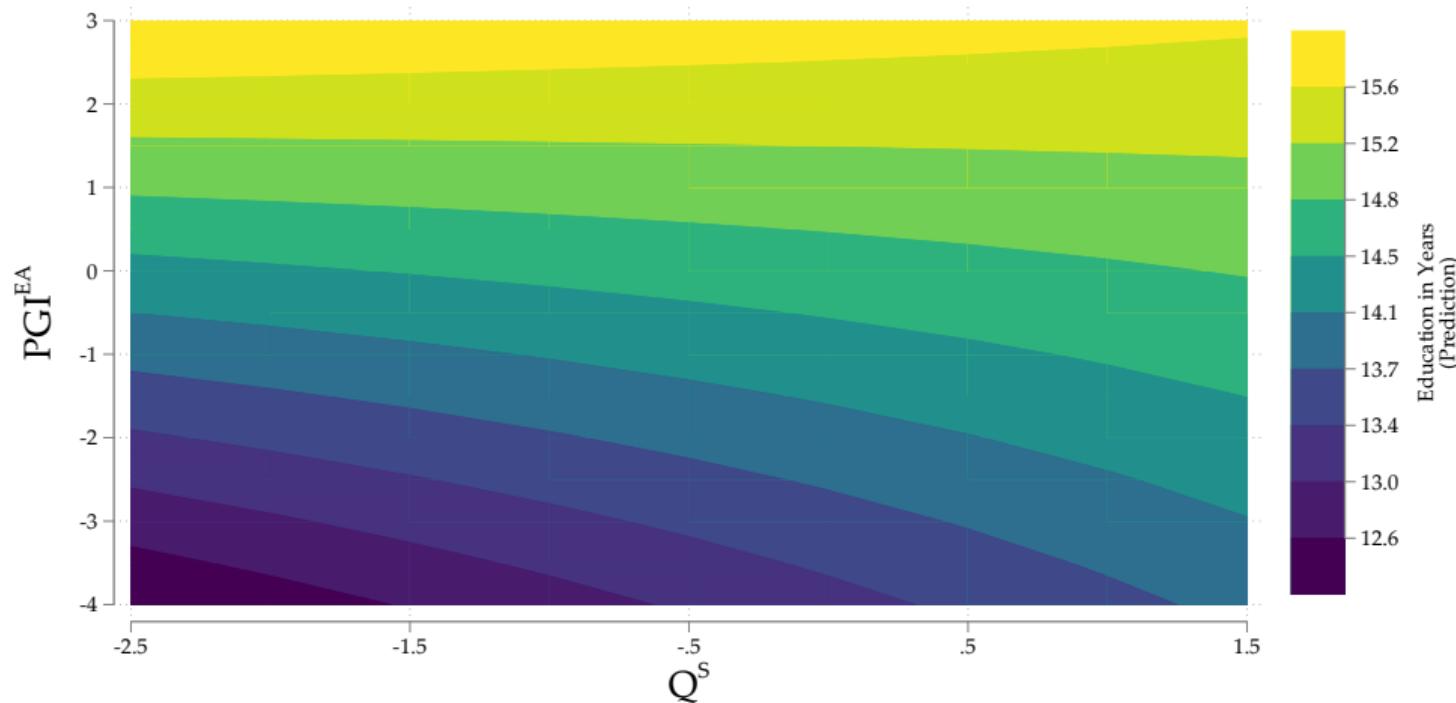
Recap on identifying assumptions

- ✓ No **genetic nurture** (α, κ).
- ✓ No **selection into schools** (β, κ).
- 3. **Independent variation** in PGI^{EA} and Q (κ).

Genes and school investments

Recap on identifying assumptions

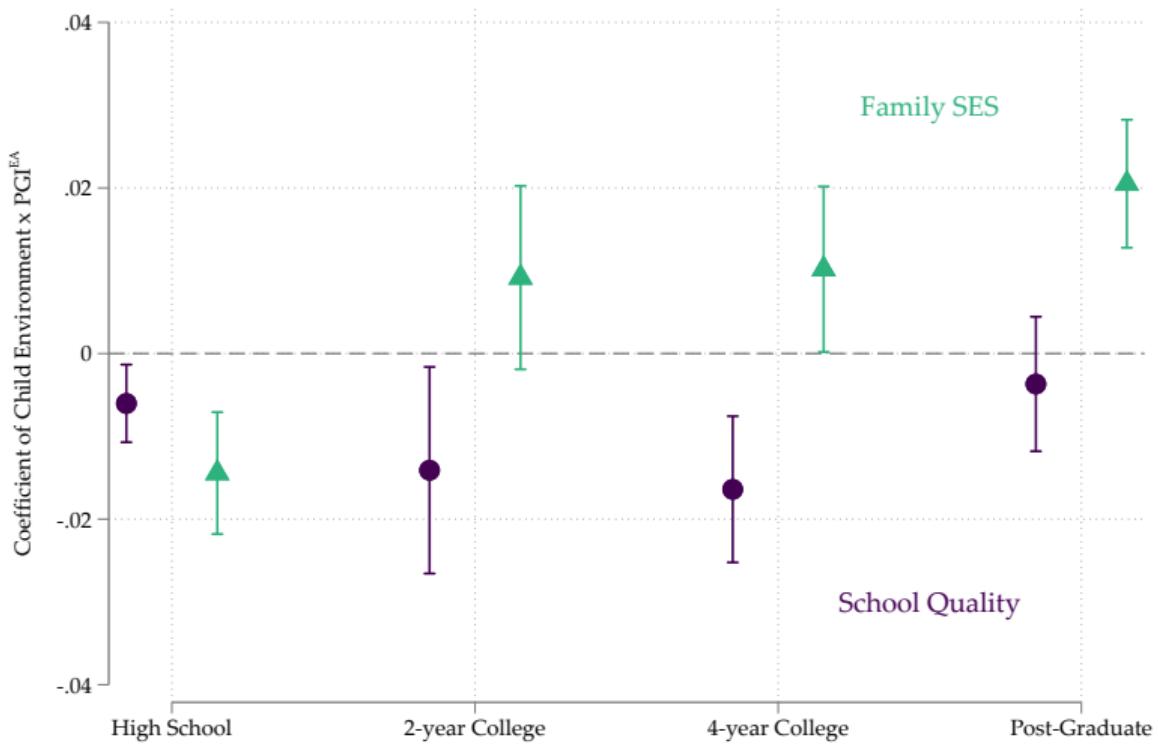
- ✓ No **genetic nurture** (α, κ).
- ✓ No **selection into schools** (β, κ).
- ✓ Independent variation in PGI^{EA} and Q (κ).


Gene-environment interaction

Outcome: Years of Education	Overall		Decomposition of Q			
	PCA (1)	Anderson (2008)	(3)	(4)	(5)	(6)
PGI ^{EA}	0.361*** (0.028)	0.361*** (0.029)	0.360*** (0.027)	0.362*** (0.029)	0.362*** (0.030)	0.362*** (0.030)
Q	0.124** (0.057)	0.098** (0.048)	-	-	-	-
PGI ^{EA} × Q	-0.068*** (0.026)	-0.064** (0.028)	-	-	-	-
Teacher w/ MA	-	-	0.166** (0.071)	-	-	-
PGI ^{EA} × Teacher w/ MA	-	-	-0.072*** (0.026)	-	-	-
Exp. Teacher	-	-	-	0.069 (0.059)	-	-
PGI ^{EA} × Exp. Teacher	-	-	-	-0.045* (0.026)	-	-
New Teacher	-	-	-	-	-0.020 (0.047)	-
PGI ^{EA} × New Teacher	-	-	-	-	0.038 (0.029)	-
Class Size	-	-	-	-	-	-0.008 (0.044)
PGI ^{EA} × Class Size	-	-	-	-	-	-0.004 (0.032)
Child Controls	✓	✓	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓	✓	✓
Control Function	✓	✓	✓	✓	✓	✓
N	4,034	4,034	4,034	4,034	4,034	4,034
R ²	0.333	0.333	0.334	0.332	0.332	0.331
Outcome Mean	14.681	14.681	14.681	14.681	14.681	14.681
Outcome SD	2.268	2.268	2.268	2.268	2.268	2.268

Gene-environment interaction

Outcome: Years of Education	Overall		Decomposition of Q			
	PCA (1)	Anderson (2008) (2)	(3)	(4)	(5)	(6)
PGI ^{EA}	0.361*** (0.028)	0.361*** (0.029)	0.360*** (0.027)	0.362*** (0.029)	0.362*** (0.030)	0.362*** (0.030)
Q	0.124** (0.057)	0.098** (0.048)	-	-	-	-
PGI ^{EA} × Q	-0.068*** (0.026)	-0.064** (0.028)	-	-	-	-
Teacher w/ MA	-	-	0.166** (0.071)	-	-	-
PGI ^{EA} × Teacher w/ MA	-	-	-0.072*** (0.026)	-	-	-
Exp. Teacher	-	-	-	0.069 (0.059)	-	-
PGI ^{EA} × Exp. Teacher	-	-	-	-0.045* (0.026)	-	-
New Teacher	-	-	-	-	-0.020 (0.047)	-
PGI ^{EA} × New Teacher	-	-	-	-	0.038 (0.029)	-
Class Size	-	-	-	-	-	-0.008 (0.044)
PGI ^{EA} × Class Size	-	-	-	-	-	-0.004 (0.032)
Child Controls	✓	✓	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓	✓	✓
Control Function	✓	✓	✓	✓	✓	✓
N	4,034	4,034	4,034	4,034	4,034	4,034
R ²	0.333	0.333	0.334	0.332	0.332	0.331
Outcome Mean	14.681	14.681	14.681	14.681	14.681	14.681
Outcome SD	2.268	2.268	2.268	2.268	2.268	2.268


Gene-environment interaction

Robustness

- ✓ Inclusion of other school characteristics and policies, [▶ School characteristics](#)
- ✓ Inclusion of other family/child characteristics, [▶ Family characteristics](#)
- ✓ Inclusion of other PGI, [▶ Other PGI](#)
- ✓ Placebo assignment to schools, [▶ Placebo](#)
- ✓ Exclusion of outlier schools, [▶ Outlier](#)
- ✓ No ceiling effects in educational attainment, [▶ Ceiling effects](#)
- ✓ Sample selection and weighting criteria, [▶ Sample and weighting](#)
- ✓ Correction for measurement error in PGI^{EA}, [▶ Becker et al. \(2021\)](#)

Educational degrees

Roadmap

Measuring genetic factors

Evidence from the US

Evidence from Norway

Conclusion

The Genetic Lottery Goes to School: Better Schools Compensate for the Effects of Students Genetic Differences

N. T. Borgen, R.G. Cheesman, P. Hufe, A.M.J. Sandor

Proceedings of the National Academy of the Sciences

Data sources

- MoBa:
 - Initial information for a sample of mothers ($N > 114,000$) from 1999-2008.
 - 44,017 genotyped father-mother-child trios.
 - Linked to Norwegian register data.
 - We restrict the sample to birth cohorts 2002-2008 and students of European descent.
 - Effective sample size $N \approx 31,000$.
- Norwegian registers:
 - Population of students in Norway ($N \approx 60,000$ per cohort).
 - Information on standardized tests in reading and numeracy in grades 5, 8, and 9.
 - We restrict the sample to birth cohorts 1997-2007.
 - Effective sample size $N \approx 670,000$.

Data inputs

- Our estimation model:

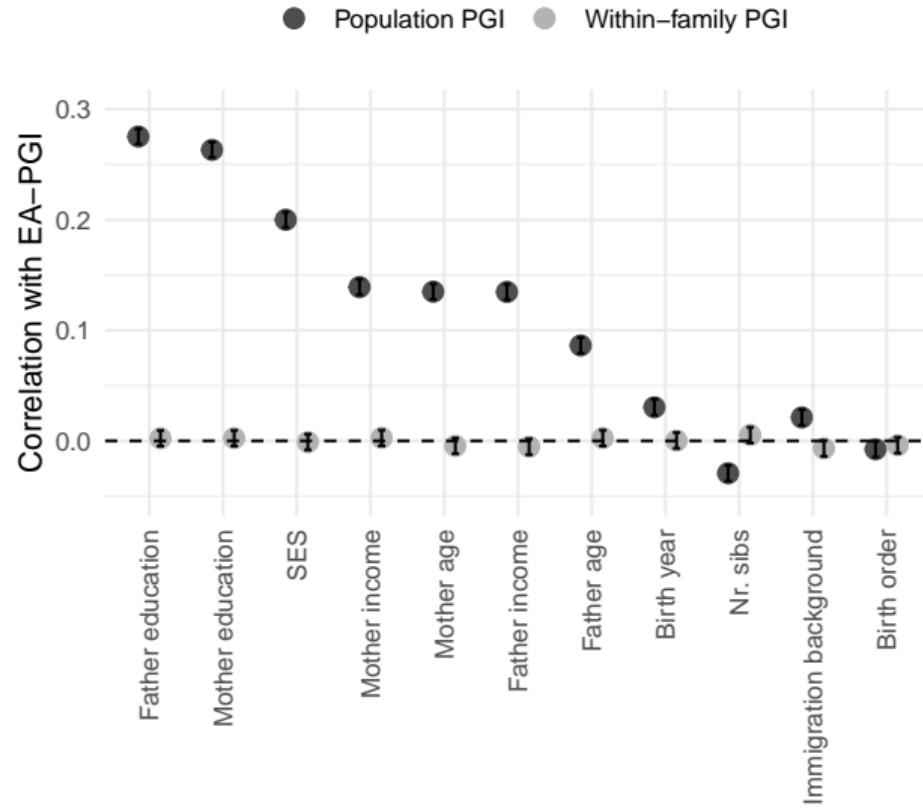
$$Y_i = \alpha PGI_i^{EA} + \beta Q_i + \kappa (PGI_i^{EA} \times Q_i) + \mathbf{X}_i \gamma + \epsilon_i$$

► Educational outcomes Y_i

► Genetic factors PGI_i^{EA}

► School quality Q

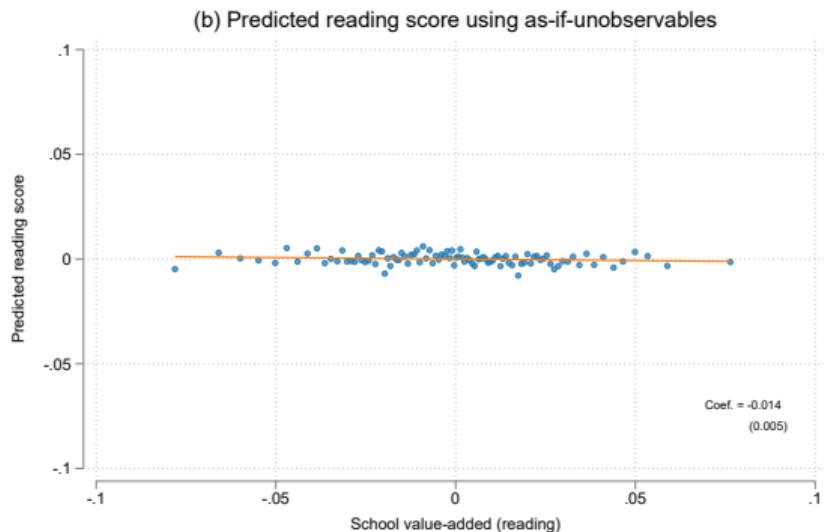
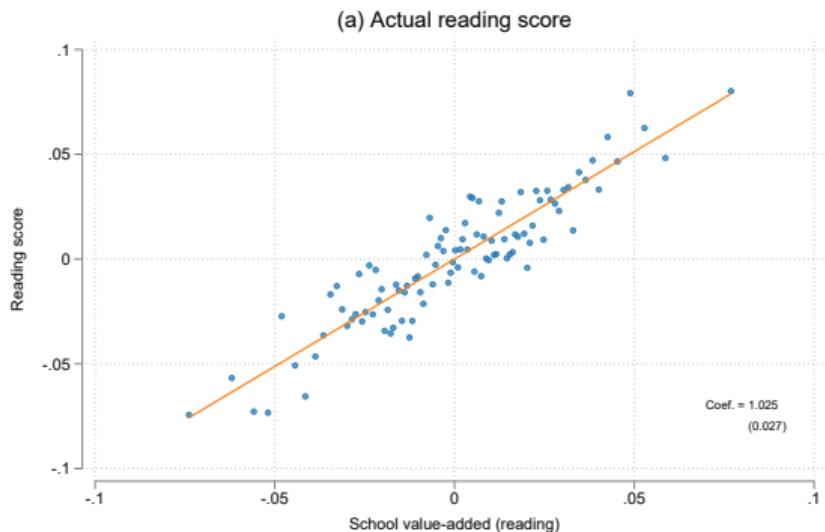
► Controls \mathbf{X}_i

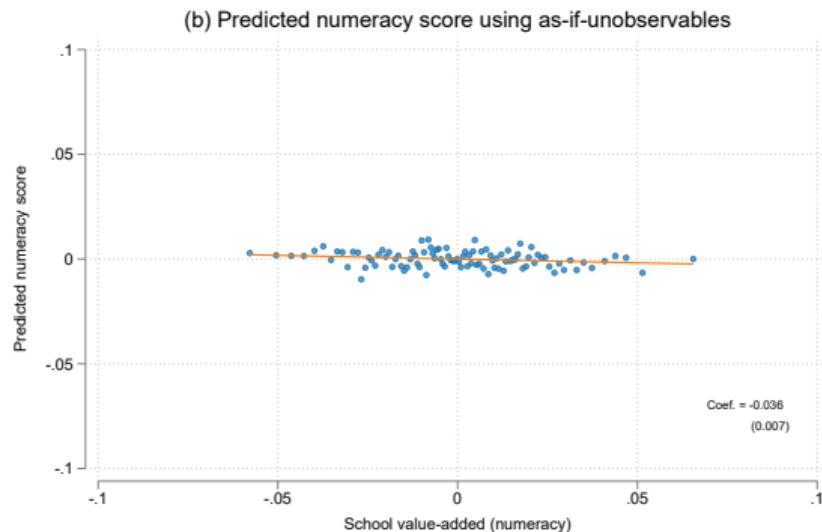
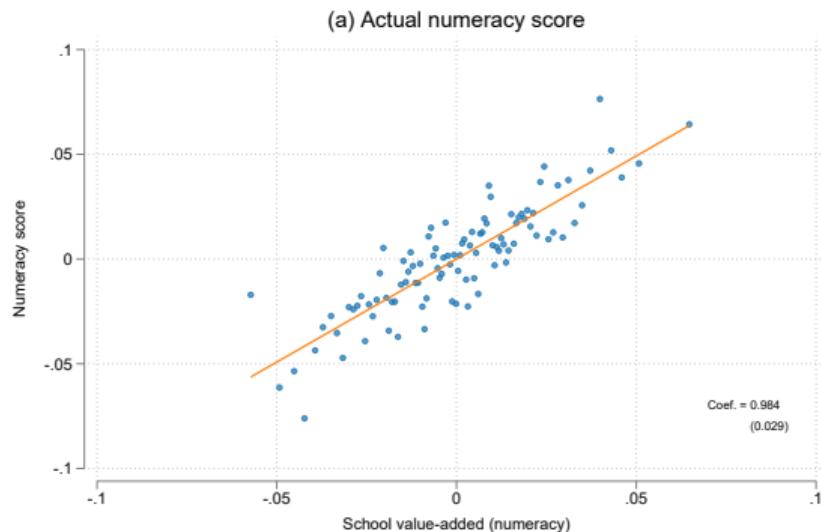

Summary statistics

	Analysis sample N = 30,939				MoBa (All) N = 56,533		Population N = 331,591	
	Mean	St. Dev.	Min	Max	Mean	St. Dev.	Mean	St. Dev.
Birth year	2004.9	1.6	2002	2008	2004.8	1.6	2004.5	1.7
Female	0.5	0.5	0.0	1.0	0.5	0.5	0.5	0.5
Migration background	0.1	0.3	0.0	1.0	0.1	0.3	0.2	0.4
Education (Father)	14.6	2.6	7.0	21.0	14.4	2.7	13.7	2.9
Education (Mother)	15.1	2.3	9.0	21.0	15.0	2.4	14.1	2.9
Inc. rank (Father)	58.5	25.6	0.0	99.0	57.1	26.2	50.9	28.3
Inc. rank (Mother)	61.0	25.4	0.0	99.0	59.9	25.7	51.5	27.6
Age (Father)	32.9	5.1	18.0	65.0	33.1	5.3	33.2	6.0
Age (Mother)	30.5	4.4	16.0	47.0	30.6	4.5	30.2	5.1
Reading (Grade 8)	0.3	0.9	-3.2	2.4	0.2	0.9	0.1	1.0
Numeracy (Grade 8)	0.3	0.9	-2.5	2.5	0.2	1.0	0.0	1.0
English (Grade 8)	0.2	1.0	-2.4	2.2	0.1	1.0	0.0	1.0

Recap on identifying assumptions

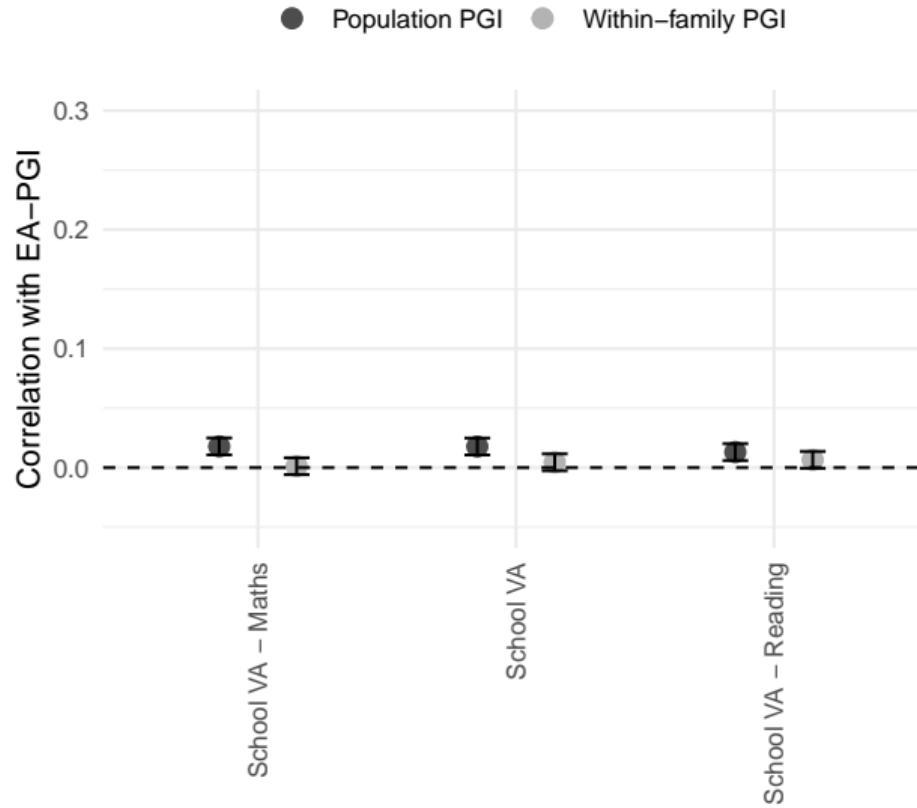
1. No **indirect genetic effects** (α, κ).
2. No **selection into schools** (β, κ).
3. **Independent variation** in PGI^{EA} and Q (κ).



Identification of genetic effects



Recap on identifying assumptions

- ✓ No **indirect genetic effects** (α, κ).
- 2. No **selection into schools** (β, κ).
- 3. No **gene-environment correlation** in PGI^{EA} and Q (κ).

Identification of school effects (Reading)


Identification of school effects (Numeracy)

Recap on identifying assumptions

- ✓ No **genetic nurture** (α, κ).
- ✓ No **selection into schools** (β, κ).
- 3. No **gene-environment correlation** in PGI^{EA} and Q (κ).

Gene-environment correlation

Recap on identifying assumptions

- ✓ No **indirect genetic effects** (α, κ).
- ✓ No **selection into schools** (β, κ).
- ✓ No **gene-environment correlation** in PGI^{EA} and Q (κ).

Gene-environment interaction (Reading)

Outcome: Reading (Grade 9)	(1)	(2)	(3)	(4)
PGI ^{EA}	0.304*** (0.006)	0.230** (0.008)	0.231*** (0.005)	0.231*** (0.005)
VA ^{Reading}	0.091*** (0.014)	0.090*** (0.013)	0.052*** (0.007)	0.050*** (0.007)
PGI ^{EA} × VA ^{Reading}	-0.020* (0.008)	-0.020* (0.008)	-0.013* (0.005)	-0.013 (0.007)
Genetic controls	✗	✓	✓	✓
School quality controls	✗	✗	✓	✓
2-way interactions (PGI ^{EA} , Q, X)	✗	✗	✗	✓
R ²	0.096	0.104	0.654	0.657
N	30,939	30,939	30,939	30,939
Skill persistence p	—	—	0.462*** (0.006)	0.460*** (0.006)

Note: Own calculations. Standard errors (in parentheses) are clustered at the school level. Significance levels: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

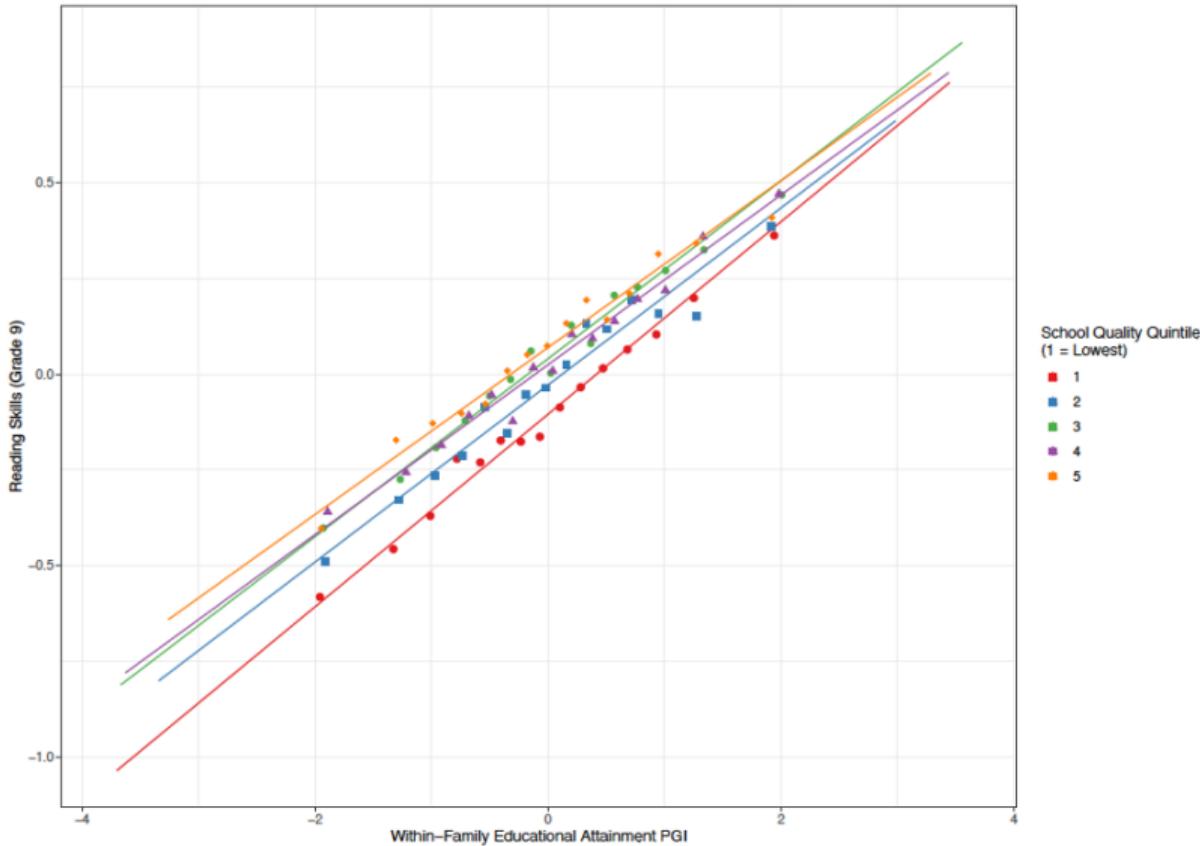
Gene-environment interaction (Reading)

Outcome: Reading (Grade 9)	(1)	(2)	(3)	(4)
PGI ^{EA}	0.304*** (0.006)	0.230*** (0.008)	0.231*** (0.005)	0.231*** (0.005)
VA ^{Reading}	0.091*** (0.014)	0.090*** (0.013)	0.052*** (0.007)	0.050*** (0.007)
PGI ^{EA} × VA ^{Reading}	-0.020* (0.008)	-0.020* (0.008)	-0.013* (0.005)	-0.013 (0.007)
Genetic controls	✗	✓	✓	✓
School quality controls	✗	✗	✓	✓
2-way interactions (PGI ^{EA} , Q, X)	✗	✗	✗	✓
R ²	0.096	0.104	0.654	0.657
N	30,939	30,939	30,939	30,939
Skill persistence p	–	–	0.462*** (0.006)	0.460*** (0.006)

Note: Own calculations. Standard errors (in parentheses) are clustered at the school level. Significance levels: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Gene-environment interaction (Reading)

Outcome: Reading (Grade 9)	(1)	(2)	(3)	(4)
PGI ^{EA}	0.304*** (0.006)	0.230*** (0.008)	0.231*** (0.005)	0.231*** (0.005)
VA ^{Reading}	0.091*** (0.014)	0.090*** (0.013)	0.052*** (0.007)	0.050*** (0.007)
PGI ^{EA} × VA ^{Reading}	-0.020* (0.008)	-0.020* (0.008)	-0.013* (0.005)	-0.013 (0.007)
Genetic controls	✗	✓	✓	✓
School quality controls	✗	✗	✓	✓
2-way interactions (PGI ^{EA} , Q, X)	✗	✗	✗	✓
R ²	0.096	0.104	0.654	0.657
N	30,939	30,939	30,939	30,939
Skill persistence p	–	–	0.462*** (0.006)	0.460*** (0.006)

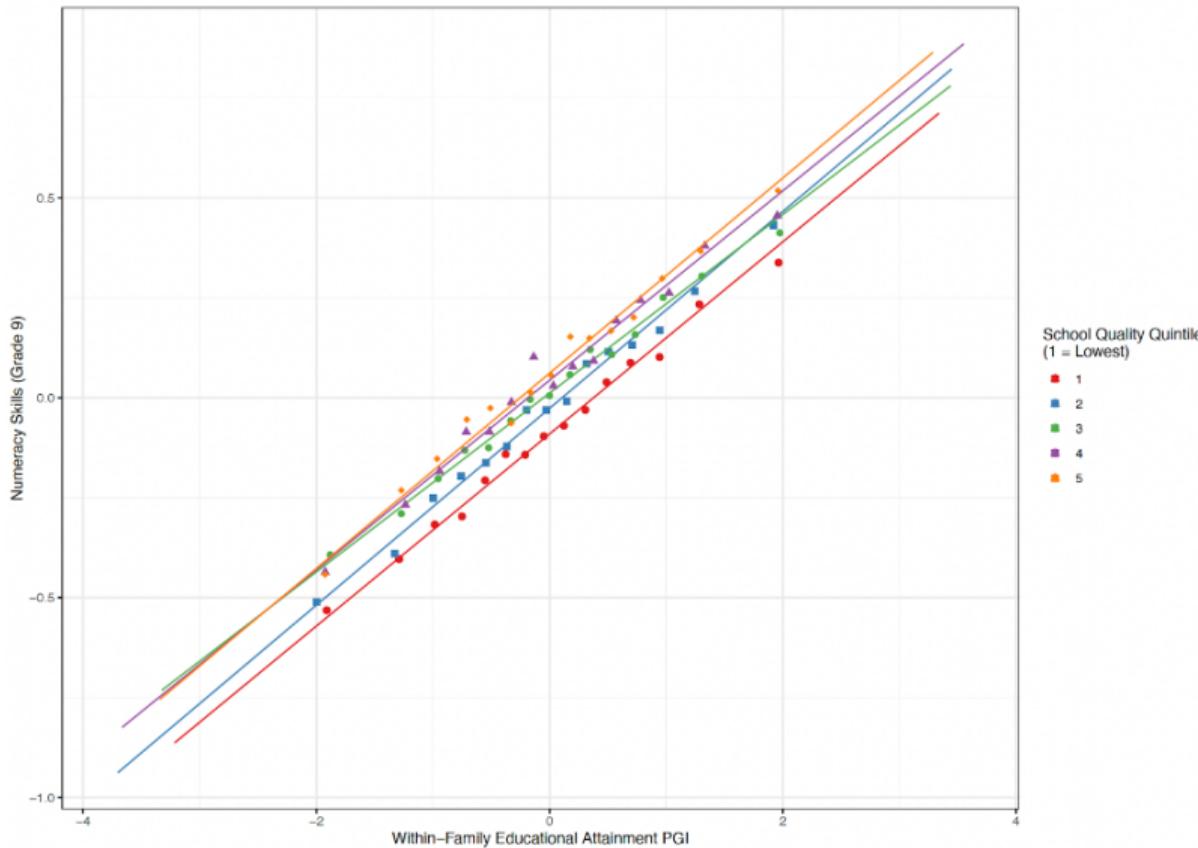

Note: Own calculations. Standard errors (in parentheses) are clustered at the school level. Significance levels: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Gene-environment interaction (Reading)

Outcome: Reading (Grade 9)	(1)	(2)	(3)	(4)
PGI ^{EA}	0.304*** (0.006)	0.230*** (0.008)	0.231*** (0.005)	0.231*** (0.005)
VA ^{Reading}	0.091*** (0.014)	0.090*** (0.013)	0.052*** (0.007)	0.050*** (0.007)
PGI ^{EA} × VA ^{Reading}	-0.020* (0.008)	-0.020* (0.008)	-0.013* (0.005)	-0.013 (0.007)
Genetic controls	✗	✓	✓	✓
School quality controls	✗	✗	✓	✓
2-way interactions (PGI ^{EA} , Q, X)	✗	✗	✗	✓
R ²	0.096	0.104	0.654	0.657
N	30,939	30,939	30,939	30,939
Skill persistence p	–	–	0.462*** (0.006)	0.460*** (0.006)

Note: Own calculations. Standard errors (in parentheses) are clustered at the school level. Significance levels: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Gene-environment interaction (Reading)



Gene-environment interaction (Numeracy)

Outcome: Numeracy (Grade 9)	(1)	(2)	(3)	(4)
PGI ^{EA}	0.314*** (0.006)	0.238*** (0.008)	0.239*** (0.004)	0.239*** (0.004)
VA ^{Numeracy}	0.076*** (0.013)	0.075*** (0.013)	0.039*** (0.005)	0.040*** (0.005)
PGI ^{EA} × VA ^{Numeracy}	-0.005 (0.007)	-0.006 (0.007)	-0.000 (0.004)	0.001 (0.005)
Genetic controls	×	✓	✓	✓
School quality controls	×	×	✓	✓
2-way interactions (PGI ^{EA} , Q, X)	×	×	×	✓
R ²	0.102	0.109	0.738	0.740
N	30,939	30,939	30,939	30,939
Skill persistence p	–	–	0.702*** (0.004)	0.703*** (0.004)

Note: Own calculations. Standard errors (in parentheses) are clustered at the school level. Significance levels: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Gene-environment interaction (Numeracy)

Contextualizing effect sizes

- Estimates pertain to a **low inequality country**. ▶ Inequality in VA
 - Assuming cross-country portability of effects, substitutability would be 10% for grade 9 in Chicago high schools.
- Estimates pertain to **one year of schooling**.
 - Assuming linear additive effects, substitutability increases to 18% over the course of lower secondary school (grades 8-10) in Norway.
- Estimates can be compared to substitutability in **other dimensions of advantage**:
 - Latent family SES ($\Delta 1SD$): 2.87% (Jackson et al., 2024).

Roadmap

Measuring genetic factors

Evidence from the US

Evidence from Norway

Conclusion

Summary

- **What we do:**

- We study the (causal) interplay between PGI^{EA} and school quality.

- **What we find:**

- Students with lower PGIs benefit more from higher-quality schools.

- **Why it matters:**

- Investments in schools may help to students to (partially) overcome their draw in the genetic lottery and to reduce unequal opportunities in society.

Open questions

- **Generalizability:**

- Countries
- Learning domains
- Age groups
- ...

- **Mechanisms:**

- Features of good schools?
- Family responses as mediators?
- ...

Open questions

- **Generalizability:**

- Countries
- Learning domains
- Age groups
- ...

- **Mechanisms:**

- Features of good schools?
- Family responses as mediators?
- ...

Thank you for your attention! Questions?

- ✉ paul.hufe@bristol.ac.uk
- 🌐 www.paulhufe.net
- 🐦 paulhufe

References I

Acemoglu, D. and D. Autor (2011). "Skills, Tasks and Technologies: Implications for Employment and Earnings". Ed. by D. Card and O. Ashenfelter. Vol. 4. *Handbook of Labor Economics*. Elsevier, pp. 1043–1171.

Ainsworth, R., R. Dehejia, C. Pop-Eleches, and M. Urquiola (2023). "Why Do Households Leave School Value Added on the Table? The Roles of Information and Preferences". *American Economic Review* 113 (4), pp. 1049–82.

Altonji, J. G. and R. K. Mansfield (2018). "Estimating Group Effects Using Averages of Observables to Control for Sorting on Unobservables: School and Neighborhood Effects". *American Economic Review* 108 (10), pp. 2902–46.

Anderson, M. L. (2008). "Multiple inference and gender differences in the effects of early intervention: A reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects". *Journal of the American Statistical Association* 103 (484), pp. 1481–1495.

Angrist, J., P. Hull, P. A. Pathak, and C. Walters (2024). "Credible School Value-Added with Undersubscribed School Lotteries". *Review of Economics and Statistics* 106 (1), pp. 1–19.

Angrist, J., P. Hull, and C. Walters (2023). "Methods for measuring school effectiveness". Ed. by E. A. Hanushek, S. Machin, and L. Woessmann. Vol. 7. *Handbook of the Economics of Education*. Elsevier. Chap. 1, pp. 1–60.

Becker, J. et al. (2021). "Resource profile and user guide of the Polygenic Index Repository". *Nature Human Behaviour* 5 (12), pp. 1744–1758.

Benjamin, D. J., D. Cesarini, P. Turley, and A. S. Young (2024). "Social-Science Genomics: Progress, Challenges, and Future Directions". *National Bureau of Economic Research Working Paper Series* 32404.

Branigan, A. R., K. J. McCallum, and J. Freese (2013). "Variation in the Heritability of Educational Attainment: An International Meta-Analysis". *Social Forces* 92 (1), pp. 109–140.

Chetty, R., J. N. Friedman, and J. E. Rockoff (2014). "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates". *American Economic Review* 104 (9), pp. 2593–2632.

References II

Hanushek, E. A. and L. Woessmann (2008). "The Role of Cognitive Skills in Economic Development". *Journal of Economic Literature* 46 (3), pp. 607–668.

Jackson, C. K. (2013). "Match quality, worker productivity, and worker mobility: direct evidence from teachers". *Review of Economics and Statistics* 95 (4), pp. 1096–1116.

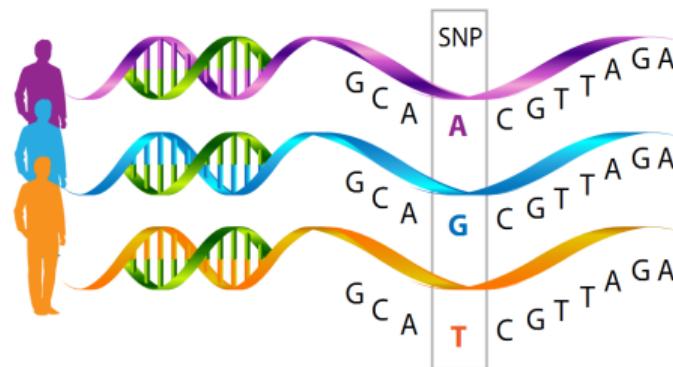
Jackson, C. K., S. C. Porter, J. Q. Easton, and S. Kiguel (2024). "Who Benefits From Attending Effective High Schools?" *Journal of Labor Economics* 42 (3), pp. 717–751.

Jackson, C. K., S. C. Porter, J. Q. Easton, A. Blanchard, and S. Kiguel (2020). "School Effects on Socioemotional Development, School-Based Arrests, and Educational Attainment". *American Economic Review: Insights* 2 (4), pp. 491–508.

Kirkebøen, L. J. (2022). "School Value-Added and Long-Term Student Outcomes". *CESifo Working Paper* 9769.

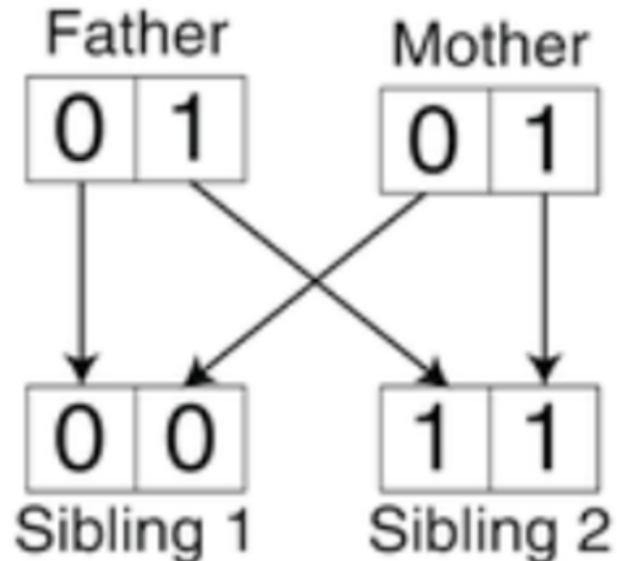
Kling, J. R., J. B. Liebman, and L. F. Katz (2007). "Experimental Analysis of Neighborhood Effects". *Econometrica* 75 (1), pp. 83–119.

Koellinger, P. D. and K. P. Harden (2018). "Using nature to understand nurture". *Science* 359 (6374), pp. 386–387.


Krueger, A. B. and M. Lindahl (2001). "Education for Growth: Why and for Whom?" *Journal of Economic Literature* 39 (4), pp. 1101–1136.

Lee, J. et al. (2018). "Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals". *Nature Genetics* 50 (8), pp. 1112–1121.

Olkay, A. et al. (2022). "Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals". *Nature Genetics* 54 (4), pp. 437–449.


Minor and major alleles

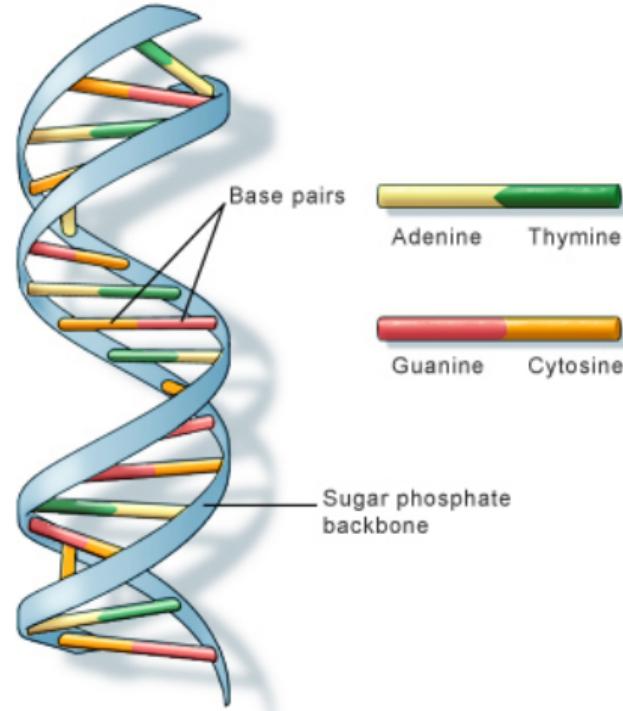
- Differences in base pairs across humans: **single-nucleotide polymorphism (SNP)**.
- Some of “rungs in the ladder” are more common than others. They are called **minor (major) alleles**.
- At each location individuals can have 0, 1, 2 minor (major) alleles.

Meiosis

- Parents pass one randomly selected allele to their offspring.
 - **Recombination:** Parental chromosome pairs cross a random number of times at random loci.
 - **Mendelian segregation:** For each parent, one of the recombined chromosome pairs is randomly transmitted to the germ cell.
- Siblings can end up having different alleles from both parents at a SNP.
- Conditional on the parental genotypes, offspring alleles at a SNP are random.

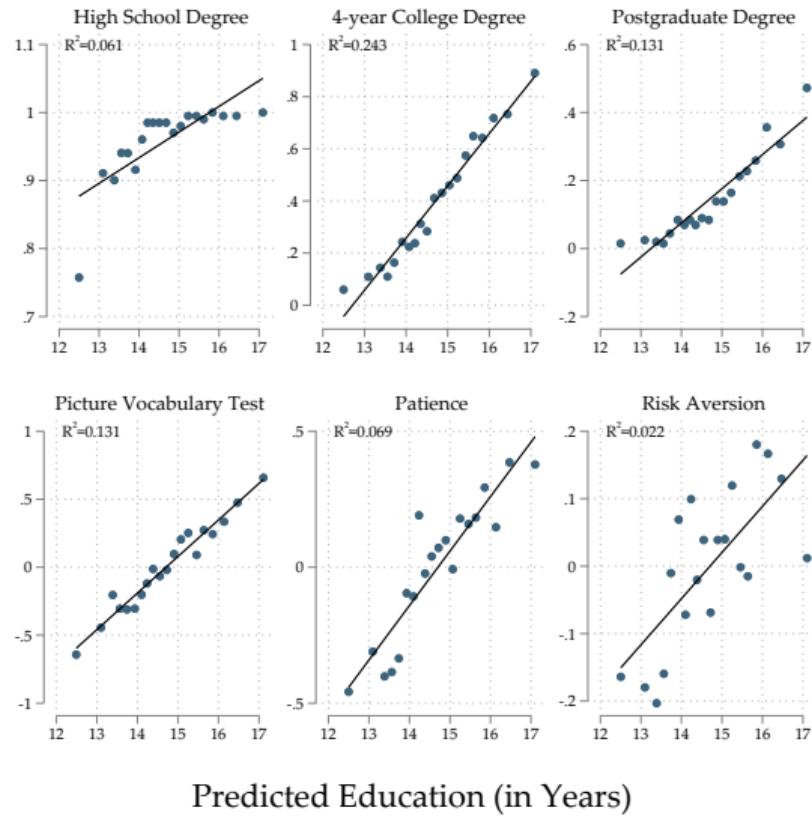
- Genetic discovery based on genome-wide association studies (**GWAS**):

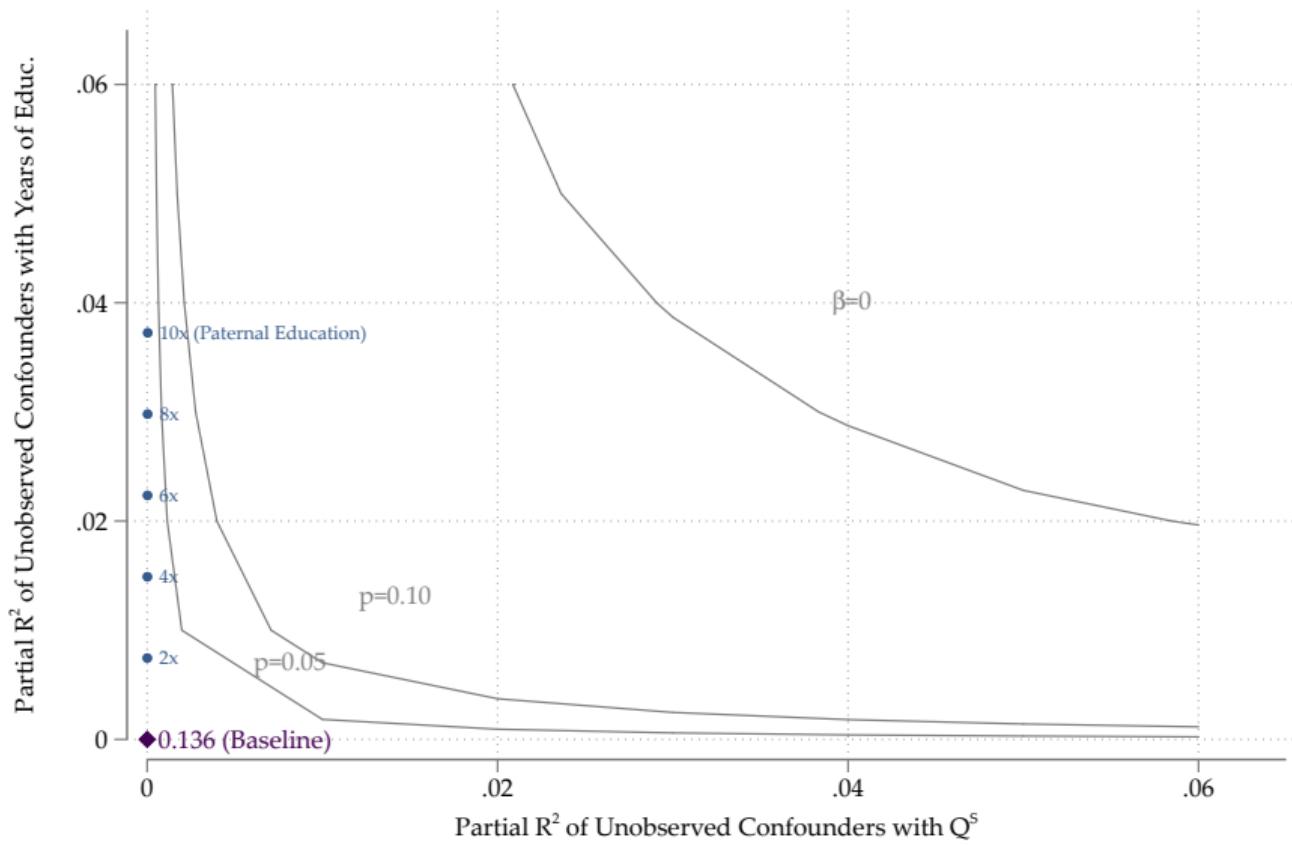
$$y_i = SNP_{ij} \beta_j + \sum_1^n C_i^n \delta_j^n + u_i.$$

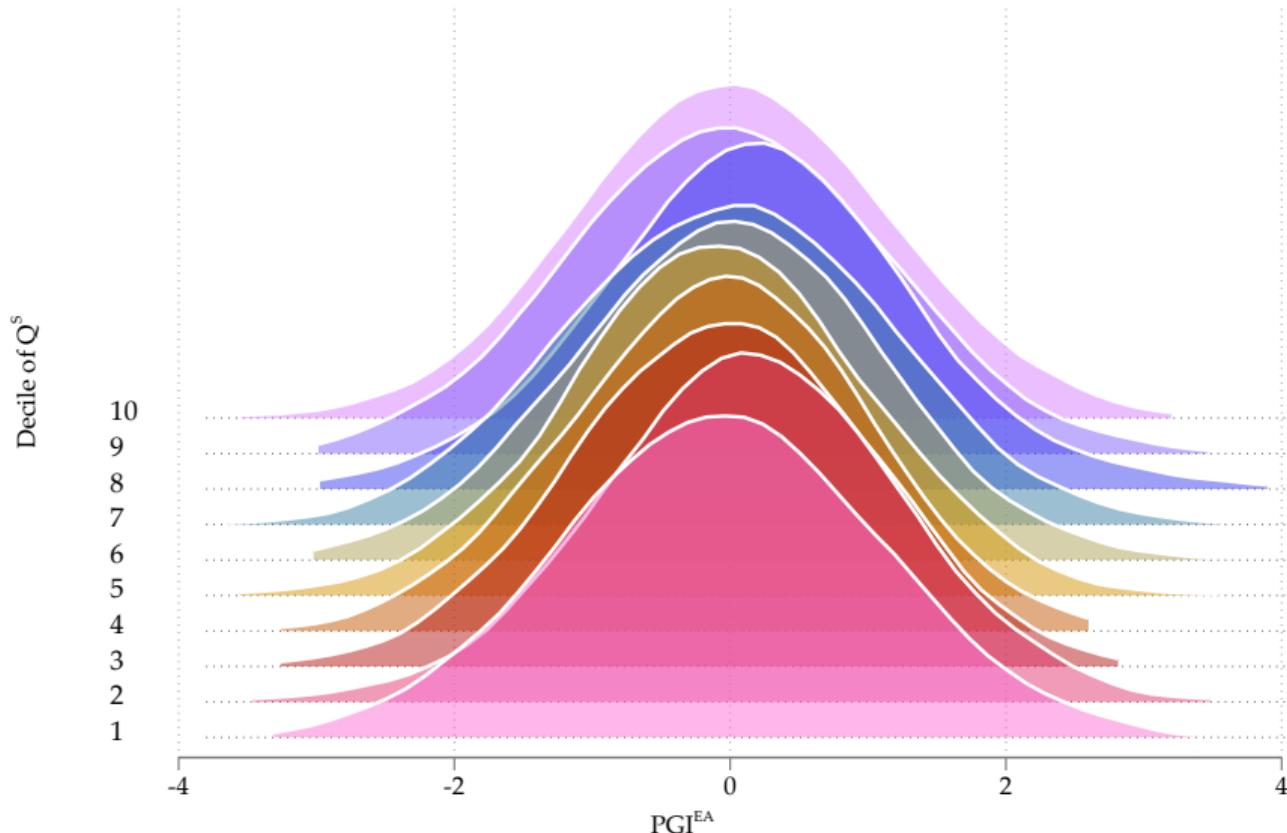

- Summary statistics via polygenic scores (**PGI**):

$$PGI_i = \sum_j SNP_{ij} \hat{\beta}_j.$$

Educational outcomes Y_i

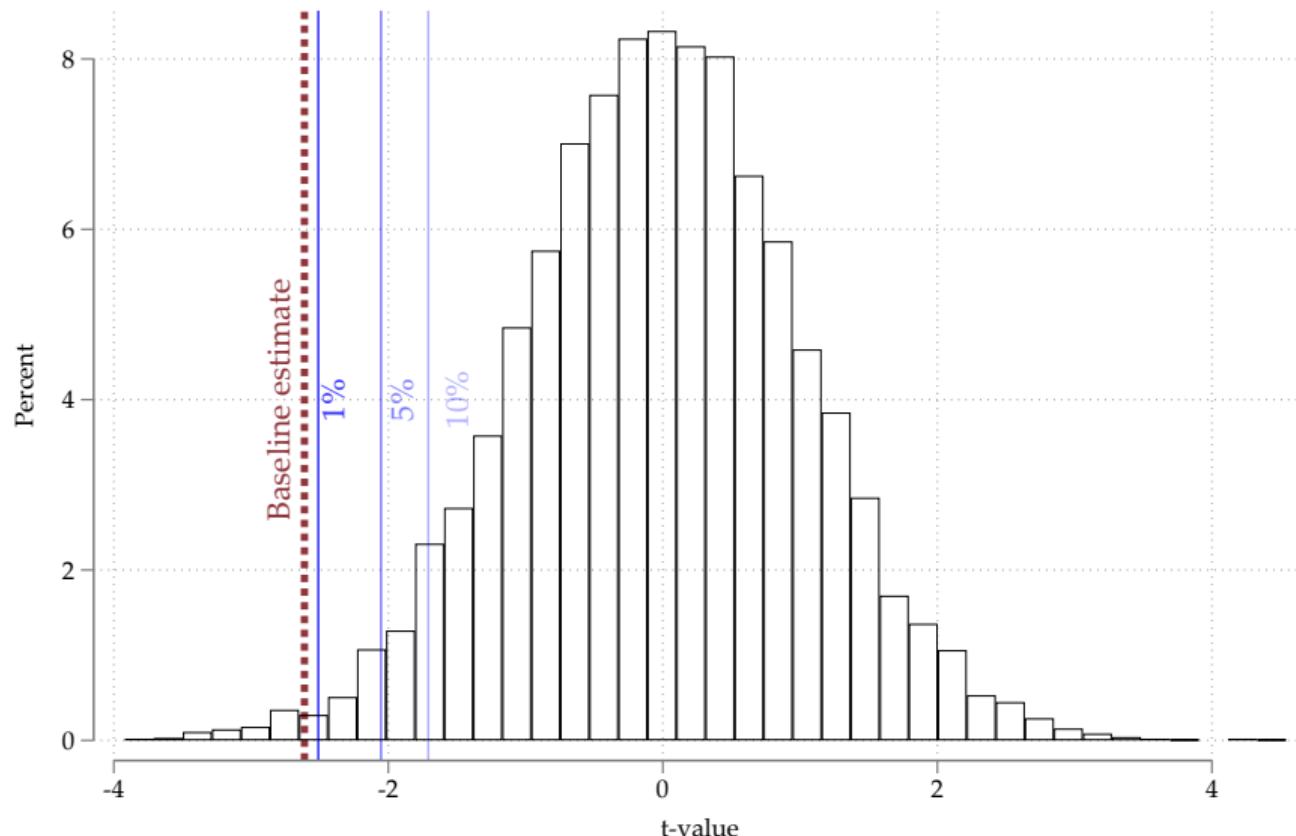

- We use the **polygenic index (PGI)** for educational attainment from Lee et al. (2018):
 - Discovery sample of 1.1 mn people of European descent.
 - Explains 11% of variation in years of education.

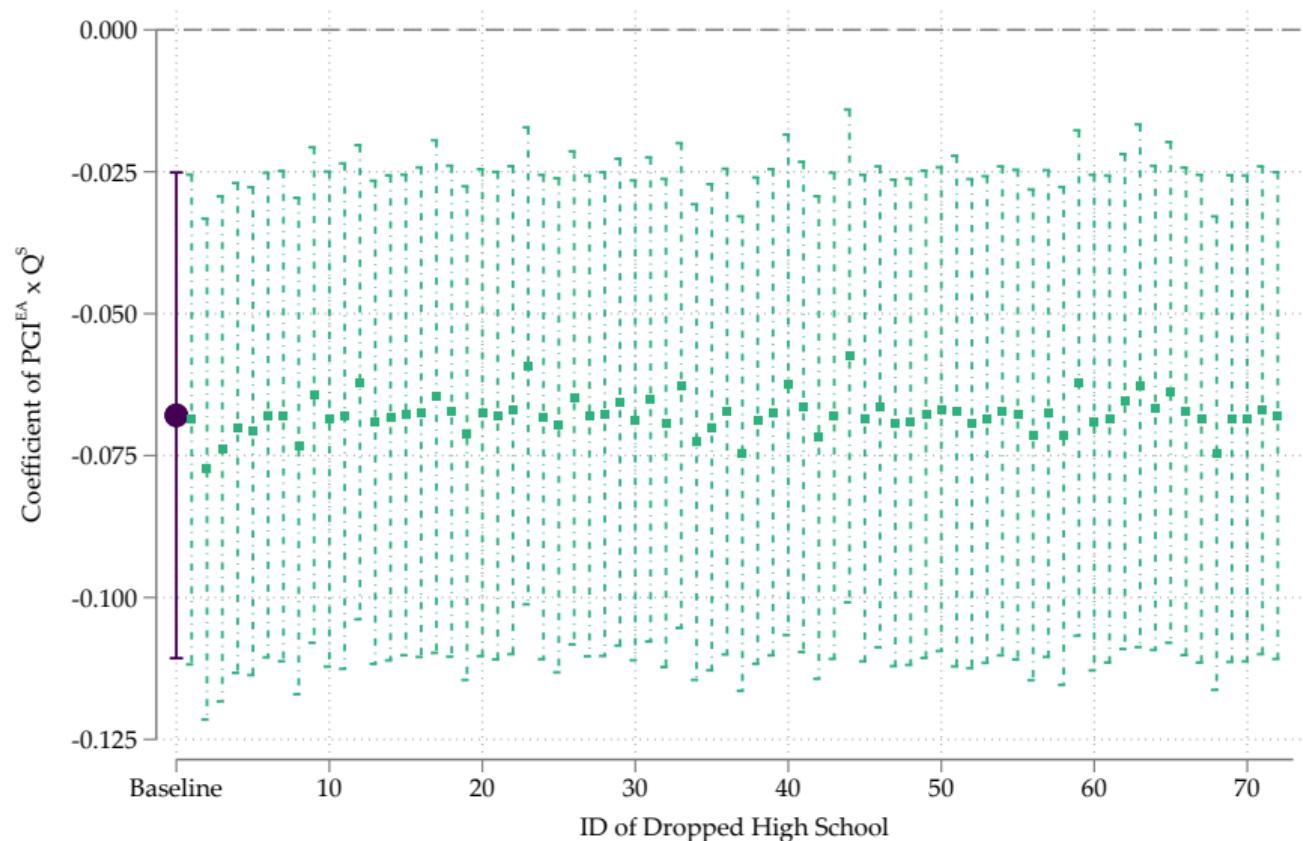



- We use **survey and administrative information** on teachers:
 - Student-teacher ratio
 - Teacher w/ tenure < 1 year
 - Teacher w/ tenure > 5 years
 - Teacher w/ Master degree
- We aggregate information using PCA or through linear aggregation of standardized variables (Anderson, 2008; Kling et al., 2007).

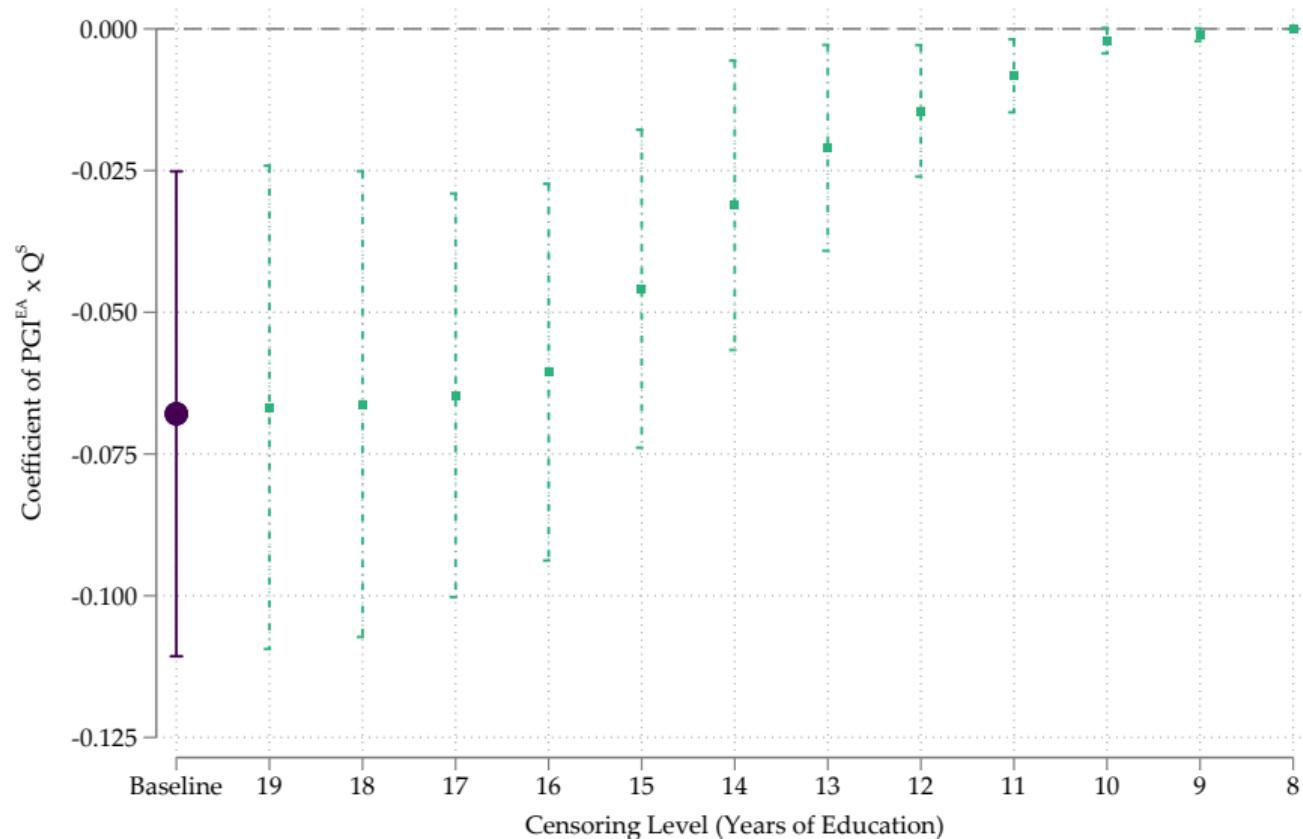
- Pre-determined characteristics and control function (Altonji and Mansfield, 2018):

Family	Child	Control function
- maternal age at birth	- firstborn	- white peers (%)
- years of education (m/f)	- gender x age in months	- single mothers (%)
- non-US born (m/f)	- 20 PC of full matrix of genetics data	- education mothers (av.)
- av. potential wage (m/f)		- female peers (%)
- SD potential wage (m/f)		- migrant peers (%)
- religion		
- state FE		


School characteristics

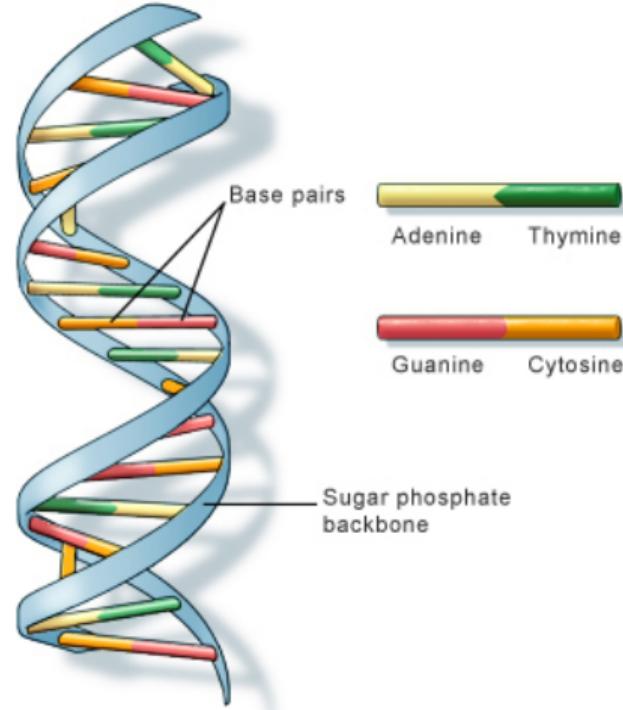

Outcome: Years of Education	Baseline	+ School Policies		+ Private School		+ Teacher Composition		+ School FE
	(1)	Retention Policy (2)	Ability Groups (3)	Strict. Index (4)	(5)	White Teacher (6)	Female Teacher (7)	(8)
PGI ^{EA}	0.361*** (0.028)	0.366*** (0.029)	0.361*** (0.028)	0.362*** (0.029)	0.362*** (0.029)	0.361*** (0.028)	0.360*** (0.028)	0.350*** (0.029)
Q	0.124** (0.057)	0.116** (0.053)	0.127** (0.058)	0.135** (0.060)	0.144** (0.056)	0.121** (0.055)	0.135** (0.062)	-
PGI ^{EA} × Q	-0.068*** (0.026)	-0.066*** (0.025)	-0.068*** (0.025)	-0.064** (0.027)	-0.076*** (0.026)	-0.064** (0.026)	-0.065** (0.026)	-0.064** (0.027)
School Characteristic	- (0.060)	-0.103* (0.034)	0.049 (0.034)	0.062* (0.036)	0.101** (0.043)	-0.013 (0.074)	-0.022 (0.048)	-
PGI ^{EA} × School Characteristic	- (0.030)	0.034 (0.030)	-0.016 (0.030)	0.019 (0.024)	-0.049** (0.023)	-0.029 (0.033)	0.045 (0.034)	-
Child Controls	✓	✓	✓	✓	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓	✓	✓	✓	✓
Control Function	✓	✓	✓	✓	✓	✓	✓	✓
N	4,034	3,969	4,034	4,034	4,034	4,034	4,034	4,034
R ²	0.333	0.334	0.333	0.334	0.334	0.333	0.334	0.343

Family characteristics


Outcome: Years of Education	Baseline	Interacted controls	Non- linearities	Subsample w/ lagged ability measures		
	(1)	(2)	(3)	(4)	(5)	(6)
PGI ^{EA}	0.361*** (0.028)	0.353*** (0.029)	0.389*** (0.036)	0.333*** (0.050)	0.334*** (0.048)	0.337*** (0.048)
Q	0.124** (0.057)	0.073 (0.059)	0.139** (0.066)	0.252* (0.144)	0.254* (0.132)	0.255* (0.133)
PGI ^{EA} × Q	-0.068*** (0.026)	-0.072** (0.030)	-0.075*** (0.026)	-0.088* (0.047)	-0.086** (0.042)	-0.089** (0.042)
PVT	-	-	-	-	0.223*** (0.047)	0.225*** (0.047)
PVT × Q	-	-	-	-	-	-0.003 (0.045)
GPA Science	-	-	-	-	0.381*** (0.060)	0.383*** (0.060)
GPA Science × Q	-	-	-	-	-	0.069 (0.059)
GPA Math	-	-	-	-	0.283*** (0.075)	0.281*** (0.074)
GPA Math × Q	-	-	-	-	-	-0.004 (0.080)
Child Controls	✓	✓	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓	✓	✓
Control Function	✓	✓	✓	✓	✓	✓
All interactions (Q, PGI ^{EA} , X)	×	✓	×	×	×	×
2 nd Polynomial (Q, PGI ^{EA})	×	×	✓	×	×	×
N	4,034	4,034	4,034	1,039	1,039	1,039
R ²	0.333	0.345	0.334	0.437	0.510	0.511
Outcome Mean	14.681	14.681	14.681	14.520	14.520	14.520
Outcome SD	2.268	2.268	2.268	2.309	2.309	2.309

Outcome: Years of Education	Baseline		+ Controls for Other Polygenic Indexes				
	(1)	Body Mass Index (2)	ADHD (3)	Depressive Symptoms (4)	Intelligence (5)	Ever Smoker (6)	Sleep Duration (7)
PGI ^{EA}	0.361*** (0.028)	0.341*** (0.031)	0.330*** (0.028)	0.358*** (0.028)	0.349*** (0.031)	0.341*** (0.031)	0.360*** (0.028)
Q	0.124** (0.057)	0.121** (0.056)	0.120** (0.056)	0.120** (0.057)	0.124** (0.057)	0.122** (0.056)	0.124** (0.057)
PGI ^{EA} × Q	-0.068*** (0.026)	-0.076*** (0.029)	-0.071*** (0.026)	-0.065** (0.027)	-0.059** (0.028)	-0.067** (0.027)	-0.068*** (0.026)
Other PGI	- (0.026)	-0.080*** (0.026)	-0.132*** (0.028)	-0.039 (0.030)	0.023 (0.030)	-0.097*** (0.036)	0.026 (0.028)
Other PGI × Q	- (0.028)	-0.029 (0.028)	0.003 (0.028)	0.035 (0.029)	-0.018 (0.028)	0.017 (0.033)	-0.003 (0.029)
Child Controls	✓	✓	✓	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓	✓	✓	✓
Control Function	✓	✓	✓	✓	✓	✓	✓
N	4,034	4,034	4,034	4,034	4,034	4,034	4,034
R ²	0.333	0.334	0.336	0.334	0.333	0.335	0.333

Ceiling effects


Outcome: Years of Education	Baseline		Alternative Sample Composition	
	(1)	Re- Weighted (2)	Excl. (Potential) Movers before High School (3)	Excl. (Potential) Movers during High School (4)
PGI ^{EA}	0.361*** (0.028)	0.347*** (0.031)	0.353*** (0.035)	0.343*** (0.040)
Q	0.124** (0.057)	0.115* (0.060)	0.159** (0.063)	0.101 (0.078)
PGI ^{EA} × Q	-0.068*** (0.026)	-0.061** (0.027)	-0.086*** (0.032)	-0.086** (0.038)
Child Controls	✓	✓	✓	✓
Family Controls	✓	✓	✓	✓
Control Function	✓	✓	✓	✓
N	4,034	3,968	2,962	2,439
R ²	0.333	0.313	0.350	0.344

	Coefficient	Standard Error	p-value	Substitutability
Baseline				
PGI ^{EA}	0.361	0.032	0.000	
Q	0.124	0.064	0.052	
PGI ^{EA} × Q	-0.068	0.030	0.023	19%
Add Health ($\rho = 1.968$)				
PGI ^{EA}	0.747	0.074	0.000	
Q	0.097	0.069	0.160	
PGI ^{EA} × Q	-0.108	0.061	0.075	15%
Health and Retirement Study ($\rho = 1.413$)				
PGI ^{EA}	0.566	0.051	0.000	
Q	0.111	0.064	0.084	
PGI ^{EA} × Q	-0.093	0.043	0.030	16%
Wisconsin Longitudinal Study ($\rho = 1.649$)				
PGI ^{EA}	0.718	0.068	0.000	
Q	0.099	0.068	0.145	
PGI ^{EA} × Q	-0.106	0.060	0.076	15%
UK Biobank ($\rho = 1.452$)				
PGI ^{EA}	0.589	0.053	0.000	
Q	0.109	0.064	0.088	
PGI ^{EA} × Q	-0.096	0.044	0.030	16%

Standardized national tests in reading and numeracy (grade 9)

- **Low stakes**
 - Communicated to parents and teachers but mostly used to track student development.
- **Computer corrected**
 - Not affected by teacher biases.
- **Taken at beginning of the school year**
 - Measure skills accumulated until grade 9.
- **Same test as in grade 8**
 - Allow mapping for VA calculation.
- **Highly predictive of later life-outcomes**
 - 1 SD ↑ in numeracy, increases high school graduation at age 21 by 9.5 p.p.

- We use the **polygenic index (PGI)** for educational attainment from Okbay et al. (2022):
 - Discovery sample of 3 mn people of European descent.
 - Explains 16% of variation in years of education.
 - \approx 56% of explanatory power due to direct genetic effects.

1. We construct **school VA for reading and numeracy** in grade 8 (Angrist et al., 2023).
2. We model educational outcomes Y of student i attending school j in cohort c for subject d :

$$Y_{ijc}^d = \beta^d Z_{ijc} + \underbrace{VA_{jc}^d + \epsilon_{ijc}^d}_{=e_{ijc}^d}$$

3. We estimate VA in subject d by averaging over residuals in school-cohort cells:

$$VA_{jc}^d = \sum e_{ijc}^d / N_{jc}$$

4. We apply the **Bayesian Shrinkage estimator** à la Chetty et al. (2014).
5. **Highly predictive of later life-outcomes**

→ 1 SD ↑ in VA, increases years of schooling by 0.5-0.8 years (Kirkebøen, 2022).

Controls \mathbf{X}_i

Child controls

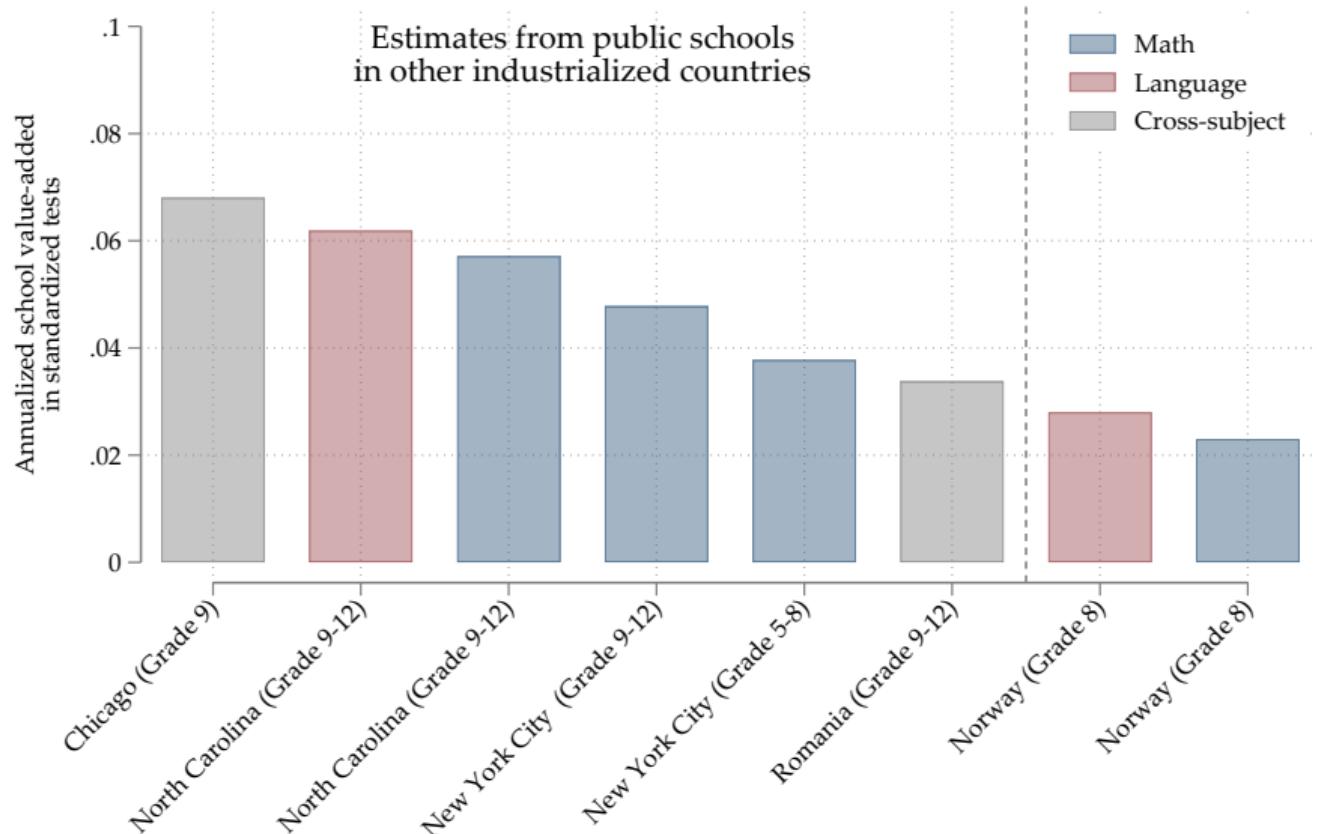
- Lagged test scores in numeracy, reading, English
- Parental years of education
- Migration status
- Age of arrival in Norway
- # of siblings
- Gender
- Year of birth
- Birth order

School controls

- School-cohort averages of all child background variables

Parental PGI

- PGI^{EA} mother
- PGI^{EA} father


Genotyping controls

- Genotyping center
- Genotyping batch
- Genotyping plate
- Imputation batch

Saturation controls

- Interaction of child background controls, school controls, and parental PGIs with PGI^{EA} and Q

Inequality in VA

