

# Demographic Change and Intergenerational Wealth Transmission

Frank Cowell and Dirk Van de gaer

London School of Economics and University of Gent

Canazei Winter School 2026

## Outline

## Introduction, motivation, setting

## Wealth inequality and China

## The approach

## Model

## Basics

## Family behaviour

## Wealth dynamics

## Simulation

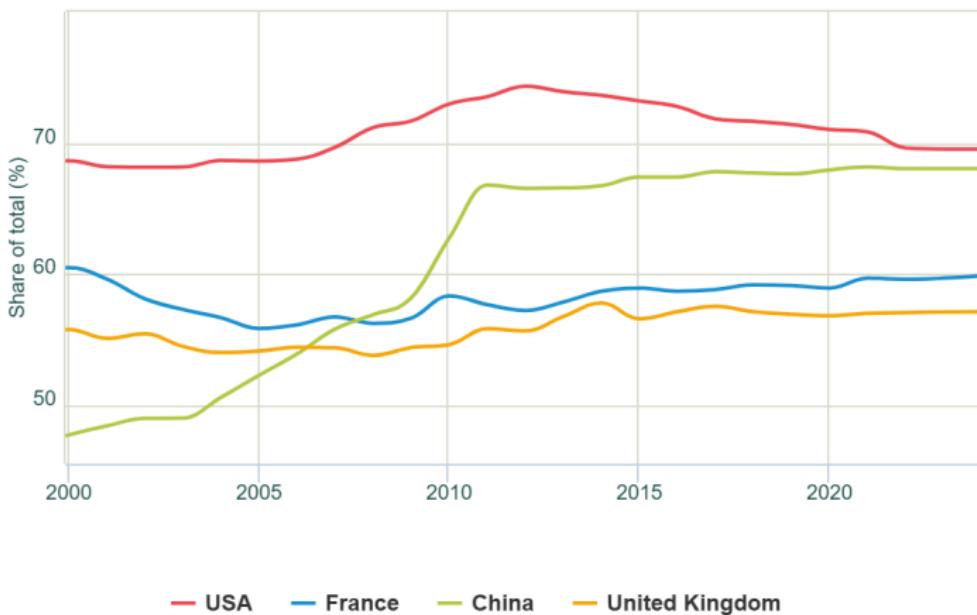
## Conclusions

# Why a concern with wealth?

- Important component of individual wellbeing
  - housing ownership
  - security in old age
- Core of political economy questions
  - wealth and power
  - the focus on the top 1% (Alvaredo et al. 2013 , Mankiw 2013)
- Key to long-run inequality
  - asset ownership at heart of models
- Changing inequality patterns over recent years

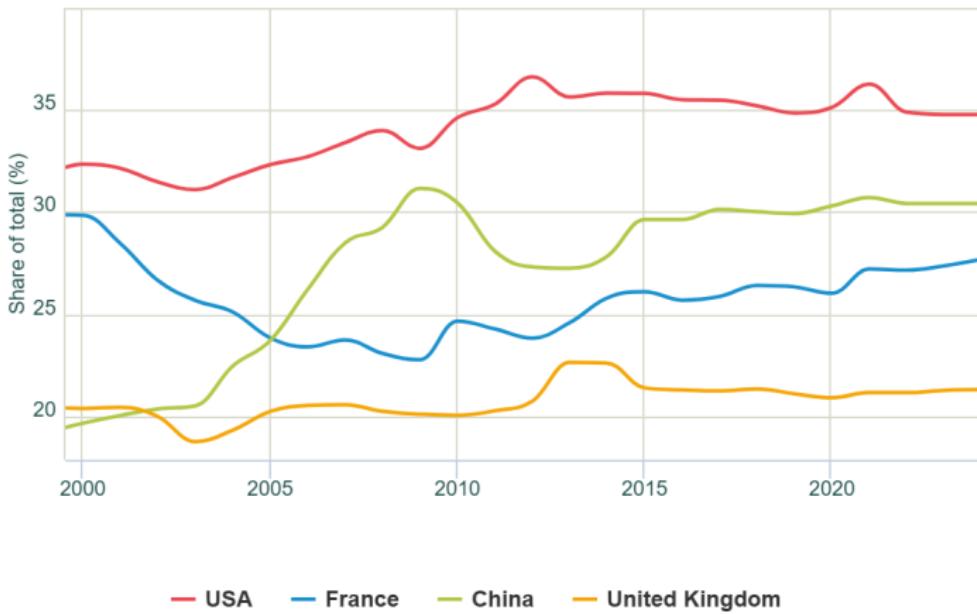
## Wealth share of the rich

## Top 10% net personal wealth share



## Wealth share of the very rich

### Top 1% net personal wealth share



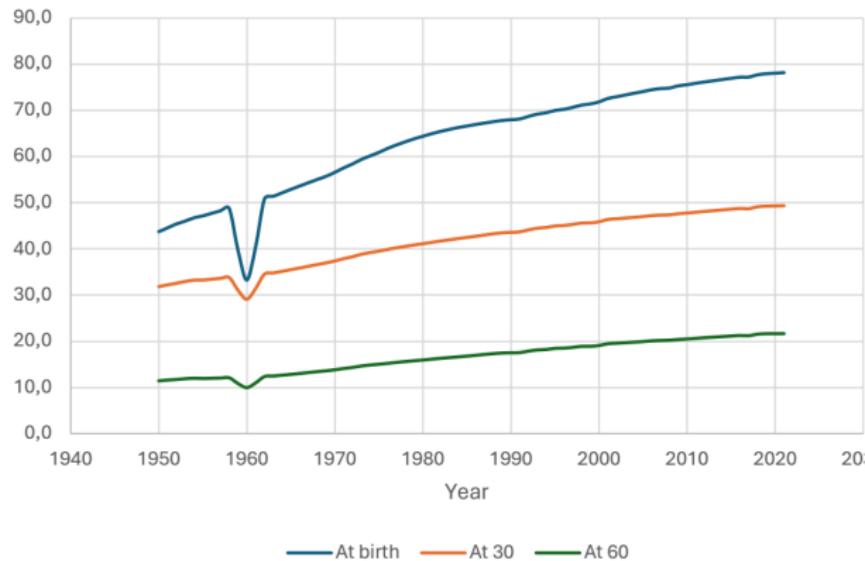
Graph provided by [www.wid.world](http://www.wid.world)

Source: World Inequality Report 2018, 4.2.1, <http://wir2018.wid.world>

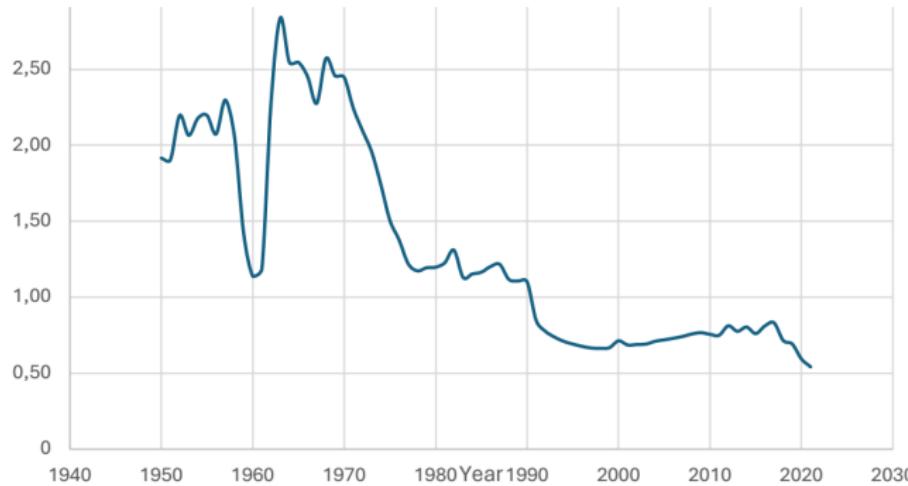
# Equilibrium distribution in practice?

- Long-term evidence suggests periods of equilibrium
  - With abrupt changes from world events (Piketty and Zucman 2015)
- Effect of shocks?
  - across the board: recessions, booms
  - distributional: income, wealth inequality
- Shocks from policy?
  - equilibrium may still be relevant
  - give picture of the long run

## China: life expectancy



## China: net reproduction rate



See Wang et al. (2016), Zhang (2017)

## Main theme

- Much of the literature focuses on the effect of market forces:
  - upper tail – role of financial asset prices
  - other key assets such as houses
  - lower tail – extent to which poor are credit constrained.
- Focus on non-market forces underlying distribution of wealth
  - Forces dividing wealth: gifts, bequests from parents to children
  - Forces uniting wealth: marriage
- Also consider the effect of outside intervention

# Literature: approaches to family factors

- Literature: assumptions about family composition?
  - all families have two children (Atkinson 1980,Blinder 1973,1976)
  - reproduction is asexual and each individual has the same number of children (Stiglitz 2015)
- Literature: equilibrium analysis?
  - assume equilibrium distribution (Banerjee and Newman 1991, Galor and Zeira 1993, Laitner 1979)
  - a characteristic of the equilibrium distribution like its variance (Atkinson 1980)
  - simulate over limited number of generations (Blinder 1976)
- The approach here:
  - families are heterogeneous in size
  - establish existence and characteristics of equilibrium distribution

## Time and families

- Time

- Periods indexed by  $t = \dots, 1, 2, \dots$
- People can live for 3 ages (1 young, 2 middle age, 3 old age)
- Children in period  $t - 1$  become adults in period  $t$
- Adults live for 1 or 2 ages; survive to old age with probability  $\pi_2$

- Adults

- Each family has two adults who take decisions jointly
- Pool their wealth
- Have at least one child, but no more than  $K$

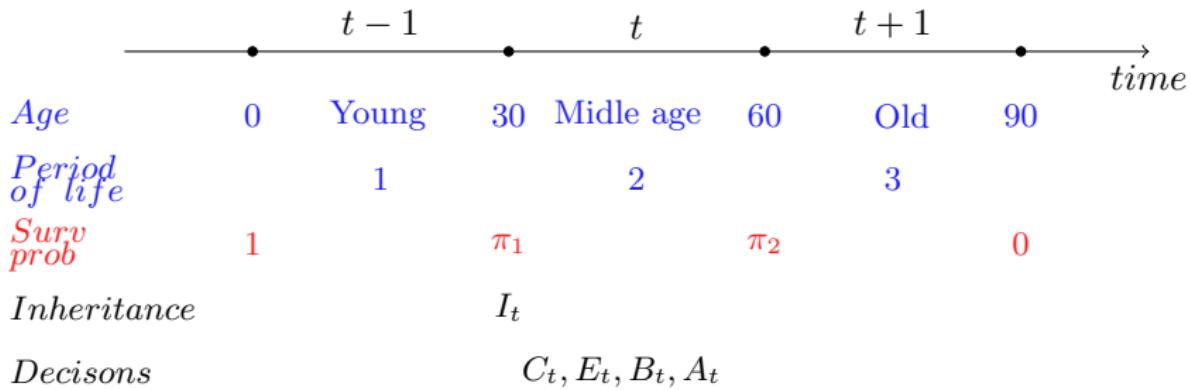
- **Children**

- Proportion of families with  $k$  children:  $p_k$ ,  $\sum_{k=1}^K p_k = 1$
- Population stationarity,  $\sum_{k=1}^K kp_k = 2$
- Non-degenerateness:  $p_k < 1, k = 1, 2, \dots, K$

## Maximisation problem: 1

- Choice variables:
  - $B_t$  : bequests
  - $C_t$  : consumption in period 2
  - $C'_t$  : consumption in period 3
  - $E_t$  : earnings (  $\frac{\bar{E}-E_t}{\bar{E}}$  is leisure)
- Assume annuity  $A_t$  purchased in period 2
  - perfect insurance against uncertain length of life
  - means survival into period 3
  - fair annuity:  $A_t = \pi_2 C'_t$
- Wealth acquired per adult given by  $W_t = E_t + I_t$ 
  - $I_t \geq 0$  : Inheritance received
- Budget constraint:
  - $C_t + \frac{A_t + B_t}{1+r} \leq W_t$
  - $C_t + \frac{\pi_2 C'_t}{1+r} + \frac{B_t}{1+r} \leq W_t$
  - $r$ : per-period growth rate of wealth

## Timeline





## Maximisation problem: 2

- Utility function:
 
$$\begin{aligned} & \gamma \ln(B_t + \bar{B}) \\ & + [1 - \gamma] [\ln(C_t - \bar{C}) + \delta \pi_2 \ln(C'_t - \bar{C})] \\ & + \nu \ln\left(\frac{\bar{E} - E_t}{\bar{E}}\right) \end{aligned}$$
- Parameters
  - $\gamma$ : relative weight put on bequests rather than own consumption
  - $\delta$ : relative weight put on future consumption relative to present
  - $\nu$ : weight put on leisure.
  - $\bar{B} \geq 0$  captures the potential base aversion to altruism
  - $\bar{C} \geq 0$ : precommitted consumption in each period
  - $\bar{E} > 0$ : maximum possible earnings during middle age
- Problem is maximise utility subject to...
  - budget constraint:  $C_t + \frac{\pi_2 C'_t}{1+r} + \frac{B_t}{1+r} \leq W_t$
  - constraints on variables:  $B_t, C_t, C'_t \geq 0; 0 \leq E_t \leq \bar{E}$

## Solution

- The solution has two cases, determined by the size of inheritance
- Critical inheritance value,  $\hat{I} := \frac{\xi}{v} \bar{E} - \frac{\bar{B}}{1+r} + \left[1 + \frac{\pi_2}{1+r}\right] \bar{C}$ 
  - where  $\xi := 1 + [1 - \gamma] \delta \pi_2$

Case 1:  $I_t \geq \hat{I}$ . For high inheritance  $E_t = 0$

Case 2:  $I_t < \hat{I}$ . For low inheritance  $E_t > 0$

- Examine detailed solution in the two cases...

## Case 1 (high-inheritance) solution

- $E_t = 0$
- In general

$$\begin{aligned} C_t &= \frac{1-\gamma}{\xi} \left[ I_t + \frac{\bar{B}}{1+r} \right] + \left[ 1 - \frac{1-\gamma}{\xi} \left[ 1 + \frac{\pi_2}{1+r} \right] \right] \bar{C} \\ B_t &= \max \left\{ \frac{[1+r]\gamma}{\xi} I_t - \frac{[\xi-\gamma]}{\xi} \bar{B} - \frac{\gamma}{\xi} [1+r+\pi_2] \bar{C}, 0 \right\} \end{aligned}$$

- If no-one survives to the third age

$$\begin{aligned} C_t &= [1-\gamma] \left[ I_t + \frac{\bar{B}}{1+r} \right] + \gamma \bar{C} \\ B_t &= \max \{ [1+r] \gamma I_t - [1-\gamma] \bar{B} - \gamma [1+r] \bar{C}, 0 \}. \end{aligned}$$

## Case 2 (low-inheritance) solution

- In general

$$E_t = \frac{\xi \bar{E} - v \left[ I_t + \frac{\bar{B}}{1+r} - \left[ 1 + \frac{\pi_2}{1+r} \right] \bar{C} \right]}{\xi + v},$$

$$C_t = \frac{1-\gamma}{\xi+v} \left[ I_t + \bar{E} + \frac{\bar{B}}{1+r} \right] + \left[ 1 - \frac{1-\gamma}{\xi+v} \left[ 1 + \frac{\pi_2}{1+r} \right] \right] \bar{C},$$

$$B_t = \max \left\{ \frac{[1+r]\gamma}{\xi+v} [I_t + \bar{E}] - \frac{[1-\gamma][1+\delta\pi_2] + v}{\xi+v} \bar{B} \right. \\ \left. - \frac{\gamma}{\xi+v} [1+r+\pi_2] \bar{C}, 0 \right\}$$

## Comparative statics of individual

- Demographic changes affect decisions in two ways.
  - children from larger families get a lower inheritance
  - longevity is associated with an increased  $\pi_2$
- Inheritance effect
  - $\frac{\partial C_t}{\partial I_t} > 0, \frac{\partial B_t}{\partial I_t} > 0$
  - (in case 2)  $\frac{\partial E_t}{\partial I_t} < 0$
- Longevity effect
  - $\frac{\partial C_t}{\partial \pi_2} < 0, \frac{\partial B_t}{\partial \pi_2} < 0, \frac{\partial I_t}{\partial \pi_2} > 0$
  - (in case 2)  $\frac{\partial E_t}{\partial \pi_2} > 0$

# Simple inheritance mechanics

- Child will be a worker iff  $I_{t+1} < \hat{I}$ ,
- From this get a critical value of wealth  $\hat{W}$  :
  - condition for a low inheritance is  $W_t < \frac{k}{2\beta} \hat{W}$
  - where  $\beta := \gamma[1+r]$
- Child's wealth is:
  - (Case 1)  $W_{t+1} = I_{t+1} = \frac{2}{k} B_t$
  - (Case 2)  $W_{t+1} = \frac{2}{k} B_t + E_t$
- Use this with the equation for  $I_{t+1}$  to get a fundamental mapping

## Wealth dynamics: two groups

- For each  $k$ -family a parent-to-child wealth mapping  $W_{t+1} = g_k(W_t)$
- Two convenient constants
  - $\xi = 1 + [1 - \gamma] \delta \pi_2$
  - $\hat{W}_0 := \frac{1-\gamma}{\gamma} \frac{1+\delta \pi_2}{1+r} \bar{B} + \frac{1+r+\pi_2}{1+r} \bar{C}$
- The general form of  $g_k$  for the two inheritance cases

1 high inheritance  $W_t \geq \frac{k}{2\beta} \hat{W}$ :

$$g_k(W_t) = \frac{2\beta}{k} \left[ \frac{W_t - \hat{W}_0}{\xi} \right]$$

2 low inheritance  $W_t < \frac{k}{2\beta} \hat{W}$ :

$$g_k(W_t) = \frac{v\hat{I}}{\xi+v} + \frac{2\beta}{k} \max \left\{ \frac{W_t - \hat{W}_0}{\xi+v}, 0 \right\}$$

- Each  $g_k$ :
  - is piecewise linear in  $W_t$
  - has two kink points



## Cut-down version with $\pi_2 = \bar{B} = \bar{C} = 0$

- A restricted model: only two periods (Cowell and Van de gaer 2025)
- Let  $p_k$  be prop of families with  $k$  children
  - family structure  $\mathbf{p} = \{p_1, \dots, p_K\}$  defines a Markov process
  - will there be an equilibrium of the process?
  - if so, what will it look like?

**Theorem:** for all  $\mathbf{p}$  satisfying population stationarity and non-degenerateness: (1) a globally stable equilibrium exists if and only if  $0 \leq \beta \leq 1$ . (2) in equilibrium, there is a non-zero lower bound on wealth

- Two scenarios in equilibrium:
  1. if  $0 \leq \beta \leq 1/2$  : a finite upper bound to wealth; everybody works
  2. if  $1/2 < \beta \leq 1$  : no finite upper bound: some rentiers are present

# The process $g_k$ and equilibrium (cut-down version)

- Focus on scenario 2, where there are people who do not work
  - simplifies the analysis
  - gives us a strikingly clear result
- What happens to top end of the wealth distribution?
  - the rentier (idle rich) part
  - mechanics are given by  $W_{t+1} = g_k(W_t) = \frac{2\beta}{k} W_t$
- Equilibrium requires  $F_*(W) = \sum_{k=1}^K \frac{kp_k}{2} F_*\left(\frac{k}{2\beta} W\right)$ 
  - focus on the interval  $\mathbb{W}_1 := \left[\frac{K\hat{W}}{2\beta}, \infty\right)$

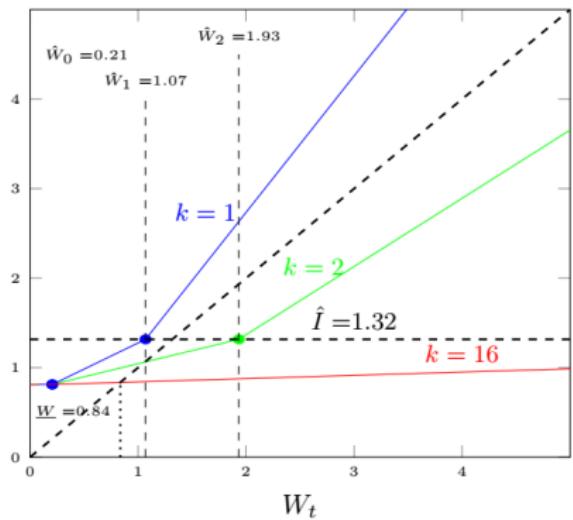
# Equilibrium distribution (cut-down version)

- Focusing on  $\mathbb{W}_1$  gives clear result on shape of the distribution

**Theorem:** for all  $\mathbf{p}$  satisfying population stationarity, non-degenerateness and for  $1/2 < \beta \leq 1$ , over the support  $\mathbb{W}_1$  the equilibrium distribution must satisfy  $F_*(W) = 1 - AW^{-\alpha}$  where  $A$  is a constant and  $\alpha$  is a root of the equation  $\beta^{-\alpha} = \sum_{k=1}^K p_k \left[\frac{k}{2}\right]^{1-\alpha}$

- Interpretation
  - in equilibrium we have a Pareto distribution!
  - the higher is  $\alpha$ , the lower is inequality
- What drives inequality?
  - the family structure  $\mathbf{p} = \{p_1, \dots, p_K\}$
  - in particular  $p_1$ , the proportion of “little emperors”

## The process $g_k$ (general case)

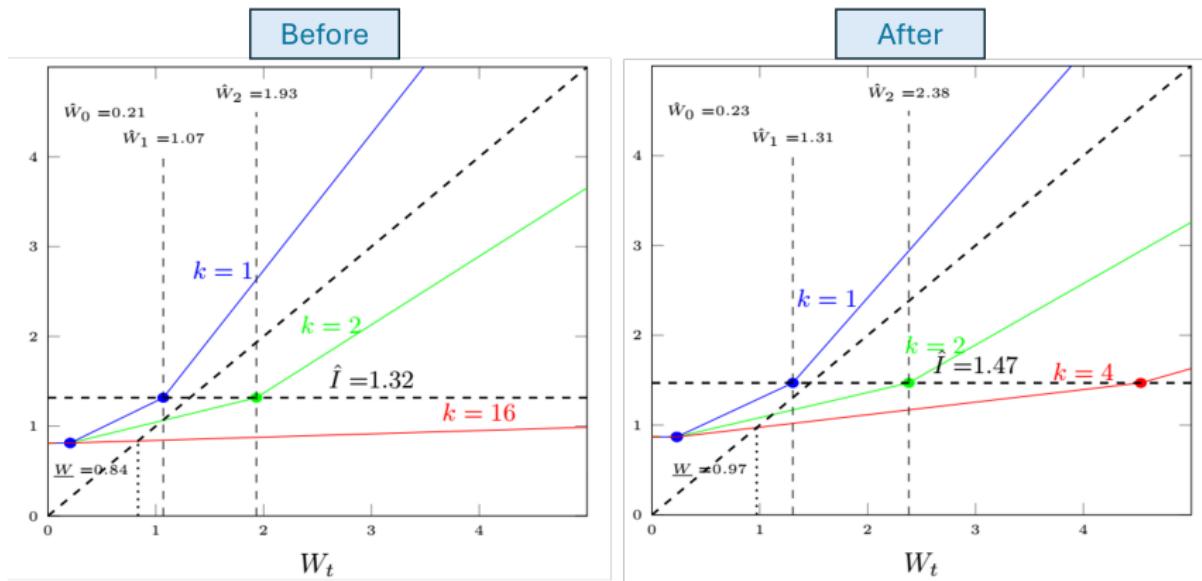


From the  $g_k$  diagram

- If slope of the  $g_1(W_t)$ -line is above 1, no upper bound on wealth
  - all  $W$  can be reached through a succession of one-child families
- Lower bound  $\underline{W}$  at intersection of  $g_K(W_t)$  and the 45-deg line
 
$$\frac{1}{\xi + v - \frac{2(1+r)\gamma}{K}} \xi \bar{E}$$

$$- \frac{1}{\xi + v - \frac{2(1+r)\gamma}{K}} \left[ \frac{v \bar{B}}{1+r} + 2[\xi - \gamma] \frac{\bar{B}}{K} + 2\gamma[1+r+\pi_2] \frac{\bar{C}}{K} - v \left[ 1 + \frac{\pi_2}{1+r} \right] \bar{C} \right]$$
  - where  $\xi = 1 + [1 - \gamma] \delta \pi_2$
- If the probability  $\pi_2$  increases
  1. kink point of every  $g_k(\cdot)$ -function moves to the northeast
  2. slope of the rentier branch of the  $g_k(\cdot)$ -function decreases
  3. intercept of the worker branch of the  $g_k(\cdot)$ -function increases.

The process  $g_k$  after increase in  $\pi_2$



## Simulation: method and parameters

- Start model from an arbitrary initial distribution of wealth for 100,000 households
  - simulate the behaviour of the following generations

### (a) Basic parameters

|           |      |          |   |
|-----------|------|----------|---|
| $\gamma$  | 0.39 | $\delta$ | 1 |
| $\beta$   | 0.95 | $\nu$    | 2 |
| $\bar{E}$ | 2    |          |   |

### (b) Implied parameters

$$\hat{I} = 1.242 \quad \hat{W} = 1.542$$

- Take as benchmark Chinese data before and during the One Child Policy

## Simulation: China data

(a) Survival probability after period 2

|            | pre-OCP |            | OCP   |
|------------|---------|------------|-------|
| $\pi_{2b}$ | 0.396   | $\pi_{2a}$ | 0.631 |

(b) Distribution of the number of children per woman

| # Children | pre-OCP  |          | # Children | OCP      |          |
|------------|----------|----------|------------|----------|----------|
|            | $p_{bi}$ | Cum Freq |            | $p_{ai}$ | Cum Freq |
| 0          | 0        | 0        | 0          | 0        | 0        |
| 1          | 0.04800  | 0.0480   | 1          | 0.4664   | 0.4664   |
| 2          | 0.10500  | 0.1530   | 2          | 0.4198   | 0.8862   |
| 3          | 0.17700  | 0.3300   | 3          | 0.0928   | 0.9790   |
| 4          | 0.21199  | 0.5420   | 4          | 0.0161   | 0.9951   |
| 5          | 0.18785  | 0.7299   | 5          | 0.0037   | 0.9988   |
| 6          | 0.13086  | 0.8607   | 6          | 0.0011   | 0.9999   |
| 7          | 0.07528  | 0.9360   | 7          | 0.0001   | 1        |
| 8          | 0.03755  | 0.9735   |            |          |          |
| 9          | 0.01648  | 0.9900   |            |          |          |
| 10         | 0.00649  | 0.9965   |            |          |          |
| 11         | 0.00231  | 0.9988   |            |          |          |
| 12         | 0.00079  | 0.9996   |            |          |          |
| 13         | 0.00025  | 0.9999   |            |          |          |
| 14         | 0.00008  | 0.9999   |            |          |          |
| 15         | 0.00003  | 1        |            |          |          |
| 16         | 0.00001  | 1        |            |          |          |



## Simulation: four scenarios

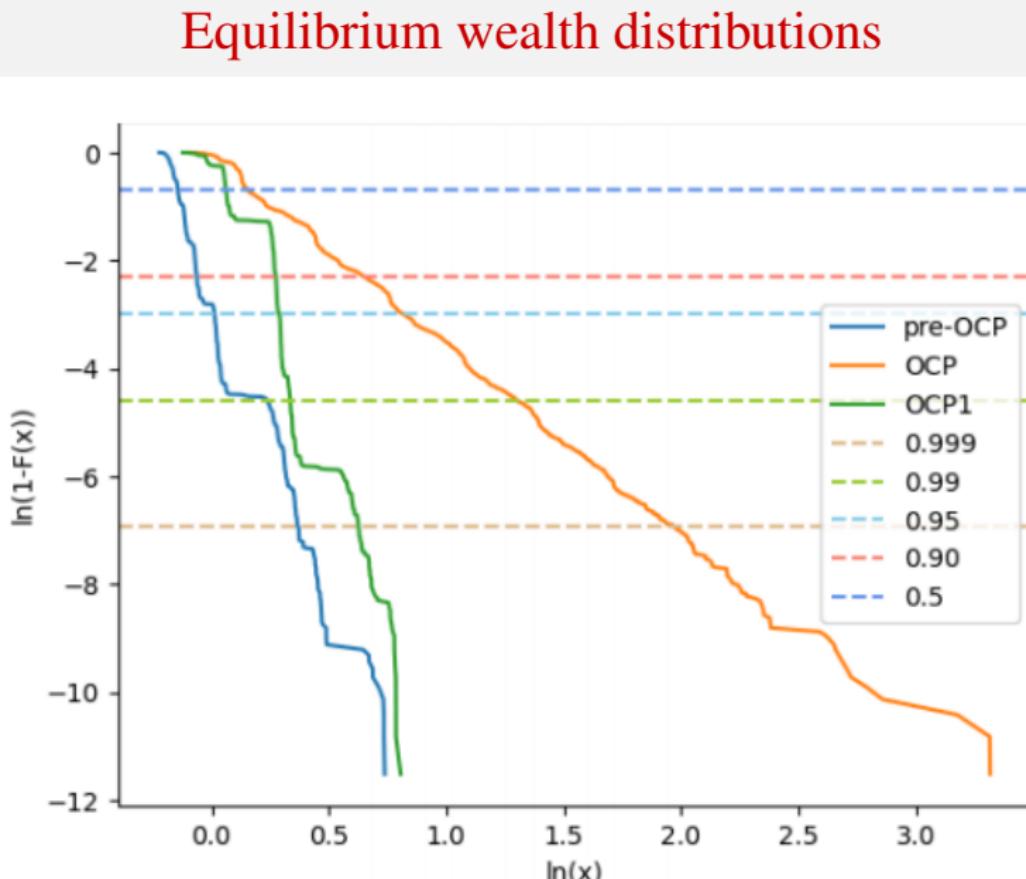
- $a$ : (OCP): distribution #children  $\mathbf{p}_a$ , survival prob  $\pi_{2a}$
- $b$ : (pre-OCP): distribution of #children  $\mathbf{p}_b$ , survival prob  $\pi_{2b}$
- $c$ : counterfactual where only distribution #children changes
- $d$ : counterfactual where only survival prob changes

|            | $\mathbf{p}_a$ | $\mathbf{p}_b$ |
|------------|----------------|----------------|
| $\pi_{2a}$ | Scenario $a$   | Scenario $d$   |
| $\pi_{2b}$ | Scenario $c$   | Scenario $b$   |

## Effects of demographic changes

|                                 | pre-OCP<br>Scenario <i>b</i> | OCP1   | OCP<br>Scenario <i>a</i> |
|---------------------------------|------------------------------|--------|--------------------------|
| average $W$                     | 0.833                        | 1.115  | 1.380                    |
| average $E$                     | 0.579                        | 0.392  | 0.248                    |
| average $I$                     | 0.304                        | 0.723  | 1.131                    |
| lower bound on wealth           | 0.796                        | 0.882  | 0.890                    |
| fraction of rentiers            | 0.011                        | 0.015  | 0.311                    |
| correlation between $E$ and $I$ | -0.996                       | -0.996 | -0.747                   |
| Gini $W$                        | 0.033                        | 0.064  | 0.162                    |

- pre-OCP: long-run equilibrium before the policy
- OCP1: situation after one generation of the policy
- OCP: long-run equilibrium after the policy



## Effects of demographic change in China: summary

- Important effects even after one generation
- Smaller size of families: children receive larger inheritances
- Average inheritances increase by 138% from pre-OCP value
  - lowers labour supply by 32%
- Gini coefficient almost doubles. Pareto line flattens
- Reinforced in long run

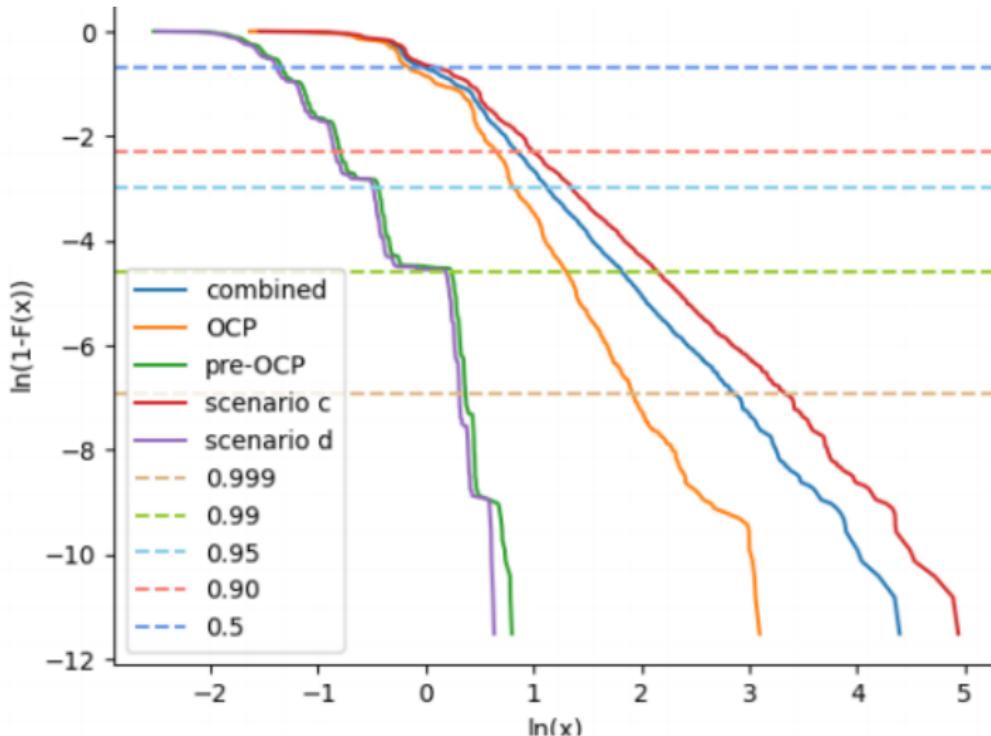
## Results decompositions

1

|                                 | Total  | OCP    | ILE    |
|---------------------------------|--------|--------|--------|
| average $W$                     | 0.547  | 0.678  | -0.131 |
| average $E$                     | -0.331 | -0.413 | 0.082  |
| average $I$                     | 0.827  | 1.065  | -0.238 |
| lower bound on wealth           | 0.094  | 0.041  | 0.053  |
| fraction of rentiers            | 0.300  | 0.382  | -0.082 |
| correlation between $E$ and $I$ | 0.249  | 0.436  | -0.187 |
| Gini $W$                        | 0.159  | 0.222  | -0.063 |

- OCP, ILE each push up the the lower bound on wealth
- Other variables. OCP, ILE are opposed
- The OCP effect outweighs that of ILE by a factor from 3 to 5

## Equilibrium wealth decompositions



## Conclusions

- A three-age model gives enough flexibility:
  - to model major life decisions
  - to represent major demographic effects
  - to construct a full OLG family model
- The OLG model leads to an equilibrium distribution
  - takes the Pareto form in the upper tail
  - little emperors increase equilibrium inequality
- The China simulation:
  - both OCP and ILE have effects in the expected direction
  - OCP effect is much stronger than ILE

## Bibliography I

Alvaredo, F., A. B. Atkinson, T. Piketty, and E. Saez (2013). The Top 1 Percent in international and historical perspective. *Journal of Economic Perspectives* 27, 3–20.

Atkinson, A. B. (1980). Inheritance and the distribution of wealth. In G. A. Hughes and G. M. Heal (Eds.), *Public Policy and the Tax System*, Chapter 2, pp. 36–66. London: George Allen and Unwin.

Banerjee, A. V. and A. F. Newman (1991). Risk-bearing and the theory of income distribution. *The Review of Economic Studies* 58(2), 211–235.

Blinder, A. S. (1973). A model of inherited wealth. *Quarterly Journal of Economics* 87, 608–626.

Blinder, A. S. (1976). Inequality and mobility in the distribution of wealth. *Kyklos* 28, 607–638.

Cowell, F. A. and D. Van de gaer (2025). Condorcet was wrong, Pareto was right: Families, inheritance and inequality. *Journal of Public Economic Theory* 27, <https://tinyurl.com/tx7xm2t5>.

Galor, O. and J. Zeira (1993). Income distribution and macroeconomics. *Review of Economic Studies* 60, 35–52.

Laitner, J. (1979). Household bequests, perfect expectations and the national distribution of wealth. *Econometrica* 47, 1175–1193.

Mankiw, N. G. (2013). Defending the One Percent. *Journal of Economic Perspectives* 27, 21–34.

Piketty, T. and G. Zucman (2015). Wealth and inheritance in the long run. In A. B. Atkinson and F. Bourguignon (Eds.), *Handbook of Income Distribution*. Elsevier B.V.

Stiglitz, J. E. (2015). The origins of inequality, and policies to contain it. *National Tax Journal* 68, 425–448.

Wang, Z., M. Yang, J. Zhang, and J. Chang (2016). Ending an era of population control in China: was the one-child policy ever needed? *75*, 929–979.

Zhang, J. (2017). The evolution of China's one-child policy and its effects on family outcomes. *7*, 141–160.