Shadow Economy

- **What?** - “all market-based legal production of goods and services that are deliberately concealed from public authorities” – Schneider et al. (2010)
- **How much?** - India: 22.2% US: 8.6% (1997-2007)

Cash lends anonymity facilitating shadow economy

- **So, phase out cash?** How?
“...any plan to drastically scale back the use of cash needs to provide heavily subsidized, basic debit card accounts for low-income individuals... A simple idea to jump-start the process is to create debit accounts through which all government transfer payments are made.”

Demonetization

- **Intervention:**
 - RBI withdrew old Rs 500 and Rs 1000 notes
 - comprised 86% of amount in circulation
 - the two largest denominations
 - remonetization slow and inefficient

- **Objectives:**
 - black money (tax compliance)
 - forced digitization
 - counterfeit
 - terrorism
Qs How effective are subsidized digitization and demonetization to reduce shadow *transactions*?

- Can some shadow be optimal for revenue maximization?
Lagos and Wright (2005) + cash and digital + sales tax

- Useful feature:
 explicit role for money as medium of exchange

- Limitation:
 no wealth effect/persistence
 (but makes the model tractable)
Key Insights

- Size of shadow (which follows from extent of digitization)
 - depends on fundamentals, but also beliefs
 - can be stuck in a ‘bad’ equilibrium

- No-shadow eqm maximizes private welfare, not tax revenue

- Policies:
 - if multiple eq, demonetization can have LR effect
 - if unique eqm, subsidize digitization vs. reduce tax
Monetary Framework: Lagos and Wright (2005)
Cash vs. No Cash: Rogoff (2016)
Shadow Economy Theory: Gomis-Porqueraz et al. (2014)
Shadow Economy Empirics: Schneider et al. (2010)
FRAMEWORK
(based on Lagos and Wright, 2005)
Market Structure

Discrete time, infinite horizon
- Discount factor, β

Markets
- Decentralized goods market: DM
- Centralized market: CM

Households
- Sellers (in DM)
- Buyers (measure 1):
 - two types: l (w.p. π_l), h
 - l’s DM utility $\epsilon u(q)$, h’s $u(q)$
Goods and Preferences

- Perishable *consumption* good, q:
 - produced and consumed in DM

- Good, x as *numeraire*
 - produced and consumed in CM
Goods and Preferences

- Perishable \textit{consumption} good, \(q \):
 - produced and consumed in DM

- Good, \(x \) as \textit{numeraire}
 - produced and consumed in CM

\[
U^b(q, x, l) = u(q) + U(x) - l
\]
\[
U^s(q, x, l) = -q + U(x) - l
\]
Medium of Exchange

- Buyers cannot produce, sellers do not consume in DM

 ➔ Role for trade

- Decentralized market with anonymity: no unsecured credit

 ➔ Role for means of payment
Medium of Exchange

- Buyers cannot produce, sellers do not consume in DM

⇒ Role for trade

- Decentralized market with anonymity: no unsecured credit

⇒ Role for means of payment

- Money supply, M in CM
- real value of money, ϕ
Portfolio Options

- Carry money to DM as digital or cash
 - conversion (fixed) cost to digital, κ
 - digital transactions \emph{fully} taxed (tax rate, τ)
 - cash cannot be taxed but is lost with probability, η
Timing

- Buyers carry m
- Sellers dispense m

Portfolio choice: $m: c, d$

- Buyers + sellers q_{t+1}
EQUILIBRIUM
Steps

- **FOC:**
 1. Household’s Problem in CM
 - Choice of m': $\max_{m'}\{-\phi m' + \beta V(m')\}$
 2. Bargaining in DM: cash vs digital
 3. Plug in for V

- Market Clearing: $\phi(\pi_l m_l + \pi_h m_h) = \phi M$
Bargaining

- If \(h \) type carries cash,
 \[
 \max_{q^c, g^c \in [0, \phi m]} [u(q^c) - g^c] \quad \text{s.t.} \quad -q^c + (1 - \eta)g^c \geq 0
 \]

- digital,
 \[
 \max_{q^d, g^d \in [0, \phi m - \kappa]} \{ u(q^d) - g^d \} \quad \text{s.t.} \quad -q^d + (1 - \tau)g^d \geq 0
 \]

 - Similarly, \(l \)-type: replace \(u(q) \) with \(\epsilon u(q_l) \)
Equilibrium Types

1. All-cash/Full-shadow
2. All-digital/No-shadow
3. l-cash, h-digital/Partial-shadow
Equilibrium Types

1. All-cash/Full-shadow
2. All-digital/No-shadow
3. l-cash, h-digital/Partial-shadow

- obtain ϕ, m_i from FOCs, MC assuming equilibrium type
- check if this equilibrium maximizes surplus among others
All-cash Equilibrium

- FOC, \(h \):
 \[
 \iota = \alpha \left[u' \left(\phi^c m_h^c \right) - \frac{1}{1 - \eta} \right]
 \]

- FOC, \(l \):
 \[
 \iota = \alpha \left[\epsilon u' \left(\phi^c \left(\frac{M - \pi_h m_h^c}{\pi_l} \right) \right) - \frac{1}{1 - \eta} \right]
 \]

- Is an equilibrium if and only if \(S_i^c > S_i^d \)

- Similarly, all-digital and \(l \)-cash, \(h \)-digital equilibria
RESULTS
Shadow Economy

- Size of shadow follows from extent of digitization
 - as enforcement rate $\in \{0, 1\}$
- For digital payments to be viable, $\tau < \eta$
 - or, model heterogeneous tax rates across sectors
Shadow Economy

- Size of shadow follows from extent of digitization
 - as enforcement rate $\in \{0, 1\}$
- For digital payments to be viable, $\tau < \eta$
 - or, model heterogeneous tax rates across sectors
Equilibrium Regions
Output and Bargaining Surplus

- Unique: no-shadow eqm higher output, q
 (low τ less distortionary)

- Under multiplicity: no-shadow maximizes output, q
 ($\tau < \eta$)
 - and also match surplus net of cost, $u(q) - q - \kappa$
 (output under no-shadow much higher to cover κ)
Tax Revenue

- Under multiplicity: no-shadow maximizes revenue, τq^t
 (same τ, higher output)

- Unique: partial may be better than no-shadow for revenue
 (for low ϵ, $m_l << m_h$, $\tau << \bar{\tau}$)

- Optimal tax rate for revenue maximization, τ^o

$$\tau^o = \begin{cases}
\tau & \text{if } \epsilon \geq \tilde{\epsilon}, \\
\bar{\tau} & \text{if } \epsilon < \tilde{\epsilon}.
\end{cases}$$
To move to partial from full shadow:

1. Demonetization: cash holdings in CM worthless
 - no behavior change, no effect except one-time loss

2. Subsidized digitization: reduce κ
 - works if tax rate not too high

3. Tax reduction: $\tau = \bar{\tau}$
 - which maximizes revenue?

If in multiplicity region then to ... need a shock
 - demonetization might help coordinate on no-shadow
 - tax red. or digi. - no effect if in same region
QUANTITATIVE
(preliminary)
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>India</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>illiquid bonds rate, ι</td>
<td>govt bonds rate data average assume (max tax)</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>sales tax, τ</td>
<td></td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>loss of cash, η</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>utility elasticity, σ</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target</th>
<th>India</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>matching pr DM, α</td>
<td>MD and i consumption dis assume</td>
<td>0.15</td>
<td>0.24</td>
</tr>
<tr>
<td>utility low ϵ</td>
<td></td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>prop of low value, π_l</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Results

- Partial shadow is the unique equilibrium when
 - \(\kappa / \text{GDP} \): US [3.4% - 8.7%] India [8.5% - 21.4%]
 - Size of shadow: US 1.2% India 2.8%

- Policy
 - demonetization: no effect unless changes behavior
 - digitization vs. tax reduction: involve similar cost
Conclusion

- A shadow economy model to analyze policy interventions
 - cash lends anonymity facilitating shadow

- Extensions:
 - denominations, income tax: analysis
 - probability of enforcement: shadow and digitize rel.
 - distribution of types and sectors: data
 - seller’s mark-up: data

- Richer quantitative analysis
All Cash Equilibrium Surplus

\[u(\phi^c m^c_h) - \frac{\phi^c m^c_h}{1 - \eta} > u(\phi^c m^c_h) - \frac{\phi^c m^c_h}{1 - \tau} - \kappa \]

- If \(h \) carries cash then \(l \) too: \(\epsilon < 1, \ m^c_l < m^c_h \)
All Digital Equilibrium

- FOC, \(l \):
 \[
 \nu = \alpha \left[\epsilon u' (\phi^d m^d_l) - \frac{1}{1 - \tau} \right]
 \]

- FOC, \(h \)
 \[
 \nu = \alpha \left[\phi^d (M - m^d_h) - \frac{1}{1 - \tau} \right]
 \]

- Is an equilibrium if and only if:
 \[
 \epsilon u(\phi^d m^d_l) - \frac{\phi^d m^d_l}{1 - \eta} < \epsilon u(\phi^d m^d_l) - \frac{\phi^d m^d_l}{1 - \tau} - \kappa
 \]

 - if \(l \) carries digital then \(h \) too: \(\epsilon < 1, m^d_l < m^d_h \)
l-cash, h-digital Equilibrium

- **FOC, l:**
 \[\nu = \alpha \left[\epsilon u' (\phi m_l) - \frac{1}{1 - \eta} \right] \]

- **FOC, h:**
 \[\nu = \alpha \left[u' (\phi (M - m_h)) - \frac{1}{1 - \tau} \right] \]

- Is an equilibrium if and only if:
 \[\epsilon u(\phi m_l) - \frac{\phi m_l}{1 - \eta} > \epsilon u(\phi m_l) - \frac{\phi m_l}{1 - \tau} - \kappa \]

 and,
 \[u(\phi m_h) - \frac{\phi m_h}{1 - \eta} < u(\phi m_h) - \frac{\phi m_h}{1 - \tau} - \kappa \]