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1 Introduction
This Chapter is about the techniques, formal and informal, that are commonly
used to give quantitative answers in the field of distributional analysis – covering
subjects such inequality, poverty and the modelling of income distributions.

At first sight this might not appear to be the most exciting of topics. Dis-
cussing statistical and econometric techniques could appear to be purely sec-
ondary to the important questions in distributional analysis. However, this is
not so. At a very basic level, without data what could be done? Clearly if there
were a complete dearth of quantitative information about income and wealth
distributions we could still talk about inequality, poverty and principles of eco-
nomic justice. But theories of inequality and of social welfare would stay as
theories without practical content. Knowing how to use empirical evidence in
an appropriate manner is essential to the discourse about the welfare economics
of income distribution and to the formulation of policy. Furthermore, under-
standing the nature and the limitations of the data that are available – or that
may become available – may help to shape one’s understanding of quite deep
points about economic inequality and related topics; good practice in quantita-
tive analysis can foster the development of good theory.

1.1 Why Statistical Methods?
If we carry out a simple computation of the values of an inequality or poverty
measure, computed from two different samples, we will usually find greater
inequality or poverty in one sample, even if the two samples come from the
same population. Clearly simple computation alone is not enough in order to
draw useful conclusions from the raw data: statistical methods are required
to test the hypothesis that the two values are not statistically different. For
instance, Table 1 reports the values of the Gini and Theil inequality indices, with
confidence intervals at 95%, computed from two samples of 1 000 observations
drawn from the same distribution.1
The values of the Gini and Theil indices are greater in sample 1 than in sample 2.
However, the confidence intervals (in brackets) intersect for both inequality
measures, which leads us not rejecting the hypothesis that the level of inequality
is the same in the two samples.

There is a wide variety of inequality indices in common use. Different in-
dices, with different properties, could lead to opposite conclusions in practice.
Lorenz curves comparisons can be very useful, since a (relative) Lorenz curve al-
ways lying above another one implies that any comparisons of relative inequality
measures would lead to similar conclusions – a result that holds for any inequal-
ity measures respecting anonymity, scale invariance, replication invariance and
the transfer principle (Atkinson 1970). In practice, we have on hand a finite
number of observations and, empirical Lorenz dominance can be observed many

1The two samples are independent, with observations drawn independently from the Singh-
Maddala distribution with parameters a = 2.8, b = 0.193 and q = 1.7, which closely mimics
the net income of German households, up to a scale factor (Brachmann et al. 1996).
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sample 1 sample 2
Gini 0.303 0.285

[0.286 ; 0.320] [0.271 ; 0.299]
Theil 0.158 0.135

[0.133 ; 0.183] [0.120 ; 0.151]

Table 1: Inequality indices with confidence intervals at 95%

times when the two samples come from the same population. In the case of two
independent samples of 1 000 observations drawn from the same Singh-Maddala
distribution, we obtain sample Lorenz dominance 22% of cases. Dardanoni and
Forcina (1999) argue that it can be as high as 50% of cases due to the fact
that empirical Lorenz curve ordinates are typically strongly correlated. This
demonstrates the need to use statistical methods.

For instance, Figure 1 shows the difference between the empirical Lorenz
curves obtained from two independent samples drawn from the same distribu-
tion, with confidence intervals at 95% calculated at the population proportions
q = 0.01, 0.02, . . . , 0.99. The ordinates are always positive: so it is clear that
one empirical Lorenz curve always dominates the other. However, the confidence
intervals show that each Lorenz curve ordinate difference is never significantly
different from zero; as a result Lorenz dominance in the population is not as
clear as simple computation from the sample might suggest. To be able to
make conclusions on dominance or non-dominance, we need to test simultane-
ously that all ordinate differences are statistically greater than zero, or not less
than zero. Appropriate test statistics need to be used to make such multiple
comparisons.

In this chapter we will provide a survey of the theory and methods underlying
good practice in the statistical analysis of income distribution. We also offer a
guide to the tools that are available to the practitioner in this field.

1.2 Basic notation and terminology
Throughout the chapter certain concepts are used repeatedly and so it is con-
venient to collect here some of the terms that are used repeatedly.

• Income y. Here “income” this is merely a convenient shorthand for what
in reality may be earnings, wealth, consumption, or something else. We
will suppose that y belongs to a set Y= [y, y), an interval on the real line
R.

• Population proportion q. For convenience we will write q ∈ Q := [0, 1].

• Distribution F . This is the cumulative distribution function (CDF) so
that, for any y ∈ Y, F (y) denotes the proportion of the population that
has income y or less. Where the density is defined we will write the density
at y ∈ Y as f(y). The set of all distribution functions will be denoted F.

4



0.0 0.2 0.4 0.6 0.8 1.0

−0
.01

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

q

●

●
●

● ●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ●
● ●

●

●

●

L1(q) − L2(q)
95% CI

Figure 1: Difference between two empirical Lorenz curves, L̂1(q)− L̂2(q), with
95% confidence intervals. The samples are drawn from the same distribution.

• Indicator function ι(·). Suppose there is some logical condition D which
may or may not be true. Then ι(·) is defined as:

ι(D) =


1 if D is true

0 if D is not true
(1)

1.3 A guide to the chapter
We begin with a discussion of some of the general data issues that researchers
should bear in mind (Section 2). Section 3 deals with the issues that arise if we
want to try to “model” an income distribution: the motivation for this is that
sometimes it makes sense to approach the analysis of income distributions in
two stages, (1) using a specific functional form or other mathematical technique
to capture the evidence about the income distribution in an explicit model
and (2) making inequality comparisons in terms of the modelled distributions.
Section 4 deals with the general class of problem touched on in our little example
outlined in Table 1: the emphasis is on hypothesis testing using sample data and
we cover both inequality and poverty indices. As a complement to this Section
5 deals with the class of problem highlighted just now in Figure 1: we look
at a number of “dominance” questions that have a similarity with the Lorenz
problem described there. Section 6 returns to mainly data-related questions:
how one may deal with some of the practical issues relating to imperfections in
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data sets. Finally, in Section 7, we draw together some of the main themes that
emerge from our survey of the field.

2 Data
2.1 Data sources
It is not difficult to imagine instances where there is a known, finite set of
income receivers and where the income associated with each income-receiver is
observable (example: if there are 50 states in a federation and one wishes to
analyse the change in the distribution of announced military contracts awarded
by the federal government among those 50 states). Under those circumstances
a complete enumeration of the relevant “population” (the 50 states) is possible
and the income of each member of this “population” is measured with complete
accuracy (from the federal government announcement). There is very little to
do in terms of statistical analysis and no data problem. But this kind of example
is rarely encountered in practice and might be dismissed as somewhat contrived.
It is much more common to have to deal with situations where an enumeration
of the population is impossible and we have to rely on some sort of sample.

Administrative data

Governments and government agencies have long published summaries of income
distributions in grouped form; in many countries official data providers have
gone further and made available to researchers micro-data from official sources
which could be used, for example, to analyse the distribution of income and
wealth. The data made available in this way used to be of similar size to
sample surveys (discussed below). However, it is increasingly the case that
very large data sets have been opened up for research, an order of magnitude
larger – effectively complete collections of administrative data rather than official
samples from them. It might be tempting to treat these as methodologically
equivalent to the complete-enumeration case described above. But this would
be to overlook two points. First, administrative data will only contain what
is legally permissible and what government agencies find convenient to release:
if, for example, one is interested in the distribution of personal incomes a very
large dataset of tax records could be extremely useful but it will miss out many
of those persons who are not required to file tax returns. Second, the design of
the data-set may not match what the social scientist or economist would wish:
for example, if one wishes to adjust the data to allow for differences in need
according to the type of household or family in which each person lives, the
required information for constructing an appropriate equivalence scale may not
be present in the same data set.
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Survey data

The problems from administrative data stem largely from the fact that the data
are the by-product of information gathered for other purposes. It is clear that
specially designed surveys have a potential advantage in this respect. How-
ever, although surveys are usually purpose-built (and often purpose-built using
advice from social scientists) one also has to be cautious about their limita-
tions. This concerns not only the smaller size and worse response rate than the
administrative-data counterparts. Once again the survey design may exclude
some sections of the population (a survey based on households would obviously
miss out people who are homeless and those in institutions) and, where there is
an attempt to create longer series of surveys, the criteria for the design of con-
temporary surveys may follow a standardised format determined by conventions
that are no longer relevant.

2.2 Data Structure
In implementing the statistical criteria discussed in this chapter one needs to be
clear about the relevant assumptions concerning the way the sample was drawn.

Simple design

In the majority of this chapter we will take it that simple random sampling is
an appropriate assumption. By this we mean that the sample has been designed
in such a way that each member of the population has an equal probability of
being included in the sample. This can be taken as an ideal case that enables
one to focus on the central issues of statistical inference. Even the supposedly
“ideal” case may not be ideal in practice if the sampling frame is inappropriate
– it could be out of date, it could be specified in such a way that part of the
population is excluded (see the remarks above about homeless people).

Complex design

In practice there are often simple practical reasons why something other than
simple random sampling is used.2 Two features in particular are often built into
the design of the sample. Clustering the observations by geographical location
may reduce the costs of running the survey, both in terms of initial visits to carry
out the survey and in follow-up visits for monitoring and completing missing
information. Stratification is a common technique for deliberately oversampling
certain categories of respondent in order to ensure that there is adequate repre-
sentation in the combined sample of certain types of individuals or households
that are of particular interest but that are likely to show up comparatively rarely
either because they are genuinely rare in the population or because they are less
likely to respond to the survey (for example it is commonly found that richer
households are over-represented in the “non-response” category and if one were

2See Deaton (1997) for a full discussion of the issues involved.
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just to ignore that possibility there would be the danger of having a biased
sample). In effect one divides up the population of interest into subpopulations
and chooses a sample for each subpopulation – each stratum – at an appropriate
sampling rate.

Although the assumption of a simple random sample sweeps aside practical
problems associated with the design of the survey, this idealised case gives us
a good base for explaining the core issues in estimation and inference. At
appropriate points in sections 4 and 5 we will comment on the extensions to the
complex-data case and other related issues.3

Other problems with the data merit special discussion. We briefly outline the
nature of these problems here and then return to a formal analysis of them (in
section 6) after we have extensively discussed conventional inference problems
in the preceding sections.

2.3 Data problems
2.3.1 Measurement error and data contamination

Measurement error in income-distribution analysis can be handled in a way sim-
ilar to measurement error in other contexts. Observed income is true income
adjusted by an error term (Chesher and Schluter 2002) and the resulting model
resembles the problem of decomposition by factor source; data contamination
can be represented as a mixture of a true distribution and a contamination
distribution: the resulting model resembles the problem of decomposition by
population subgroup (Cowell 2000, Cowell and Fiorio 2011). However, the ap-
propriate model for analysing this second type of problem uses tools which are
useful for the analysis of questions beyond the narrow data-contamination ques-
tion. This will be discussed in sections 4 to 6.

2.3.2 Incomplete information

In many practical applications we need to deal with situations in which some
parts of the sample space are excluded completely from the sample data or
where information in part of the sample is missing; for convenience we will
refer to this part of the sample as the “excluded” subset, even though some
information may be available. The exclusion of information may be imposed by
the data provider, for example because of reasons of confidentiality, or it may
be introduced by the researcher in order to deal pragmatically with some other
problem in the data.

Table 2, taken from Cowell and Victoria-Feser (2003), sets out the main
cases that are of interest. There are two principal issues for the researcher to
consider, as follows:

3An example: if the data are based on a simple survey of households, but one wants to infer
something about the distribution of individuals one needs to weight each household observation
by an amount proportional to the number of persons in the household; this structure is similar
to the weights introduced by stratification.
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Information about Excluded Sample

None Sample
proportion

Multiple
statistics

limits (z, z) fixed,(
β, β̄

)
unknown A B C

proportions
(
β, β̄

)
fixed,

(z, z) unknown D (E) (F)

Table 2: Types of incomplete information

Boundaries of the excluded subset What determines the boundaries of
the excluded subset of the sample space? There are two possible cases sum-
marised in the rows of Table 2: (i) a subset of Y is specified, or (ii) a subset
of Q is specified. In the first case the income-boundaries of the excluded sub-
set (z, z) are fixed but the proportions of the excluded subsets are unknown,
although these proportions can be estimated if enough information is available.
In the second case the boundaries of the excluded sample are fixed by the trim-
ming proportions in the lower and upper tail

(
β, β̄

)
and the incomes at the

boundary of the excluded samples are unknown.

Information in the excluded subset There are several assumptions about
the availability of information in the excluded part of the sample. The situation
is going to depend on the particular problem in hand and the principal cases are
summarised in the columns of Table 2. At one extreme the excluded subset is
just terra incognita (left-hand column). On the other hand it may be that the
data-provider makes available several summary statistics related to excluded
subset (right-hand column).

So, in principle there are altogether six possible cases, but in practice only
four are relevant:4

• Case A is the standard form of truncation.

• Case B represents “censoring”: in this case there are point masses at the
boundaries (z, z) that estimate the population-share of the excluded part.5

4If, as is usual, trimming is something that is done voluntarily by the user rather than
being imposed by the data-provider, then Cases E and F are not relevant in practice.

5A standard example of this “top-coding” of some income components in the Current
Population Survey – observations above a given value z are recorded as z (Polivka 1998). In
practical applications of distributional analysis, such as inferring inequality trends, researchers
have adopted a number of work-rounds such as multiplying top-coded values by a given factor
(Lemieux 2006, Autor et al. 2008) or attempting imputations for missing data (Burkhauser
et al. 2010, Jenkins et al. 2011).
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• Case C is an extension of standard estimation problem with grouped data
(Gastwirth et al. 1986).

• Case D represents the case of trimming.

The implications of these issues for distributional analysis are considered in
section 6.2 below.

2.4 Grouped data
For reasons of economy and convenience it used to be common practice for
statistical offices to make income-distribution data available only in grouped
form (case C in Table 2 above). Typically this would involve a simple table
with a comprehensive set of pre-set income intervals, the numbers of individuals
or households falling into each interval and (sometimes) the average income
associated with each interval. This phenomenon is less frequently encountered
today, but it is useful to consider briefly the analytical issues that arise in
connection with this type of data.

One way of using such data effectively is to estimate the underlying income
distribution using parametric modelling. This can be done either by using in-
terpolation methods in each of the intervals (see, for example, Cowell 2011) or
by fitting a distribution to the bulk of the data – suitable parametric meth-
ods are discussed in Section 3.1 below. Non-parametric methods are necessar-
ily quite limited, because of the restrictions imposed by the data.6 However,
an interesting problem presented by any sort of grouped data is to compute
bounds on inequality indices. One uses the available information to compute
a maximum-inequality distribution and a minimum-inequality distribution by
making alternative extreme assumptions about the way the data are distributed
within each interval (Gastwirth 1975, 1972; Cowell 1991).

3 Density estimation
The analysis of a probability density function is a powerful tool to describe
several properties of a variable of interest. For instance, Figure 2 shows the
estimated density function of GDP per capita in 121 countries across the world
in 1988.7 We can see that the density function is bimodal. The existence of
two modes suggests that there are two distinct groups: one composed of the
“richest” countries, and another consisting of the “poorest”. The second mode
is much less pronounced than the first, which indicates that the two groups are
not of the same size: there are relatively few “rich” countries, and distinctly
more “poor” countries. Further, the first mode is located just to the left of

6The problem of statistical inference with grouped data is discussed in Hajargasht et al.
(2012).

7The data are unweighted (each country as equal weight) and are taken from the Penn
World Table of Summers and Heston (1991). The horizontal axis is the per capita GDP for
each country normalised by the (unweighted) mean over all countries.
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Figure 2: Kernel density estimation of GDP per capita in 121 countries

the value 0.5 on the X-axis, while the second is found at around 3. We can
thus conclude from this figure that, on average in 1988, “rich” countries enjoyed
a level of GDP per capita that was around three times the average, whereas
that of “poor” countries was only half of the average level. It is clear from
this example that much more information is available from the full distribution
of a variable, than the restricted information provided by standard descriptive
statistics, as the mean, variance, skewness or kurtosis, which summarize each
limited properties of the distribution on single values.

In the multivariate case, the conditional density function can provide useful
insights on the relationship between several variables. For instance, Figure 3
shows the estimated density functions of wages conditional to experience, for
individuals with the same level of education.8 We can see that, as experience
increases, the conditional distribution becomes bimodal and the gap between
the two modes increases. It suggests that the population is composed by two
subgroups and the marginal impact of experience on wages is not the same for
the two groups. A standard regression tracks the dynamics of the first moment
of the conditional distribution only, and then cannot highlights the features just
described. Here, a linear regression of wages on experience would estimate the
marginal impact of experience on the average of wages for all individuals, while
the graphical analysis suggests that experience does not affect individual’s wages
identically. Mixture models of regressions would be more appropriate in such
cases.

8The data are simulated.
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Figure 3: Conditional density estimates of wages on experience

In practice, the functional form of the density function is often unknown and
has to be estimated. For a long time, the main estimation method was mainly
parametric. However, a parametric density estimation requires the choice of a
functional form a priori, and most of them do not fit multimodal distribution.
In the last two decades, nonparametric and semiparametric estimation methods
have been extensively developed. They are often used in empirical studies now
and allow us to relax the specific assumptions underlying parametric estimation
method, but they require in general more data on hand.

In this section, we will present parametric, nonparametric and semiparamet-
ric density estimation methods. Standard parametric methods are presented in
section 3.1, kernel density methods in section 3.2 and finite-mixture models in
section 3.3.

3.1 Parametric estimation
We say that a random variable Y has a probability density function f , if the
probability that Y falls between a and b is defined as:

P (a < Y < b) =
ˆ b

a

f(y) dy,

where a and b are real values and a < b. The density function f is defined as
non-negative everywhere and its integral over the entire space is equal to one.
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A parametric estimation requires to specify a priori a functional form of the
density function, that is, to know the density function up to some parameters.
The density function can then be written f(y; θ), where θ is a vector of k un-
known parameters and y a vector of n observations. The estimation remains to
estimate θ, it is usually done by maximizing the likelihood to observe the actual
values in a sample. If the data are independent and identically distributed, the
joint density function of n observations y1, y2, . . . , yn is equal to the product of
the individual densities:

f(y; θ) =
n∏
i=1

f(yi; θ).

The estimation of the density function therefore requires the maximization of
this function with respect to θ. Since the logarithmic function is positive and
monotone, it is equivalent to maximize

`(y; θ) = log f(y; θ) =
n∑
i=1

log f(yi; θ),

from which the resolution is often much simpler. This estimation method is
known as the maximum likelihood method.

3.1.1 Pareto

Pareto (1895) initiated the modelling of income distribution with a probability
density function9 that is still in common use for modelling the upper tail of
income and wealth distributions. Beyond a minimal income, he observed a
linear relationship between the logarithm of the proportion of individuals with
incomes above a given level and the logarithm of this given level of income.
This observation has been made in many situations and suggests a distribution
that decays like a power function, such behaviour characterizes a heavy-tailed
distribution.10 The Pareto CDF is given by

F (y;α) = 1−
[
y

y0

]−α
, y > y0 (2)

with density
f(y;α) = αy−α−1yα0 (3)

If py denotes the proportion of the population with incomes greater than or
equal to y (for y ≥ y0) then we have

log py = logA− α log y (4)

where A := yα0 . The Pareto index α is the elasticity of a reduction in the number
of income-receiving units when moving to a higher income class. The larger is

9What is now commonly described as the Pareto distribution is more precisely referred to
as “Pareto type I.” For other, more general forms introduced by Pareto and their relationship
to the Pareto type I see Cowell (2011), Kleiber and Kotz (2003).

10A “heavy-tailed” distribution F is one for which limy→∞ eλyF (y) =∞ for all λ > 0.
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Figure 4: Pareto distribution

the Pareto index, the smaller the proportion of very high-income people. The
Pareto distribution often fits wealth distributions and high levels of income
well – see Figure 4 – but it is not designed to fit low levels of income. Other
distributions have then been proposed in the literature.

3.1.2 Lognormal

Gibrat (1931) highlighted the central place of the lognormal distribution in many
economic situations. His law of proportionate effect says that if the variation of
a variable between two successive periods of time is a random proportion of the
variable at the first period, then the variable follows a lognormal distribution.11

He successfully fitted lognormal distributions with many different datasets, as
for instance income, food expenditures, wages, legacy, rents, real estate, firm
profits, firm size, family size and city size. The lognormal distribution has then
been very popular in empirical work12 and is often appropriate for studies of
wages – see Figure 5. However, the fit of the upper tail of more broadly based
income distributions appears to be quite poor. The lognormal distribution is
not heavy-tailed, its upper tail decays much faster than the Pareto distribution,
at the rate of an exponential function rather than of a power function. It has
lead to the use of other distributions with two to five parameters to get better
fits of the data over the entire distribution.

11If Xt − Xt−1 = εtXt−1, then
∑n

i=1 εt =
∑n

i=1
Xt−Xt−1
Xt−1

≈ logXn − logX0. From a
central limit theorem (CLT), logXn follows asymptotically a Normal distribution.

12In addition, it has nice properties related to the measurement of inequality (Cowell 2011),
it is closely related to Normal distribution and it fits homogeneous subpopulations quite well
(Aitchison and Brown 1957).
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3.1.3 Generalized Beta

The gamma and Weibull distributions have shown good fit in empirical stud-
ies.13 The lognormal, gamma and Weibull density functions are two-parameter
distributions, they share the property that Lorenz curves do not intersect, con-
trary to what is observed in several data. To allow intersecting Lorenz curves,
three-parameter distributions should be used, as the generalized gamma (GG),
Singh-Maddala (SM) and Dagum distributions.14 As shown by McDonald and
Xu (1995), all the previously mentioned distributions are special or limiting
cases of the five-parameter generalized beta distribution, defined by the follow-
ing density function:

GB(y; a, b, c, p, q) = |a|y
ap−1[1− (1− c)(y/b)a]q−1

bapB(p, q)[1 + c(y/b)a]p+q , (5)

for 0 < ya < ba/(1 − c), and is equal to zero otherwise. B(p, y) :=
´ 1

0 t
p−1(1 −

t)q−1 dt is the beta function, 0 ≤ c ≤ 1 and b, p and q are positive. Figure 6
shows graphically the relationships between distributions.15 As an example of

13Among others, Salem and Mount (1974) show that the gamma distribution fits better than
the lognormal for income data in the United States for the years 1960 to 1969 ; Bandourian,
McDonald, and Turley (2003) found the Weibull distribution as the best two-parameter dis-
tribution for income distribution in many countries

14See Stacy (1962), Singh and Maddala (1976), Dagum (1977). The Singh-Maddala and
Dagum distributions are also known as, respectively, the Burr 12 and Burr 3 distributions

15GB1 and GB2 are, respectively, the generalized beta of the first and second kinds intro-
duced by McDonald (1984). Beta1 and Beta2 are, respectively, the beta of first and second
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Figure 6: Parametric distributions tree (Source: Bandourian et al. 2003)

the paths through this diagram take the case where c = 0 in (5): we find the
Generalised Beta of the first kind

GB1(y; a, b, p, q) = |a|y
ap−1[1− (y/b)a]q−1

bapB(p, q) . (6)

Going a stage further, the special case of (6) with a = 1 gives the Beta distri-
bution of the first kind

B1(y; b, p, q) = yp−1[1− y/b]q−1

bpB(p, q) , (7)

As an alternative route from (6), setting a = −1 and q = 1 we obtain bpy−p−1

which, with a change of notation, is clearly the density function of the Pareto
type I distribution (3). For more details on continuous univariate distributions,
see Johnson et al. (1994) and Kleiber and Kotz (2003).

Income distributions have been extensively estimated with parametric den-
sity functions in the literature, see for instance Singh and Maddala (1976),
Dagum (1977, 1980, 1983), McDonald (1984), Butler and McDonald (1989),
Majumder and Chakravarty (1990), McDonald and Xu (1995), Bantilan et al.
(1995), Victoria-Feser (1995, 2000), Brachmann et al. (1996), Bordley et al.
(1997), Tachibanaki et al. (1997) and Bandourian et al. (2003). In most of these
empirical studies, the generalized beta of the second kind, the Singh-Maddala
and the Dagum distributions perform better than other two/three parameter
distributions.

3.1.4 Goodness of fit

Goodness-of-fit test statistics are used to test whether a given sample of data
is drawn from an estimated probability distribution. They are used to know
kinds. An alternative three-parameter approach that giving a good representation of income
distributions in practice is provided by the Pareto-Lévy class (Mandelbrot 1960, Dagsvik et al.
2013); unfortunately, except in a few cases, the probability distributions associated with this
class cannot be represented in closed form.
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if an estimated density function is appropriate and fits well the data. Sev-
eral statistics have been proposed in the literature. The well-known Pearson
chi-squared statistic is defined as: χ2 =

∑m
i=1 (Oi − Ei)2

/Ei, where Oi is the
observed percentage in the ith histogram interval, Ei is the expected percentage
in the ith histogram interval and m is the number of histogram intervals. This
measure summarizes discrepancies between frequencies given by an histogram
obtained from the data and those expected from the estimated density function.
A statistic not significantly different from zero suggests that the estimated den-
sity function fits well the unknown density function that generated the data. In
finite sample, this statistic is known to have poor finite sample power properties,
that is, to under-reject when the estimated density function is not appropriate,
see Stephens (1986). Then the Pearson chi-square test is usually not recom-
mended as a goodness-of-fit test. Empirical Distribution Function (EDF) based
statistics perform better. Given a set of observations {y1, y2, . . . , yn}, the EDF
is defined as

F (n) (y) = 1
n

n∑
i=1

ι(yi ≤ y) (8)

where ι(.) is the indicator function defined in (1). It is a consistent estimator of
the Cumulative Distribution Function (CDF). EDF-based statistics measure the
discrepancy between the EDF and the estimated CDF. They are not sensitive
to the choice of the histogram’s bins as in the Pearson chi-squared statistic. For
instance, the Kolmogorov-Smirnov statistic is equal to

supy |F (n)(y)− F (y, θ̂)| (9)

where F (y, θ̂) is an estimated CDF from a parametric family function with
parameters θ. Other statistics can be expressed as

n

ˆ ∞
−∞

(
F (n)(y)− F (y, θ̂)

)2
w(y) dF (y, θ̂), (10)

where w(y) is a weighting function. The Cramér-von Mises statistic corresponds
to the special case w(y) = 1, while the Anderson-Darling statistic puts more
weight in the tails, with w(y) = [F (y, θ̂)(1 − F (y, θ̂))]−1. In finite sample,
the Anderson-Darling test statistic outperforms the Cramér-von-Mises statistic,
which in turns outperform the Kolmogorov-Smirnov test statistic, see Stephens
(1986).

In distributional analysis goodness-of-fit test statistics and inequality mea-
sures do not usually share the same intellectual foundation. The former are
based on purely statistical criteria while the latter are typically based on ax-
iomatics that may be associated with social-welfare analysis or other formal
representations of inequality in the abstract. Cowell et al. (2011) developed
a family of goodness-of-fit tests founded on standard tools from the economic
analysis of income distributions, defined as:

Gξ = 1
(ξ2 − ξ)

n∑
i=1

[[
ui
µu

]ξ [ 2i
n+ 1

]1−ξ
− 1
]
, (11)
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where ξ ∈ R \ {0, 1} is a parameter, ui = F (y(i); θ̂) and y(i) is the ith order
statistic (the ith smallest observation). Gξ is closely related to Generalized En-
tropy (GE) inequality indices – see equations (49)-(51) below. GE inequality
measures are divergence measures between the EDF and the most equal distribu-
tion, where everybody gets the same income. They tell us how far an empirical
distribution is from the most equal distribution.16 Goodness of test statistics Gξ
are a divergence measure between the EDF and an estimated parametric CDF.
They tell us how far an empirical distribution is from an estimated paramet-
ric distribution.17 It has excellent size and power properties as compared with
other, commonly used, goodness-of-fit tests. It has the further advantage that
the profile of the Gξ statistic as a function of ξ can provide valuable information
about the nature of the departure from the target family of distributions, when
that family is wrongly specified.

3.2 Kernel method
3.2.1 From histogram to kernel estimator

Histograms are the most widely used nonparametric density estimators. How-
ever, they have several drawbacks that kernel density method allows us to han-
dle.

Figure 7 illustrates several problems arising with histograms, using GDP per
capita in 121 countries in 1988 (solid line). The left plot is given with 5 bins of
the same length between 0 and 5. The middle plot is similar but the position
of the bins changed, they are between -0.5 and 4.5. The two pictures are very
different, even if they estimate the same distribution. The left panel shows a
unimodal distribution, while the middle panel shows a bimodal distribution.
Histograms are then sensitive to the point at which we start drawing bins. The
right panel is given with 10 bins of the same length between 0 and 5. Once
again, it gives a different picture of the same distribution. Histograms are then
sensitive to the number of bins used, which is also relatively arbitrary. Moreover,
and most obviously, the pictures given by histograms provide discontinuities at
the edge of each bin, which may not be an appropriate property of the true
underlying distribution.

To avoid having to make arbitrary choice on the position and the number
of bins, we can use intervals that may overlap, rather than being separate from
each other. The principle here is to estimate a density function at one point by

16See Cowell et al. (2013) for an extension to the choice of any other “reference” distribution,
giving for instance inequality measures telling us how far an empirical distribution is from the
most unequal distribution.

17The term in the first bracket in (11) is related to the CDF, ui/µu = F (y(i), θ̂)/µu,
while the term in the second bracket is related to the EDF, 2i/(n + 1) = vi/µv where vi =
F̂ (n)(y(i)) = i/n and µv = n−1

∑n

i=1 vi =
∑n

i=1 i/n
2 = (n+ 1)/(2n). Using the most equal

distribution and replacing ui and vi by their q-quantile counterparts, F−1(qi = i/n, θ̂) = µ̂y

and F̂ (n)−1 (qi = i/n) = y(i), give GE measures. Note that ui and vi have bounded support
(ui, vi ∈ [0, 1]), a property required to show that the asymptotic distribution of Gξ exists, see
Davidson (2012).
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Figure 7: Histogram’s sensitivity to the position and the number of bins

counting the number of observations which are close to this evaluation point.
For a sample of n observations, y1, . . . , yn, the naive density estimator is given
by:

f̂(y) = 1
nh

n∑
i=1

ι

(
y − h

2 < yi < y + h

2

)
, (12)

where h is the width of the intervals and ι(.) is the indicator function (1). In
this equation, the estimate of the density at point y is given by the proportion
of observations which are within a distance of h/2 or less from point y. The
global density is obtained by sliding this window of width h along all of the
evaluation points.

Figure 8 presents the naive estimation of the density of GDP per capita
across different countries in 1988. Compared to histograms, the naive estimator
reveals much more detail about the curvature of the density function. However,
discontinuities are still present.

The kernel estimator is a generalization of the naive estimator which allows
us to overcome the problem of differentiability at all points. The discontinuity
problem comes from the indicator function ι(.), which allocates a weight of 1
to all of the observations which belong to the interval centered on y, and zero
weight to the other observations. The principle of kernel estimation is simple:
rather than giving all observations in the interval the same weight, the allocated
weight is greater the closer the observation is to y. The transition from 1 to 0
in the weights is then carried out gradually, rather than abruptly. The kernel
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Figure 8: Naive estimator of GDP per capita

estimator is obtained by replacing the indicator function by a kernel function
K(.):

f̂(y) = 1
nh

n∑
i=1

K

(
y − yi
h

)
. (13)

In order for f̂(y) to conserve the properties of a density function, the integral
of the kernel function over the entire space has to be equal to one. Any proba-
bility distribution can then be used as kernel function. The Gaussian and the
Epanechnikov distributions are two kernels commonly used in practice.18 Ker-
nel density estimation is known to be sensitive to the choice of the bandwidth
h, while it is not really affected by the choice of the kernel function.

3.2.2 Bandwidth selection

The question of which value of h is the most appropriate is particularly a thorny
one, even if automatic bandwidth selection procedures are often used in practice.
Silverman’s rule of thumb is mostly used, which is defined as follows:19

ĥopt = 0.9 min
(
σ̂ ; q̂3 − q̂1

1.349

)
n−

1
5 , (14)

18The Gaussian kernel corresponds to the choice of the standard Normal distribution:
K(x) = e−x

2/2/
√

2π. Epanechnikov (1969) proposed a second-degree polynomial, adjusted
to satisfy the properties of a density function: K(x) = 3

(
1− x2/5

)
/(4
√

5) if |x| <
√

5 and 0
otherwise.

19See equation (3.31), page 48, in Silverman (1986).
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where σ̂ is the standard deviation of the data, and q̂3 and q̂1 are respectively
the third and first quartiles calculated from the data. This rule boils down
to using the minimum of two estimated measures of dispersion: the variance,
which is sensitive to outliers, and the interquartile range. It is derived from the
minimization of an approximation of the mean integrated squared error (MISE),
a measure of discrepancy between the estimated and the true densities, where
the Gaussian distribution is used as a reference distribution. This rule works
well in numerous cases. Nonetheless, it tends to over-smooth the distribution
when the true density is far from the Gaussian distribution, as multimodal
and highly skewed. Figure 2 is a kernel density estimation of GDP per capita
with Silverman’s rule-of-thumb bandwidth selection. It appears as a smoothed
version of the naive estimator in Figure 8. Several other data-driven methods
for selecting the bandwidth have been developed such as cross-validation (Stone
1974, Rudemo 1982, Bowman 1984) and plug-in methods (Sheather and Jones
1991, Ruppert et al. 1995), among others.

Rather than using a Gaussian reference distribution in the approximation
of the MISE, the plug-in approach consists of using a prior non-parametric
estimate, and then choosing the h that minimizes this function. This choice of
bandwidth does not then produce an empirical rule as simple as that proposed
by Silverman, as it requires numerical calculation. For more details, see Sheather
and Jones (1991).

Rather than minimizing the MISE, the underlying idea of cross-validation by
least squares is to minimize the integrated squared error (ISE). In other words,
we use the same criterion, but not expressed in terms of expectations. The
advantage of the ISE criterion is that it provides an optimal formula for h for a
given sample. The counterpart is that two samples drawn from the same density
will lead to two different optimal bandwidth choices. The ISE solution consists
in finding the value of h that minimizes: ISE(h) =

´
[f̂ − f ]2 dy =

´
f̂2 dy −

2
´
f̂f dy+

´
f2 dy, where, for simplicity, f and f̂ correspond to f(y) and f̂(y).

The last term in this equation does not contain h and thus plays no role in the
minimization. Furthermore, the term

´
f̂f dy is exactly E(f̂). Let f̂−i be the

estimator of the density based on the sample containing all of the observations
except for yi. An unbiased estimator of E(f̂) is given by n−1∑n

i=1 f̂−i. The
minimization of the ISE criterion thus requires us to minimize the following
expression:

CV(h) =
ˆ
f̂2(y) dy − 2

n

n∑
i=1

f̂−i(yi).

This method is also called unbiased cross-validation, as CV(h) +
´
f2dy is an

unbiased estimator of MISE. The value of h which minimizes this expression
converges asymptotically to the value that minimizes the MISE.

3.2.3 Adaptive kernel estimator

In the kernel density estimation presented above, the bandwidth remains con-
stant at all points where the distribution is estimated. This constraint can be
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Figure 9: Adaptive kernel estimation of GDP per capita

particularly onerous when the concentration of data is markedly heterogeneous
in the sample. There would advantages to use narrower bandwidth in dense
parts of the distribution (the middle) and wider ones in the more sparse parts
(the tails). The adaptive kernel estimator is defined as follows:

f̂(y) = 1
n

n∑
i=1

1
hλi

K

(
y − yi
hλi

)
,

where λi is a parameter that varies with the local concentration of the data.
An estimate of the density at point yi, denoted by f̃(yi), measures the concen-
tration of the data around this point: a higher value of f̃(yi) denotes a greater
concentration of data, while smaller values indicate lighter concentrations. The
parameter λi can thus be defined as being inversely proportional to this esti-
mated value: λi = [g/f̃(yi)]θ, where g is the geometric mean of f̃(yi) and θ is a
parameter that takes on values between 0 and 1.20 The parameter λi is smaller
when the density is greater (notably towards the middle of the distribution),
and larger when the density is lighter (in the tails of the distribution).

Figure 9 presents the adaptive kernel density estimation of GDP per capita
across different countries in 1988. Compared to the simple kernel density es-
timation, with fixed-bandwidth (dashed line), the first mode is higher and the
second mode lower.

20In practice, an initial fixed-bandwidth kernel estimator can be employed as f̃(yi), with
θ = 1/2 and λ btained with Silverman’s rule of thumb.
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Several empirical studies on income distribution have used kernel density
estimation, among other see Marron and Schmitz (1992), Jenkins (1995), Cowell
et al. (1996), Daly et al. (1997), Quah (1997), Burkhauser et al. (1999),
Bourguignon and Morrisson (2002), Pittau and Zelli (2004), Jenkins and Van
Kerm (2005) and Sala-i-Martin (2006).

3.2.4 Multivariate and conditional density

The extension to the multivariate case is straightforward. The joint density of
two variables y and x, for which we have n observations, can be estimated with
a bivariate kernel function

f̂(y, x) = 1
nh1h2

n∑
i=1

K

(
yi − y
h1

; xi − x
h2

)
, (15)

which is equivalent to the product of two univariate kernels in the Gaussian case.
The extension to the d-dimensional case is immediate, via the use of multivariate
kernels in d-dimensions. Scott (1992) extends the Silverman’s rule of thumb as
follows: hj = n−1/(d+4)σ̂j , where σ̂1 and σ̂2 are the sample standard deviations
of, respectively, y and x. In practice, kernel density estimation is rarely used
with more than 2 dimensions. With three or more dimensions, not only may the
graphical representation be problematic, but also the precision of the estimation.
Silverman (1986) shows that the number of observations required to guarantee
a certain degree of reliability rises explosively with the number of dimensions.
This problem is known as the curse of dimensionality.

A conditional density function is equal to the ratio of a joint distribution
and a marginal distribution, f(y|x) = f(x, y)/f(x). A kernel conditional density
estimation is then given by

f̂(y|x) =
1

h1h2

∑n
i=1K

(
yi−y
h1

; xi−x
h2

)
1
h3

∑n
i=1K

(
xi−x
h2

) . (16)

When several conditional variables are considered, x = {x1, . . . , xk}, the band-
width selection obtained by cross-validation can mitigate the curse of dimen-
sionality problem if some of them are irrelevant (Hall et al. 2004, Fan and Yim
2004). Several recent studies have been focused on conditional analysis in a
nonparametric framework. To evaluate policy effects, the impact of a coun-
terfactual change in the distribution of some covariates on the unconditional
distribution of some variable of interest has been investigated in DiNardo et al.
(1996), Donald et al. (2000), Chernozhukov et al. (2009), Rothe (2010), Don-
ald et al. (2012). For more details on kernel density estimation, see Silverman
(1986), Paul (1999), Li and Racine (2006), Ahamada and Flachaire (2011).
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3.3 Finite-mixture models
3.3.1 A group decomposition approach

A population can be decomposed into several distinct groups in many different
ways. The density function of the population is then equal to the sum of the
densities associated with each of the different groups. Let us consider κ groups,
with the density function of each group being parametric, fk(y; θk) for k =
1, . . . , κ where θ is a set of parameters. Then, the density function of the
population can be written,

f(y; θ) =
κ∑
k=1

πkfk(y; θk) (17)

where πk is the proportion of the population belonging to subgroup k. The
conditions 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1 are required to guarantee that the

population density integrates to one over the support. A density estimation by
mixture models is obtained by replacing the unknown parameters by estimated
parameters. In finite-mixture models, the group to which each individual be-
longs is not observed.21 They thus allows us to capture the effect of unobserved
heterogeneity. They can also be used for classification purpose. Bayes’ theorem
allows us to deduce the a posteriori probability that an observation i belongs
to the group k :

πik = πkfk(yi; θk)∑κ
k=1 πkfk(yi; θk)

. (18)

Replacing the unknown parameters by consistent estimates, these individual
probabilities can be used to classify the observations into the different groups.

The estimation of a density by a mixture model allows us to bring out the
link between parametric and non-parametric estimation. If we consider one
single group (κ = 1), then the mixture models amount to just one parametric
function. Adding additional groups allows us to estimate more complicated
densities, which cannot be modeled with one sole group; adding more groups
allows us to reflect the heterogeneity of the population. Mixture models thus
permit much greater modeling flexibility. In the extreme case, where we have
as many groups as we do observations (κ = n), the mixture is equivalent to
the estimation of a density by kernel methods (see section 3.2).22 For values
of κ between 1 and the size of the sample n, the mixture model can thus be
seen as a semi-parametric compromise between parametric estimation and non-
parametric kernel estimation. The parametric aspect is reflected in the fact
that the density is expressed as a sum of parametric density functions; the non-
parametric aspect is captured by the presence of a number of different groups.

21When the groups are known and also the densities associated to each groups, the mixture
model is entirely parametric and can be estimated by maximum likelihood (see section 3.1)

22If K = n and π1 = · · · = πK = 1/n, equation (17) is then equivalent to equation (13)
where the fk(.) function is the kernel function K(.) and the unknown parameters are replaced
by estimated parameters
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Figure 10: Mixtures of two Normal distributions

The theory of mixture models tells us that, under regularity conditions, any
probability density can be consistently estimated as a mixture of Normal distri-
butions.23 Figure 10 depicts a number of different mixtures of two Normal dis-
tributions, of which the density can be written as π1φ(y;µ1, σ1)+π2φ(y;µ2, σ2),
where φ(.) is the density of the Normal distribution, with mean µk and variance
σk, for k = 1, 2. The global density and the two individual components are
represented in the same figure.24 From global densities (solid lines), we can see
that a wide variety of densities can be represented by a mixture of only two Nor-
mal distributions, as top flat (panel a), bimodal (panel b), skewed (panel c) and
heavy-tailed (panel d) distributions. Many further examples can be provided
to illustrate the very wide variety of distributions that can be characterized by
a mixture of κ Normal distributions: see, amongst others, Marron and Wand
(1992). All of these examples reveal the great flexibility of finite-mixture models
in estimating densities.

23See Escobar and West (1995), Ferguson (1983), Titterington, Makov, and Smith (1985),
McLachlan and Peel (2000), Ghosal and van der Vaart (2001).

24In panel (a), π1 = π2 = 0.5, σ1 = σ2 = 1, µ1 = 0, µ2 = 2. In panel (b), π1 = π2 = 0.5,
σ1 = σ2 = 1, µ1 = 0, µ2 = 4. In panel (c), π1 = 0.6, π2 = 0.4, σ1 = σ2 = 1, µ1 = 0, µ2 = 2.
In panel (d), π1 = 0.75, π2 = 0.25, σ1 = 1, σ2 = 2, µ1 = 0, µ2 = 2.
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3.3.2 Number of components and number of groups

For a given number of κ, we can estimate the unknown parameters by maxi-
mum likelihood.25 The number κ, known as the number of components, can be
selected by minimizing a criterion, as the Bayesian Information Criterion,

BIC = −2ˆ̀+ #param logn, (19)

where ˆ̀ is the estimated log-likelihood, #param is the number of parameters to
estimate and n is the number of observations. If the main concern is the best
fit of the overall density, this selection criterion is appropriate. However, if the
main concern is the detection of distinct groups, the choice of κ is less simple.
Indeed, there is no automatic correspondence between the choice of κ and the
number of underlying groups in the population. For instance, the panel (d)
in Figure 10 shows that the second component is required to fit a thick upper
tail, but it does not clearly identify a distinct group from the first component.
Indeed, the two distributions of the groups intersect a lot. Here, the number of
component κ is not necessarily equivalent to the number of groups. It illustrates
that the definition of what constitutes a distinct groups and its detection can
be a difficult task in finite-mixture models.26

Figure 11 shows kernel density estimation (on the left) and estimation by a
mixture of Lognormal distributions (on the right) of the income distribution in
the United Kingdom in 1973. The estimation of the density by a mixture of Log-
normal distributions is obtained from an estimation of the density of log-incomes
by a mixture of Normal distributions.27 The value of the bandwidth given by
Silverman’s empirical rule (h = 0.08559) allows us to reproduce the kernel den-
sity estimation results in Marron and Schmitz (1992). Kernel estimation with a
smaller value of h (0.01) are overlaid in the same figure. The comparison of the
two estimators reveals that the results differ significantly: with h = 0.08559,
the first mode is smaller than the second, while with h = 0.01 the reverse holds.
This confirms that the kernel estimation with Silverman’s rule of thumb does
indeed tend to over-smooth the function when the underlying distribution is
multimodal and highly skewed distribution (see section 3.2). In our example,
the Silverman selection choice tends to flatten out considerably the first mode
relative to the second. The right panel show the density estimation with a
mixture of lognormal distributions, obtained by minimizing the BIC criterion.
The overall distribution appears to be a smoothed representation of the kernel
density estimation with h = 0.01. In addition, the mixture estimation identifies
three separate components. The first and the third components do not overlap
a lot, they can be associated to two distinct modes. The second component
overlaps to a considerable extent with the third, and to a lesser extent with the

25The EM algorithm of Dempster et al. (1977) is often used. Bayesian methods can also
be employed, see Robert and Casella (2005), Frühwirth-Schnatter (2006).

26A more appropriate method case could be to test the number of modes of the distribution,
see Ray and Lindsay (2005)

27From f(x; Θ) =
∑K

k=1 πk φ(x ;µk, σk), we have f(y; Θ) =
∑K

k=1 πk Λ(y ;µk, σk) where
x = log y.
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Figure 11: Income distribution in the United Kingdom in 1973 (incomes nor-
malised by contemporary mean)

first. The presence of this second component allows a better fit of the right-hand
side tail of the distribution, but cannot be clearly associated to a distinct group.

A very few empirical studies have used finite-mixture models to estimate
income distributions. Flachaire and Nuñez (2007) studied the distribution of
household income in the United Kingdom with a mixture of lognormal distri-
butions. Pittau and Zelli (2006) and Pittau et al. (2010) studied the evolution
of per capita income distributions across EU regions and countries. Chotika-
panich and Griffiths (2008) estimate the Canadian income distribution using a
mixture of Gamma distributions. Lubrano and Ndoye (2011) model the income
distribution using a Bayesian approach and a mixture of lognormal densities.28

3.3.3 Group profiles explanation

In addition to the estimate of a density function of any form, finite-mixture
estimation can be used to explain the profiles of the different groups underlying
the overall population. This can been done by introducing covariates in the
probabilities πk:

f(y |z; Θ) =
κ∑
k=1

πk (z, αk) fk(y ; θk) , (20)

28Paap and Van Dijk (1998) considered mixtures of two distributions, using Normal, Log-
normal, Gamma and Weibull distributions. However, their approach is entirely parametric,
with the number of components and the densities of each groups fixed a priori.
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Figure 12: Income distribution in the United Kingdom in 1979 and 1988 (in-
comes normalised by contemporary mean)

where z = {z1, . . . , zl} is a vector of l observed variables and αk = {α1k, . . . , αlk}
is a vector of l unknown parameters. This model defines a conditional den-
sity function, which takes into account directly the fact that the probability
of group membership may be a function of individual characteristics (a white
collar worker has a greater probability of belonging to the group of the richest
households than do a blue collar worker). As well as the non-parametric esti-
mation of the density and the decomposition into different groups, covariates
also explain the variability between groups. The relationship between the prob-
abilities πk and the covariates z can be specified with an ordered logit/probit
or multinomial regression model and the unconditional density can be obtained
as follows:

f(y; Θ) =
κ∑
k=1

π̄k φ(y ;µk, σk) with π̄k = 1
n

n∑
i=1

πk(zi, αk),

where zi represents the vector of characteristics of the ith observation and n is
the number of observations. In other words, πk(zi, αk) is the probability that
the individual i with characteristics zi belong to the group k. For more details,
see Ahamada and Flachaire (2011).

Figure 12 reproduces the results of the estimation of the distribution of
household income in the United Kingdom in 1979 and 1988, obtained in Flachaire
and Nuñez (2007), by a mixture of Lognormal distributions.29 The decompo-

29The analysis here uses the same data as Marron and Schmitz (1992), with the exception
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sition into groups of the mixture estimator does emphasize clear changes over
time, that would be difficult to see from the comparisons of the overall distri-
butions. The analysis by groups shows that, in 1988, a small separate group
had formed to the extreme left of the distribution, while that situated to the far
right of the distribution had grown in size. Table 3 reproduces the estimated
coefficients (with standard errors in parentheses) associated to the following
covariates: z1 for a retired household, z2 for single-parent families, z3 for house-
holds where all of the adults work, z4 if no adult works in the household (in a
non-retired household), and z5 for the number of children.

z1 z2 z3 z4 z5
1979 -1.77 (0.059) -0.67 (0.106) 0.61 (0.050) -1.16 (0.086) -0.44 (0.020)
1988 -1.33 (0.058) -0.69 (0.106) 0.78 (0.053) -1.44 (0.068) -0.35 (0.022)

Table 3: Coefficient estimates of covariates

An ordered probit model is used to specify the relationship between the
probabilities and the covariates. If a coefficient is positive (negative), then the
position of an observation with the associated variable moves to the right (left)
of the distribution as the variable zl increases. On the other hand, a value of αl
which is not significantly different from zero indicates that the characteristic zl
does not help us to explain the decomposition of the sample into the different
groups. From the results, we can see that Retired (z1) and Non-working (z4)
households are more likely to be found towards the bottom of the income dis-
tribution, and households where all adults work (z3), on the contrary, are more
likely to be found towards the right of the distribution. In addition, the position
of retired households has improved over this period, while that of households
where no-one works has deteriorated. These results emphasize the usefulness of
mixture models, which yield an overall picture of the distribution of income and
how this has changed over time, with richer results than those obtained from
other commonly-employed techniques.

3.3.4 Finite mixture of regressions

Covariates have been introduced in the probabilities to characterized group
profiles. They can be also introduced into the modeling of the densities in
each of the groups, leading us to consider mixture of regression models. Let us
consider a mixture of Normal distributions with variance σ2

k and mean being
conditional on some covariates, µk = xβk, which can be written as:

f(y|x; Θ) =
κ∑
k=1

πk φ (y|x;βk, σk) . (21)

that the incomes here are normalized via an equivalence scale in order to account for differences
in household size.
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Linear models Mixture model
Variables Men Women Group 1 Group 2

(π1 = 0.406) (π2 = 0.594)
Explanatory Variables
Constant 0.66194∗ 0.2225 0.67517∗ 0.34909∗

Education 0.07941∗ 0.10915∗ 0.08202∗ 0.09844∗

Experience 0.04484∗ 0.02597∗ 0.05147∗ 0.02590∗

(Experience)2 −0.00066∗ −0.00038∗ −0.00078∗ −0.00040∗

Concomitant Variables
Constant - −0.49423∗

Female - 9.03215∗

Union Member - −8.16128†
∗ p < 0.05, † p = 0.057

Table 4: Mincer Earnings Equations

If there are two groups (κ = 2), it remains to consider the following model:

Group 1: y = xβ1 + ε1, ε1 ∼ N(0, σ2
1),

Group 2: y = xβ2 + ε2, ε2 ∼ N(0, σ2
2),

where ε1 and ε2 are independent and identical Normally-distributed error terms
within each group, with variances of σ2

1 and σ2
2 respectively. In this model, we

consider that the population is composed of two different groups, for which the
relationship between the dependent and explanatory variables is different, and
the observations come from the different groups in the population in unknown
proportions. This specification would be particularly appropriate if we assume
that the marginal impact of covariates may be different in each of the groups,
as suggested in Figure 3. Covariates could be introduced at the same time in
the probabilities, to explain group profiles.

To illustrate, consider a simple Mincer earnings equation, which explains the
logarithm of an individual’s earnings by their number of years of education and
number of years of labor-market experience. One way of testing for earnings
differences between men and women is to test if the parameters of the earnings
equation are statistically significantly different between the two groups of indi-
viduals, via a Chow test (Chow 1960). Table 4 shows OLS estimation results
from linear regression models for the groups of men and of women (column 1
and 2), using data from a household survey carried out by the US census Bureau
in May 1985.30 A Chow test, equals to 14.19, rejects the null hypothesis that
the two sets of coefficients are identical. As the dependent variable is the log
of earnings, the estimation results show that one additional year of education
increases earnings by around 7.9% for men and 10.9% for women on average.
The earnings profiles as a function of labor-market experience are different be-
tween the two groups. These are traced out in Figure 13 for eight years of

30The data come from Chapter 5 of Berndt (1990)
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Figure 13: The relationship between earnings and labor-market experience

education, from which we can see that the gender gap is sharply increasing with
labor-market experience during the first 30-years.31

In the linear model approach, we define a priori two groups of individuals -
men and women. To the opposite, in a mixture model approach, we do not
specify a priori the groups, we let the data identifying homogeneous groups with
respect to the relationship between the dependent and explanatory variables.
Table 4 shows estimation results from a mixture model (columns 3 and 4), the
BIC criterion suggests that there is two groups. The estimation results show
that one additional year of education increases earnings by around 8.2% for
individuals in the first group and 9.8% for individuals in the second, on average.
The impact of experience on earnings are traced out in Figure 13 for eight years
of education (solid lines).32 From this figure, the gap between the two groups
is much larger than the gap between the groups of men and of women obtained
from linear models.

The use of concomitant variables in the mixture model allows us to charac-
terize the profile of the groups. Two dummy variables are taken into account as
concomitant variables, the first is for the individual being a woman (Female),

31The curve for the group of men corresponds to the polynomial y = 0.66194+8∗0.07941+
0.04484 ∗ x − 0.00066 ∗ x2 and that for the group of women to y = 0.22254 + 8 ∗ 0.10915 +
0.02597 ∗ x − 0.00038 ∗ x2. The gap between the two curves widens with experience at first,
before narrowing again after around 30 years of labor-market experience.

32The curve for the first group corresponds to the polynomial y = 0.67517 + 8 ∗ 0.08202 +
0.05147 ∗ x− 0.00078 ∗ x2, and that of the second to y = 0.34909 + 8 ∗ 0.09844 + 0.02590 ∗ x−
0.0004 ∗ x2.
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and the second for the individual being a union member (Union Member). In
Table 4, column 4, the positive and significant coefficient on the “Female” vari-
able indicates that women are more likely to belong to the second group than
to the first group. The negative significant coefficient on union member shows
that unionized workers are less likely to belong to the second than to the first
group.33 A classification shows that 96.3% of women belong to group 2, while
the analogous percentage of men is only 19%.34 Equally, the percentage of union
members classified in group 1 is 80.2%. Last, the results of this analysis suggest
that, for the vast majority of women, the relationship between earnings and
experience is much flatter than that for most men and union members, holding
everything else equal. The gap obtained is much larger than those obtained by
considering all men and all women in two distinct groups.

For more details on mixture models of regression, see McLachlan and Peel
(2000), Frühwirth-Schnatter (2006), Ahamada and Flachaire (2011).

3.4 Finite sample properties
In this section, we study the quality of the fit of nonparametric density estima-
tion in finite sample. To asses the quality of the density estimation, we need to
use of a distance measure between the estimated density and the true density.
We use the mean integrated absolute errors (MIAE) measure,

MIAE = E

(ˆ ∞
0

∣∣∣f̂(y)− f(y)
∣∣∣ dy

)
. (22)

In our experiments, data are generated from two unimodal distributions:
Lognormal, Λ(y; 0, σ), and Singh-Maddala distributions, SM(y; 2.8, 0.193, q).
We also use a bimodal distribution: a mixture of two Singh-Maddala distri-
butions: 2

5 SM(y; 2.8, 0.193, 1.7) + 3
5 SM(y; 5.8, 0.593, q), plotted in Figure 3.4.

As σ increases and q decreases the upper tail of the distribution decays more
slowly. The sample size is n = 500 and the MIAE criterion is calculated as the
average of

´∞
0 |f̂(y)− f(y)|dy computed for 1 000 samples.

Table 5 shows the quality of the fit for several density estimation methods.
We first consider standard kernel estimator, with fixed bandwidth selected by
the Silverman’s rule-of-thumb (Silv.), by cross-validation (CV) and by the plug-
in (Plug-in) methods. Then, we consider adaptive kernel methods based on each
of the previous fixed bandwidths. Finally, we consider density estimation based
on mixture of lognormal distributions.35

The results show that, for standard and adaptive kernel methods, the qual-
ity of the fit deteriorates as the upper tail becomes more heavy (as σ increases
and q decreases, MIAE increases). Moreover, standard kernel method with the
Silverman’s rule-of-thumb bandwidth fails when the distribution is multimodal

33This coefficient is significant at the one per cent level according to a LR test.
34An individual is assigned to a group when his individual’s a posteriori probability to

belong to this group is higher than the probabilities to belong to other groups, see (18).
35The density function of the logarithmic transformation of the data is estimated by a

mixture of normal distributions and the number of components is selected with the BIC.
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Figure 14: Mixture of two Singh-Maddala distributions

and highly skewed (case of two Singh-Maddala distributions), compared to other
methods. Finally, our results suggest that, in the cases of heavier-tailed distri-
butions, the adaptive kernel based on the plug-in bandwidth and the mixture
of lognormals perform better than standard kernel methods.

4 Welfare indices
We can use the term “welfare indices” to cover a number of specific tools of
distributional analysis that are of interest to economists and social scientists.
These include social-welfare functions, inequality measures and poverty indices.
Our approach is to characterise some basic classes of indices, to introduce some
standard results that enable us to describe the statistical properties of these
indices and then to apply the analysis to particular welfare indices that are of
interest to students of income distribution. The applications here will be to
inequality and poverty indices.

4.1 Basic cases
It is useful begin with two of the simplest welfare indices, the quantile and the
income cumulation. Quantiles and income cumulations are themselves incomes
and so belong to the interval Y = [y, y), introduced in section 1.2. Once again
we work with distribution functions F ∈ F so that the total population in the
distribution is implicitly normalised to 1.
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Standard kernel Adaptive kernel Mixture
Silv. CV Plug-in Silv. CV Plug-in lognormal

Lognormal
σ = 0.5 0.1044 0.1094 0.1033 0.0982 0.1098 0.1028 0.0407
σ = 0.75 0.1326 0.1326 0.1252 0.1098 0.1283 0.1179 0.0407
σ = 1 0.1643 0.1716 0.1522 0.1262 0.1609 0.1362 0.0407

Singh-Maddala
q = 1.7 0.0942 0.1009 0.0951 0.0915 0.0994 0.0934 0.0840
q = 1.2 0.1039 0.1100 0.1048 0.0947 0.1050 0.0994 0.0920
q = 0.7 0.1346 0.1482 0.1326 0.1049 0.1349 0.1175 0.0873

Mixture of two Singh-Maddala
q = 0.8 0.2080 0.1390 0.1328 0.1577 0.1356 0.1224 0.1367
q = 0.6 0.2458 0.1528 0.1463 0.1896 0.1457 0.1293 0.1464
q = 0.4 0.2885 0.1953 0.1733 0.2234 0.1812 0.1450 0.1366

Table 5: Quality of density estimation (MIAE), n = 500.

Let q ∈ Q denote an arbitrary population proportion; then we may define Q
the quantile functional from F×Q to Y as

Q(F ; q) := inf{y|F (y) ≥ q} (23)

(Gastwirth 1971). For any distribution F the quantile functional gives the
smallest income in Y such that 100q percent of the population have exactly that
income or less. In cases where the distribution F is understood, we can use a
shorthand form for the qth quantile

yq := Q(F ; q). (24)

The functional Q provides the basis for several intuitive approaches to the anal-
ysis of income distribution. For example, commonly used quantile ratios — such
as the “90/10” ratio, the “90/50” ratio (Alvaredo and Saez 2009, Autor et al.
2008, Burkhauser et al. 2009) – are found by taking pairs of instances of (23)
with appropriate q-values: y90/y10, y90/y50 and so on.

Likewise C, the cumulative income functional from F×Q to Y is defined as

C(F ; q) :=
ˆ yq

y

y dF (y) (25)

(Cowell and Victoria-Feser 2002); for any distribution F the cumulative func-
tional gives the total income received by the bottom 100q percent of the pop-
ulation. Again, in cases where the distribution F is understood, we can use
the shorthand form for the qth cumulation: cq := C(F ; q). A word of caution
here: remember that the population is normalised to one; this convention is also
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embedded in the income cumulations (25). In particular, if we set q = 1 in (25),
we get

c1 = C(F ; 1) = µ(F ), (26)

the mean of the distribution F . We can find other intuitive approaches to the
analysis of income distribution using C: for example, the income share of the
poorest 100q percent of the population is obtained from two cumulants defined
in (25) as

cq
c1

= C(F ; q)
C(F ; 1) . (27)

However, this is just a beginning. The indices generated by Q and C in (23)
and (25) are but two well-known examples of a large class of welfare indices that
can be expressed in additively decomposable form

WAD(F ) :=
ˆ
φ (y) dF (y), (28)

up to a transformation involving µ(F ), where φ : Y×Y→ R is piecewise differ-
entiable. Decomposability here means decomposable by population subgroups
(Cowell and Fiorio 2011). This property can be seen more intuitively in the spe-
cial case of a discrete distribution. If F consists of m point masses consisting of
mass f i located at income yi i = 1, ...,m then (28) becomes

m∑
i=1

f iφ (yi) . (29)

It is clear that the additively separable form of (29) implies that the welfare
index can be found by evaluating income yi in each of the m separate groups,
weighting by the population of the group and aggregating.

Of course it is not only the rather restrictive class WAD that is interesting
for distributional analysis. Many welfare indices can be conveniently expressed
in the more general quasi-additively decomposable form

WQAD(F ) :=
ˆ
ϕ (y, µ(F )) dF (y) (30)

where ϕ : Y×Y→ R is piecewise differentiable; and most of the other commonly-
used welfare indices that cannot be expressed in the form (30) can be expressed
in the rank-dependent form

WRD(F ) :=
ˆ
ψ (y, µ(F ), F (y)) dF (y), (31)

where ψ is piecewise differentiable. We will discuss specific examples from the
WQAD and WRD classes of functionals in subsections 4.3 and 4.4 on inequality
and poverty measures.
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4.2 Asymptotic inference
In this section and sections 4.3, 4.4 we focus on estimation and inference prob-
lems for cases where the sample size n may be considered to be arbitrarily
large.36 The small sample problem is discussed in section 3.4. Furthermore,
for the moment we will concentrate only on distribution-free approaches, that
do not require any estimation of the density function, parametric or even non-
parametric; the parametric approach is considered in section 4.6.

There are several methods that we can use to derive the tools that we need.
Here we will make extensive use of an approach that enables us to derive the
asymptotic results quickly and simply and that lays the basis for further discus-
sions in section 6 below.37

4.2.1 The influence function

The principal analytical tool employed here is the influence function (IF). The
primary usage of the IF is to characterise the sensitivity of a statistic to point
contamination in the data (see section 6.1). So, assume that F ∈ F is the hy-
pothetical distribution, that H(z) ∈ F is a degenerate distribution that consists
of a single point mass at z

H(z) (y) = ι (y ≥ z) , (32)

and that δ ∈ Q. Then the mixture distribution

G := [1− δ]F + δH(z) (33)

can be taken as a representation of contamination of a “true” distribution (F ) by
the point mass, where δ represents the relative size or importance of the contam-
ination. Now consider a functional T : F → Rm that represents some statistic
in which we are interested. The IF measures the impact of the contamination
on the statistic T for infinitesimal δ, namely

IF(z;T, F ) := lim
δ↓0

[
T (G)− T (F )

δ

]
(34)

which becomes ∂
∂δT (G)

∣∣
δ→0 if T is differentiable.

The IF is particularly useful in analysing the problem of data contamination
(see section 6.1). But the IF has other convenient applications: its relevance to
this part of our discussion is that it may be used to derive asymptotic results
such as asymptotic covariance matrices. Again let the distribution G be “near”
F ; then the first-order von-Mises expansion of T at F evaluated in G is given
by

T (G) = T (F ) +
ˆ

IF(y;T, F ) d(G− F )(y) + remainder

36For an overview of literature see Cowell (1999).
37This approach draws heavily on Cowell and Victoria-Feser (2003).
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When the observations are independently and identically distributed according
to F then, by the Glivenko-Cantelli theorem, the empirical distribution F (n) →
F . So we may replace G by F (n) for sufficiently large n and obtain

T (F (n)) ≈ T (F ) + 1
n

n∑
i=1

IF(yi;T, F ) + remainder

from which we obtain (Hampel et al. 1986, p. 85):

Lemma 1 When the remainder becomes negligible as n → ∞, by the central
limit theorem,

√
n
(
T (F (n))− T (F )

)
is asymptotically normal with asymptotic

covariance matrix ˆ
IF(y;T, F )IF>(y;T, F ) dF (y) (35)

Regularity conditions can be found in Reeds (1976), Boos and Serfling (1980)
and Fernholz (1983).

Lemma 1 constitutes the basis of the results which follow. Given a statistic T ,
one just needs to compute its IF to obtain the asymptotic covariance matrix. For
inequality and poverty measures (uni-dimensional statistic), T is a functional
F→ R. In many cases, we can express the IF as a random variable Z minus its
expectation,

IF(y, T, F ) = Z − E(Z) (36)

For uni-dimensional statistic, from Lemma 1,
√
n
(
T (F (n))− T (F )

)
is then

asymptotically normal with asymptotic variance equal to
ˆ

IF(y, T, F )2dF (y) =
ˆ

(Z − E(Z))2 dF (Z), (37)

which is nothing but the variance of Z. This result allows us to estimate the
asymptotic variance of the statistic from a sample using

v̂ar
(
T (F (n))

)
= 1
n
v̂ar (Z) = 1

n2

n∑
i=1

(Zi − Z̄)2 (38)

where Zi, for i = 1, . . . , n are sample realizations of Z and Z̄ = 1
n

∑n
i=1 Zi.

From a sample, the asymptotic variance of the statistic is simple to estimate: it
is the empirical variance of Z1, . . . , Zn divided by n.

The main issue here is to provide IFs and to express it as a function of Z
as in (36), for a wide range of welfare indices and ranking tools and as well for
different forms of data. Moreover, for some important cases, we will also develop
analytically the formula in (35) so that the approach for computing asymptotic
covariances matrices based on the IF can be compared to those from other
approaches in the literature.38

38For previous suggestions on the use of the IF for estimating asymptotic variances see e.g.
Efron (1982), Deville (1999).
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4.2.2 Background results

Several useful results in income-distribution analysis can be found from a simple
application of the IF ; in particular we have two key properties for the funda-
mental functionals introduced in section 4.1 (Cowell and Victoria-Feser 2002).
Applying (23) to the distribution in (33) we get the qth quantile in the mixture
distribution:

Q (G, q) = Q

(
F,
q − ι (yq ≥ z) δ

1− δ

)
(39)

where yq = Q (F, q) is the qth quantile for the (unmixed) income distribution.
Let f be the density function for the distribution function F ; then, differentiat-
ing (39) with respect to δ and setting δ = 0, we obtain the following result.

Lemma 2 The IF for the quantile functional is:

IF(z;Q(·, q), F ) = q − ι(Q(F ; q) ≥ z)
f(Q(F ; q)) = q − ι(yq ≥ z)

f(yq)
. (40)

Likewise if we apply (25) to the distribution in (33) we get the qth income
cumulation in the mixture distribution:

C(G; q) = [1− δ]
ˆ Q(G,q)

y

y dF (y) + δz (41)

where Q (G, q) is given by (39). Once again, differentiating (41) with respect to
δ and setting δ = 0 we obtain another basic result.

Lemma 3 The IF for the cumulative income functional is:

IF(z;C(·, q), F ) = qQ(F ; q)− C(F ; q) + ι(q ≥ F (z))[z −Q(F ; q)]
= qyq − cq + ι(yq ≥ z)[z − yq]. (42)

We will find that these results are useful not only for welfare indices consid-
ered in this section but also for distributional comparisons treated in section 5
below.

4.2.3 QAD Welfare indices

Let us first deal with the broad WQAD class, the welfare indices that are quasi-
additively decomposable; we will turn to the important, but more difficult,
rank-dependent class WRD later. Fortunately this class covers a great number
of commonly used tools of distributional analysis; fortunately also the properties
are straightforward. Given a sample y1, . . . , yn, the sample analogues of WQAD
defined in (30) are given by

ŴQAD := WQAD(F (n)) = 1
n

n∑
i=1

ϕ (yi, µ̂) (43)
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where F (n) is the EDF defined in equation (8) and µ̂ is the sample mean:

µ̂ := µ
(
F (n)

)
= 1
n

n∑
i=1

yi. (44)

Substituting the mixture distribution (33) into (30), differentiating with re-
spect to δ and evaluating at δ = 0 we find the influence function for the QAD
class as:

IF(z; WQAD,F) = ϕ (z, µ(F))−WQAD(F) + [z − µ(F)]
ˆ
ϕµ (z, µ(F)) dF(z)

(45)
where ϕµ denotes the partial derivative with respect to the second argument.
This influence function can be expressed as in (36), that is, as a random variable
Z minus its expectation,

IF(y,WQAD, F ) = Z − E(Z), (46)

wher\,{\mathrm{d}}

Z = ϕ (y, µ(F )) + y

ˆ
ϕµ (y, µ(F )) dF (y). (47)

From (36) and (37), the asymptotic variance of
√
n(ŴQAD − WQAD) is then

equal to the variance of Z. From (38), the asymptotic variance of ŴQAD can
be estimated from a sample using

v̂ar(ŴQAD) = 1
n

v̂ar(Z). (48)

4.3 Application: Inequality measures
Almost all commonly-used inequality indices other than the Gini coefficient can
be written in the form Ψ (WQAD(F ), µ(F )) where Ψ : R2 → R. So we can
use the results on the broad WQAD class to derive the sampling distribution
for a large range of inequality measures. We consider two leading examples in
sections 4.3.1 and 4.3.2.

4.3.1 The generalised entropy class

We consider first the important Generalised Entropy (GE) class of inequality
measures indexed by the parameter given in equations (49)-(51)

IξGE(F ) = 1
ξ2 − ξ

[ˆ y

y

[
y

µ(F )

]ξ
dF (y)− 1

]
, ξ ∈ R, ξ 6= 0, 1 (49)

I0
GE(F ) = −

ˆ y

y

log
(

y

µ(F )

)
dF (y) (50)
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I1
GE(F ) =

ˆ y

y

y

µ(F ) log
(

y

µ(F )

)
dF (y) (51)

Clearly the GE class belongs to the more restrictive decomposable class of in-
dices given in (28). The parameter ξ of the GE class characterizes the sensitivity
to income differences in different parts of the income distribution. The more
positive (negative) ξ is, the more sensitive is the inequality measure to income
differences at the top (bottom) of the distribution. The Mean Logarithmic De-
viation (MLD) index, I0

GE(F ), is the limiting case when ξ = 0. The Theil index,
I1
GE(F ), is the limiting case of the GE when ξ = 1. The sample analogues of
these indices are given by

ÎξGE := IξGE(F (n)) =


[n(ξ2 − ξ)]−1∑n

i=1[(yi/µ̂)ξ − 1] for ξ 6= 0, 1
−n−1∑n

i=1 log(yi/µ̂) for ξ = 0
n−1∑n

i=1(yi/µ̂) log(yi/µ̂) for ξ = 1
(52)

Using (46), (47) and (48), we find that the variance of the generalised entropy
measures can be estimated by

v̂ar(ÎξGE) = 1
n2

n∑
i=1

(Zi − Z̄)2 (53)

where

Zi =


(ξ2 − ξ)−1(yi/µ̂)ξ − ξ(yi/µ̂)

[
ÎξGE + (ξ2 − ξ)−1

]
for ξ 6= 0, 1

(yi/µ̂)− log yi for ξ = 0
(yi/µ̂)

[
log(yi/µ̂)− Î1

GE − 1
]

for ξ = 1
(54)

From a sample y1, . . . , yn, the values of Z1, . . . , Zn can be calculated for a fixed
ξ. The variance estimate of the generalised index is then computed as the
empirical variance of Z1, . . . , Zn divided by n.

To show the results in (54), let us consider the case ξ 6= 0, 1, from which we
have

ϕ (y, µ(F )) = 1
ξ2 − ξ

[[
y

µ(F )

]ξ
− 1
]

(55)

ϕµ (y, µ(F )) = −ξ
ξ2 − ξ

[
yξ

µ(F )ξ+1

]
= − ξ

µ

(
ϕ (y, µ(F )) + 1

ξ2 − ξ

)
(56)

Substitute (55) and (56) into (47) gives the result in (54) where y is replaced by
its sample realization yi. The same methodology can be applied for the cases
ξ = 0 and ξ = 1.
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Clearly the same approach can be applied to functions of moments of the dis-
tribution such as the coefficient of variation. Likewise the statistical properties
of the Atkinson class of inequality indices (Atkinson 1970)

IξAtk(F ) = 1−
[ˆ y

y

[
y

µ(F )

]ξ
dF (y)

]1/ξ

, ξ < 1 (57)

can easily be derived from (53).39

The standard approach to obtain the results for the GE class and associated
indices is by expressing the indices as a function of moments of the distribution
and using the delta method. We can show that both IF and delta approaches
give the same results. Indeed, from (28) and (29) a decomposable inequality
measure can written as a function of two moments,

I = ψ( ν ; µ ) with µ = E(y) and ν = E(φ(y)), (58)

where φ and ψ are functions R2 → R and ψ is monotonic increasing in its first
argument; in particular this is true for the IξGE and IξAtk families. The estimation
of inequality indices is usually obtained by replacing the unknown moments of
the distribution by consistent estimates. The moments are directly estimated
by their sample counterparts. Let us consider yi, for i = 1, . . . , n, a sample of
IID observations drawn from F . The estimator of the inequality measure can
be expressed as a non-linear function of two consistently estimated moments,

Î = ψ ( ν̂ ; µ̂ ) with µ̂ = 1
n

N∑
i=1

yi and ν̂ = 1
n

N∑
i=1

φ(yi). (59)

From the Central Limit Theorem (CLT), this estimator is also consistent and
asymptotically Normal, with asymptotic variance that can be calculated by the
delta method. Specifically, the asymptotic variance is equal to

var
(
Î
)

=
(
∂ψ

∂ν

)2
var(ν̂) + 2

(
∂ψ

∂ν

∂ψ

∂µ

)
cov(ν̂, µ̂) +

(
∂ψ

∂µ

)2
var(µ̂). (60)

An estimate of the asymptotic variance can be obtained by replacing the mo-
ments and their variances and covariance by consistent estimates. For the case
ξ = 0, the MLD index can be written I0

GE = logµ− ν where ν =
´

log y dF (y).
From (60), the asymptotic variance given by the delta method is equal to

1
µ2 var(µ̂)− 2

µ
cov(µ̂, ν̂) + var(ν̂). (61)

From the influence function approach, we have Z = y/µ− log y and, the asymp-
totic variance of the MLD index is the variance of Z divided by n,

1
n
var(Z) = 1

n

[
1
µ2 var(y)− 2

µ
cov(y, log y) + var(log y)

]
. (62)

39From (49), (50) and (57) we have IξAtk(F ) = 1 − [(ξ2 − ξ)IξGE(F ) + 1]1/ξ , ξ 6= 0, and
I0
Atk(F ) = 1− exp(−I0

GE(F )).
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The two equations (61) and (62) are identical, which demonstrates that the
delta and the IF methods give similar results. It can be also demonstrated for
ξ 6= 0.40

4.3.2 The mean deviation and its relatives

Now consider the mean deviation, an inequality index which does not belong
to the class of decomposable indices (28), but does belong to the quasi-additive
class (30).

IMD(F ) :=
ˆ
|y − µ(F )| dF (y).

Noting that IMD(F ) can be rewritten as

IMD(F ) = 2
ˆ
ιy [y − µ(F )] dF (y) (63)

where ιy := ι(y ≥ µ(F )), the influence function is

IF(z; IMD, F ) = 2 [ιz + q̄ − 1] [z − µ(F )]− IMD(F ) (64)

where q̄ := F (µ). The asymptotic variance of the MD index can be obtained,
rewriting the influence function as a random variable minus its expectation
IF(y; IMD, F ) = Z − E(Z). From (64), we have

Z = 2(q̄ − 1)y + 2ιy[y − µ(F )] (65)

From Lemma 1, (36), (37), the asymptotic variance of
√
n(IMD(F (n))−IMD(F ))

is then equal to the variance of Z.
From a sample (y1, . . . , yn), the Mean Deviation index can be estimated as,

ÎMD := IMD(F (n)) = 1
n

n∑
i=1
|yi − µ̂| . (66)

The asymptotic variance can be estimated as the empirical variance of (Z1, . . . , Zn)
divided by n,

v̂ar(ÎMD) = 1
n2

n∑
i=1

(Zi − Z̄)2, (67)

where
Zi = 2(q̂ − 1)yi + 2(yi − µ̂) ι(yi ≥ µ̂), (68)

and q̂ := F (n)(µ̂) = n−1∑
i=1 ι(yi ≤ µ̂).

40For extensions to the case of weighted data and complex survey design see Zheng and
Cushing (2001), Cowell and Jenkins (2003), Biewen and Jenkins (2006), Verma and Betti
(2011). For an alternative approach to estimation of Atkinson indices using a Box-Cox trans-
formation, see Guerrero (1987).
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The same methodology with some extra terms can be used to derive the
asymptotic variance of the more commonly used relative mean deviation or
Pietra ratio ˆ ∣∣∣∣ y

µ(F ) − 1
∣∣∣∣ dF (y).

In the literature, the asymptotic variance is usually obtained with the IF
method without using it expressed as a function of a random variable minus its
expectation. It gives similar numerical results, but formulas and implementation
are more complicated. For instance, using Lemma 1 and equations (64) and (63),
the asymptotic variance of the Mean Deviation can be derived as follows:
ˆ

IF(z; IMD, F )2 dF (z) = 4
ˆ

[ιz + q̄ − 1]2 [z − µ(F )] 2 dF (z) + IMD(F )2

−2IMD(F )
ˆ

2ιz [z − µ(F )] dF (z)

= 4 [q̄ − 1]2
ˆ µ(F )

y

[z − µ(F )]2 + 4q̄2
ˆ ȳ

µ(F )
[z − µ(F )] 2 − IMD(F )2

This formula for the asymptotic variance of the mean deviation index is as the
same as derived in Gastwirth (1974).

4.3.3 The Gini coefficient

The general form (31) is cumbersome but we can fairly easily derive results for
the most important member of this class, namely the Gini coefficient.

The Gini index can be expressed in a number of different forms. Let us
consider the following expressions,

IGini(F ) = 1
2µ

ˆ ˆ
|y − y′|dF (y) dF (y′), (69)

= 1− 2
ˆ 1

0
L(F ; q) dq, (70)

where L(F ; q) = C(F ; q)/µ(F ) is the qth ordinate of the Lorenz curve – see
equation (121) below. Equation (69) presents the Gini as the normalised average
absolute difference between all the possible pairs of incomes in the population,
while equation (70) shows that the Gini index is twice the area between the
Lorenz curve and the 450 line.

Applying the influence function method to the form (70) we find the IF of
IGini to be given by (Monti 1991)

IF(z; IGini, F ) = 1−IGini(F )−2C(F ;F (z))
µ(F ) +z 1− IGini(F )− 2 [1− F (z)]

µ(F ) (71)

The asymptotic variance of the Gini coefficient has been derived from the influ-
ence function in Cowell and Victoria-Feser (2003), Bhattacharya (2007), Barrett
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and Donald (2009) and Davidson (2009a, 2010). A simple formula can be ob-
tained, noting that the IF of the Gini index can be expressed as a random
variable minus its expectation, IF(z; IGini, F ) = (Z − E(Z))/µ(F ), where41

Z = [1− IGini(F )] z − 2[C(F ;F (z)) + z(1− F (z))] (72)

Using Lemma 1, (36) and (37), one immediately gets the asymptotic variance
of
√
n(IGini(F (n))− IGini(F )), equal to the variance of Z divided by the square

of the mean, var(Z)/µ(F )2.
The computation of the Gini index and its variance can be easily obtained

in practice. The definition (69) can alternatively be expressed in the following
convenient form:42

IGini(F ) = 2
µ

ˆ ∞
0

yF (y) dF (y)− 1 = 2
µ
cov(y, F (y)) (73)

In other words the Gini equals 2/µ times the covariance between y and F (y).
For the distribution-free approach, we replace µ(F ) by the sample mean µ̂ and
the covariance by an unbiased estimate in (73). It leads us to compute the Gini
index as:

ÎGini = IGini

(
F (n)

)
=

2
∑n
i=1 iy(i)

µ̂n(n− 1) −
n+ 1
n− 1 (74)

where the y(i), i = 1, . . . , n, are the order statistics (y(1) ≤ y(2) ≤ · · · ≤ y(n)).43

Davidson (2009a) shows that this expression is a bias-corrected estimator of the
Gini index,44 and proposed estimating the variance of the Gini index as:

v̂ar(ÎGini) = 1
(nµ̂)2

n∑
i=1

(Zi − Z̄)2 (75)

where

Zi = −(ÎGini + 1)y(i) + 2i− 1
n

y(i) −
2
n

i∑
j=1

y(j) (76)

and Z̄ = n−1∑n
i=1 Zi. Here the Zi terms are estimates of the realizations

of Z defined in (72), where the value of F (y(i)) is estimated by F (n)(y(i)) =
(2i − 1)/(2n).45 Davidson (2010) extends this approach to derive a variance
estimator for the family of S-Gini indices.

41Note that E[C(F ;F (z))] = E[z [1− F (z)]] = [1− IGini(F )]µ(F )/2.
42Using the definition of the Lorenz curve in (70), interchanging the order of the integration

and simplifying give the result (Davidson 2009a).
43Using Cov(y, F (y)) = E(yF (y)) − E(y)E(F (y)) in (73) and replacing E(yF (y)) by (n −

1)−1
∑n

i=1 y(i)(i/n) and E(y)E(F (y)) by µ̂(n− 1)−1
∑n

i=1(i/n) gives (74).
44Equation (74) is equal to n/(n− 1) times equation (5) in Davidson (2009a).
45Other estimates of the variance of the Gini index have been proposed in the literature, but

they are either complicated or quite unreliable. Nygård and Sandström (1985), Sandström
et al. (1988), Cowell (1989), Schechtman (1991) and Bhattacharya (2007) provide formulas
that are not easy to implement. A simple method based on OLS regression has been proposed
by Ogwang (2000) and Giles (2004), but the standard errors obtained are unreliable, as shown
by Modarres and Gastwirth (2006). For a recent review of this literature, see Langel and Tillé
(2013) or Yitzhaki and Schechtman (2013); for applications to complex survey designs see
Binder and Kovacevic (1995), Kovacevic and Binder (1997).
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4.4 Application: Poverty measures
For a poverty index we need a poverty line which may be an exogenously given
constant ζ or may depend on the income distribution ζ(F ). An important class
of poverty indices can then be described in the following way:

P (F ) :=
ˆ
p (y, ζ (F )) dF (y) (77)

where p is a poverty evaluation function that is non-increasing in y and takes
the value zero for y ≥ ζ(F ). Once again we need the influence function which
is given by

IF(z;P, F ) = p (z, ζ(F ))− P (F ) +
ˆ
pζ (y, ζ) dF (y)IF (z; ζ, F ) (78)

where pζ is the differential of p with respect to its second argument (Cowell and
Victoria-Feser 1996a). It is clear from (78) that the form for the asymptotic
variance of the poverty index will depend on the precise way in which the poverty
line depends on the income distribution. The following specifications cover
almost all the versions encountered in practice

ζ(F ) = ζ0 + γµ(F ), (79)
or

ζ(F ) = ζ0 + γyq, q ∈ Q, (80)
where yq is defined in (24). The interpretation is that the poverty line could be
tied to the mean, as in (79) in which case we have

IF(z; ζ, F ) = γIF(z;µ, F ) = γ [z − µ(F )] (81)

or to a quantile (80), such as the median in which case we have

IF(z; ζ, F ) = γ
q − ι(yq ≥ z)

f(yq)
. (82)

The asymptotic variance can be immediately calculated from (78) and (81) or
(82). Let us take the simple case where γ = 046 so that one has the exogenous
poverty line ζ0. Equation (78) yields the influence function p (z, ζ0)−P (F ) and
so, using Lemma 1, we find the asymptotic variance of P (F ) in (77) to be:

ˆ
p (z, ζ0)2 dF (z)− P (F )2.

The asymptotic variance of the poverty index is then equal to the variance of the
poverty evaluation function, var(p(y, ζ0)). We can see that the influence function
above is expressed as a function of a random variable minus its expectation,

IF(y;P, F ) = Z − E(Z) where Z = p(y, ζ0) (83)
46Note that if γ > 0 then to estimate the asymptotic variance of P using (81) one needs

information on the whole distribution; with (82) one needs a density estimate at yq .
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From (36) and (37) the asymptotic variance is the variance of Z.
A second important class of poverty indices consists of those in the rank-

dependent form – compare (31) above – and can be described in the following
way:

PRD(F ) :=
ˆ
p (y, ζ (F ) , F (y)) dF (y) (84)

Comparing (84) with (77) we see that the poverty evaluation function p has an
extra argument reflecting the individual’s rank in the population. The influence
function for this class of poverty measures is more complicated (Cowell and
Victoria-Feser 1996a) and we deal with this separately in sections 4.4.2 and
4.4.3.

4.4.1 Foster-Greer-Thorbecke (FGT)

For a fixed poverty line ζ0 the widely used class of poverty indices introduced
by Foster et al. (1984) belongs to the class (77) and has the form

P ξFGT(F ) =
ˆ ζ0

0

(ζ0 − y
ζ0

)ξ
dF (y) ξ ≥ 0, (85)

When ξ = 0, the FGT poverty measures is equal to the headcount ratio, which
gives the proportion of individual living in poverty, F (ζ0). This index is in-
sensitive to the distribution of incomes among the poor and, therefore, to the
depth of poverty. When ξ = 1, the FGT poverty measures is the poverty gap
index, which consider how far, on the average, the poor are from that poverty
line. This index captures the depth of poverty, but it is insensitive to some
types of transfers among the poor and, therefore, to some distributional aspect
of poverty. Let yi, i = 1, . . . , n, be an IID sample from the distribution F . The
FGT poverty indices (85) can be estimated consistently as follows:

P̂ ξFGT := P ξFGT

(
F (n)

)
= 1
n

np∑
i=1

(
ζ0 − y(i)

ζ0

)ξ
, (86)

where np is the number of individuals with incomes not greater than the poverty
line, that is, the number of poor, and y(i), i = 1, . . . , n are the order statistics
(y(1) ≤ y(2) ≤ · · · ≤ y(n)). This estimate is asymptotically Normal, with a
variance that can be estimated as:47

v̂ar(P̂ ξFGT) = 1
n

(
P̂ 2ξ

FGT −
(
P̂ ξFGT

)2
)
. (87)

We can also estimate the asymptotic variance of the FGT index using the
influence function expressed as a function of a random variable minus its expec-
tation. From (77), (83) and (85), we have IF(y, P ξFGT, F ) = Z − E(Z) where

Zi =
∣∣∣∣1− y

ζ0

∣∣∣∣ξ ι(y ≤ ζ0) (88)

47See Kakwani (1993).
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From Lemma 1, (36), (37), the asymptotic variance of
√
n(PFGT(F (n))−PFGT(F ))

is then equal to the variance of Z. From a sample (y1, . . . , yn), let us define

Zi =
{[

(ζ0 − y(i))/ζ0
]ξ for i ≤ np

0 for i > np
(89)

where the y(i), i = 1, . . . , n, are the order statistics. We can see that

P̂ ξFGT = 1
n

n∑
i=1

Zi = Z̄ and v̂ar(P̂ ξFGT) = 1
n2

n∑
i=1

(Zi − Z̄). (90)

The FGT index can be estimated by the mean of Zi, for i = 1, . . . , n, with
a variance estimated by the empirical variance of Zi, divided by n. The two
approaches, in equations (86), (87) and in (90), give similar numerical results.48

4.4.2 Sen

The Sen poverty index (Sen 1976) belongs to the class (84) and can be expressed
as the average of the headcount ratio and the poverty gap index, weighted by
the Gini coefficient among the poor,

PSen (F ) = P 0
FGTI

p
Gini + P 1

FGT(1− IpGini), (91)
where IpGini is the Gini index computed with incomes below the poverty lines.
When the distribution of incomes among the poor is equal, IpGini = 0, the Sen
index is equal to the headcount ration (PSen = P 0

FGT). When the distribution
of incomes among the poor is extremely unequal, IpGini = 1, the Sen index is
equal to the poverty gap index (PSen = P 1

FGT).
The Sen poverty measure can be written

PSen(F ) = 2
ζ0F (ζ0)

ˆ ζ0

0
(ζ0 − y)(F (ζ0)− F (y)) dF (y) (92)

From Davidson (2009a), we can derive the influence function as a function of
a random variable minus its expectation, IF(z, PSen, F ) = 2

ζ0F (ζ0) (Z − E(Z)),
where49

Z =
[
ζ0F (ζ0)− ζ0PS

2 − zF (ζ0) + zF (z)− C(F ;F (z))
]
ι(z ≤ ζ0) (93)

A consistent estimate of the Sen’s poverty index can be obtained by replacing
F by F (n) in (92),50

P̂Sen := PSen

(
F (n)

)
= 2
nnpζ0

np∑
i=1

(ζ0 − y(i))
(
np − i+ 1

2

)
, (94)

48The problem of estimation in the presence of complex survey design is addressed in Howes
and Lanjouw (1998), Zheng (2001), Berger and Skinner (2003), Verma and Betti (2011).

49In equation (50) in Davidson (2009a), replacing yi in the expression of the summand by
z yields the influence function. The relationship to the IF is not related in the last paper, it
is related in Davidson (2010) where the same method is used with S-Gini indices.

50This expression does not coincide exactly with Sen’s own definition for a discrete popula-
tion. See Appendix A in Davidson (2009a) for a discussion of this point.
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where the value of F (y(i)) is estimated by F (n)(y(i)) = (2i − 1)/(2n). This
estimate is asymptotically Normal, with a variance that can be computed as
follows:

v̂ar
(
P̂Sen

)
= 4

(ζ0np)2

n∑
i=1

(Zi − Z̄)2 (95)

where

Zi = ζ0
2

(
2np
n
− P̂Sen

)
− 2np − 2i+ 1

2n y(i) −
1
n

i∑
j=1

y(j) (96)

for i = 1, . . . , np, and Zi = 0 for i = np+1, . . . , n, with Z̄ = n−1∑n
i=1 Zi. Here,

Zi are estimates of the realizations of Z defined in (93).51

4.4.3 Sen-Shorrocks-Thon (SST)

The Sen-Shorrocks-Thon index is a convenient modified version of the Sen’s
poverty index, defined as follows,

PSST (F ) = P 0
FGTP

1
FGTg (1 + IpgGini) (97)

where P 1
FGTg

is the poverty gap index computed with incomes below the poverty
line, and IpgGini is the Gini coefficient computed with individual’s poverty gap
ratios rather than individual’s incomes for the whole population ((ζ0 − yi)/ζ0
rather than yi, for i = 1, . . . , n).52 The Gini coefficient of poverty gap ratios
can be viewed as a measure of poverty inequality in a society. The SST index
satisfies the transfer and continuity axioms, while the Sen index does not.53

This index can be decomposed into

∆ logPSST = ∆ logP 0
FGT + ∆P 1

FGTg + ∆ log(1 + IpgGini) (98)

A percentage change in SST can then be viewed as the sum of percentage changes
in the proportion of poor, the average poverty gap among the poor and one plus
the Gini index of poverty gaps for the population. The poverty is decomposed
in three aspects: are there more poor? are the poor poorer? is there higher
poverty inequality in the society?

The SST poverty index can be written

PSST(F ) = 2
ζ0

ˆ ζ0

0
(ζ0 − y)(1− F (y)) dF (y) (99)

51Another variance estimator has been proposed by Bishop et al. (1997).
52The original index was proposed by Shorrocks (1995). Xu and Osberg (2002) show that

it can be written as equation (97). They also show that the Sen index is equal to S =
P 0
FGTP

1
FGTg

(1 + IpgGini) and therefore that the SST index differs from the Sen index because
it uses the Gini index of poverty gap ratios for the whole population, whereas the Sen index
uses the Gini index of poverty gap ratios for the poor

53The (strong upward) transfer axiom states that an increase in a poverty measure should
occur if the poorer of the two individuals involved in an upward transfer of income is poor,
and even if the beneficiary crosses the poverty line.
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As in section 4.4.2 we derive the influence function as a function of a random
variable minus its expectation, IF(z, PSST, F ) = 2

ζ0
(Z − E(Z)), where54

Z = [ζ0(1− F (ζ0))− z(1− F (z)) + C(F ;F (ζ0))− C(F ;F (z))] ι(z ≤ ζ0)
(100)

The SST poverty index can be consistently estimated as:55

P̂SST := PSST

(
F (n)

)
= 2
ζ0n(n− 1)

np∑
i=1

(ζ0 − y(i))(n− i) (101)

It is asymptotically Normal, with an estimator of the variance given by

v̂ar(P̂SST) = 4
ζ2
0 (n− 1)2

n∑
i=1

(Zi − Z̄)2 (102)

where

Zi = ζ0

(
1− np

n

)
− 2n− 2i+ 1

2n y(i) + 1
n

np∑
j=1

y(j) −
1
n

i∑
j=1

y(j) (103)

for i = 1, . . . , np, and Zi = 0 for i = np + 1, . . . , n, with Z̄ = n−1∑n
i=1 Zi.Here,

Zi are estimates of the realizations of Z defined in (100).

4.5 Finite sample properties
4.5.1 Asymptotic and bootstrap methods

Asymptotic Normality allows us to perform asymptotic inference. In practice,
we are concerned with finite samples and asymptotic inference can be unreliable.
When asymptotic inference does not perform well in finite sample, bootstrap
methods can be used to perform accurate inference. The bootstrap appears to
be an ideal method for inference with inequality and poverty indices, since the
observations of the sample are often IID.

Let us consider a welfare indexW and its sample counterpart Ŵ . An asymp-
totic confidence interval at 95% would be computed as

CIasym = [Ŵ − c0.975v̂ar(Ŵ )1/2 ; Ŵ − c0.025v̂ar(Ŵ ))1/2] (104)

where c0.025 and c0.975 are the 2.5-th and 97.5-th percentiles of the asymptotic
distribution of the t-statistic, t = (Ŵ −W0)/v̂ar(Ŵ ), whereW0 is the true value

54In the first equation of column two p.39 in Davidson (2009a), replacing yi in the expression
of the summand by z yields the influence function. The relationship to the IF is not related
in the last paper, it is related in Davidson (2010) where the same method is used with S-Gini
indices

55The SST index defined by Shorrocks (1995) is obtained by replacing F by F̂ in (99).
Here, (101) is a simplified version of the bias-corrected estimator in the last equation of p.37
in Davidson (2009a). In the case of complex survey data see Osberg and Xu (2000).
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of the welfare index. In general, the asymptotic distribution of the t-statistic is
the standard Normal distribution, from which we have c0.975 = −c0.025 ≈ 1.96.

When the bootstrap is used in combination with the asymptotic variance
estimate, asymptotic refinements can be obtained over asymptotic methods.56

To compute a bootstrap confidence interval, we generate B samples of size n by
re-sampling with replacement from the observed sample. For bootstrap sample
b, we compute the index Ŵ ∗b , its variance estimate v̂ar(Ŵ ∗b ), and the t-statistic
t∗b = (Ŵ ∗b − Ŵ )/v̂ar(Ŵ ∗b )1/2. A bootstrap confidence interval at 95% would be
computed as

CIboot = [Ŵ − c∗0.975v̂ar(Ŵ )1/2 ; Ŵ − c∗0.025v̂ar(Ŵ )1/2] (105)

where c∗0.025 and c∗0.975 are the 2.5-th and 97.5-th percentiles of the EDF of
the bootstrap t-statistics, that is, the d0.025Be and d0.975Beorder statistics
of the t∗b , where dxe denotes the smallest integer not smaller than x. In this
approach, the unknown distribution of the population is replaced by the EDF
of the original sample, from which we generate bootstrap samples and compute
t-statistics testing the (true) hypothesis that the index is equal to Ŵ . The
simulated distribution of the bootstrap t-statistics is used, as an approximation
of the unknown distribution of t, to calculate critical values.

The bootstrap can also been used to test hypotheses and to compute p-
values. In order to test the hypothesis that the population value of the index
is W0, for a one-tailed test, the bootstrap p-value would be the proportion of
the t∗b that are more extreme than the t-statistic computed from the observed
sample t. Here, the bootstrap test is also based on the EDF of the bootstrap
t-statistics t∗b . The null hypothesis is rejected at significance level 0.05 if the
bootstrap p-value is less than 0.05. In order to test the hypothesis that two
indices are the same from two populations, a suitable t-statistic is τ = (Ŵ1 −
Ŵ2)/(v̂ar(Ŵ1) + v̂ar(Ŵ2))1/2 when the samples are independent. For bootstrap
sample b, the bootstrap statistic is computed then as τ∗b = (Ŵ ∗1b − Ŵ ∗2b − Ŵ1 +
Ŵ2)/(v̂ar(Ŵ ∗1b) + v̂ar(Ŵ ∗2b))1/2. When the samples are dependent, the statistic
should take account of the covariance and the bootstrap samples should be
generated by re-sampling pairs of observations with replacement. Again, the
bootstrap p-value would be the proportion of the τ∗b that are more extreme
than τ .

4.5.2 Simulation evidence

We now turn to the performance in finite sample of inference based on inequal-
ity and poverty measures. The coverage rate of a confidence interval is the
probability that the random interval does include, or cover, the true value of
the parameter. A method of constructing confidence intervals with good finite
sample properties should provide a coverage rate close to the nominal confi-
dence level. For a confidence interval at 95%, the nominal coverage rate is

56See Beran (1988). It means that the bootstrap method presented in this section provides
an asymptotic refinement over the percentile bootstrap proposed in Mills and Zandvakili
(1997).
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equal to 95%. In this section, we use Monte-Carlo simulation to approximate
the coverage rate of asymptotic and bootstrap confidence intervals in several
experimental designs.

In our experiments, data are generated from Lognormal distributions, Λ(y; 0, σ),
and from Singh-Maddala distributions, SM(y; 2.8, 0.193, q). As σ increases and
q decreases the upper tail of the distribution decays more slowly. The sample
size is n = 500, the number of bootstrap samples is B = 499 and the number of
experiments is N = 10 000.57 When poverty indices are used, the poverty line
is computed as half the median.

Table 6 presents coverage of asymptotic and bootstrap confidence intervals
at the 95% level for the Theil, Mean Logarithmic Deviation (MLD), Gini and
Sen-Shorrocks-Thon (SST) indices. The results show that asymptotic and boot-
strap confidence intervals are reliable when we consider the SST poverty index.
Indeed, the coverage rates of the SST index are always close to the nominal
coverage rate of 95%. In contrast, when we consider inequality measures, boot-
strap confidence intervals outperform asymptotic confidence intervals, but they
become less reliable as σ increases and q decreases. In other words, asymptotic
and bootstrap inference deteriorate as the upper tail of the underlying distri-
bution is more heavy. For instance, asymptotic confidence intervals cover the
true value of the Theil index 64.7% of times when the underlying distribution is
the Singh-Maddala with q = 0.7. Bootstrap confidence intervals provide better
results, with a coverage rate of 80.2%, but it is still significantly different from
the expected 95%. Note that the Theil index is known to be more sensitive
to the upper tail of the distribution than the MLD and Gini, and confidence
intervals with the Theil index are slightly less reliable than with the MLD and
Gini indices.

These results illustrate that asymptotic and bootstrap inference on inequal-
ity measures is sensitive to the exact nature of the upper tail of the income
distribution. Bootstrap inference on inequality measures are expected to per-
form reasonably well in moderate and large samples, unless the tails are quite
heavy.58 Moreover, asymptotic and bootstrap inference on poverty measures
perform well in finite sample.

4.5.3 Inference with heavy-tailed distributions

When the distribution is one with quite a heavy upper tail, asymptotic and
bootstrap inference are known to perform poorly in finite sample. Several ap-
proaches have been proposed in the literature to obtain more reliable inference.

Schluter and van Garderen (2009) and Schluter (2012) propose normalizing
transformation of the index, before to use the bootstrap, in order to use a

57For well-known reasons - see Davison and Hinkley (1997) or Davidson and MacKinnon
(2000) - the number of bootstrap re-samples B should be chosen so that (B + 1)/100 is an
integer

58Additional results with other distributions, other indices and hypotheses testing can been
found in Davidson and Flachaire (2007), Cowell and Flachaire (2007), Davidson (2009a, 2010,
2012)
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Theil MLD Gini SST
asym boot asym boot asym boot asym boot

Lognormal
σ = 0.5 0.927 0.936 0.936 0.942 0.942 0.943 0.926 0.952
σ = 1.0 0.871 0.913 0.922 0.936 0.922 0.936 0.945 0.940
σ = 1.5 0.746 0.854 0.888 0.921 0.876 0.920 0.964 0.937
Singh-Maddala
q = 1.7 0.915 0.931 0.938 0.945 0.945 0.944 0.945 0.950
q = 1.2 0.856 0.905 0.913 0.930 0.925 0.934 0.945 0.951
q = 0.7 0.647 0.802 0.820 0.890 0.847 0.906 0.939 0.946

Table 6: Coverage of asymptotic and bootstrap confidence intervals at the 95%
level for the Theil, MLD, Gini and SST indices, n = 500.

statistic with a distribution closer to the Normal. Let g denote a transformation
of the indexW ; a standard bootstrap confidence interval can be obtained on the
transformed index g(W ) and, therefore, on the untransformed index by inverting
the relation between the welfare index and the parameters. Let c∗0.025 and c∗0.975
be the 2.5-th and 97.5-th percentiles of the EDF of the bootstrap t-statistics

t∗b = g(Ŵ ∗b )− g(Ŵ )
g′(Ŵ ∗b )v̂ar(Ŵ ∗b )1/2

,

where g′ is the first derivative of g, a bootstrap confidence interval at 95% for
W would then be defined as[
g−1

(
g(Ŵ )− c∗0.025g

′(Ŵ )v̂ar(Ŵ )1/2
)

; g−1
(
g(Ŵ )− c∗0.975g

′(Ŵ )v̂ar(Ŵ )1/2
)]
,

if g−1 is non-decreasing, otherwise c∗0.025 and c∗0.975 should be interchanged.
For instance, Schluter (2012) exploits a systematic relationship between the
inequality estimate and its estimated variance to propose variance stabilizing
transforms of the index. He suggests to compute confidence intervals based on
the following transform of the index,

g(W ) = − 2
γ2

exp
(
−γ1

2 −
γ2

2 W
)
, (106)

where γ1 and γ2 are the intercept and the slope of a (systematic) linear relation
between the index Ŵ and the logarithmic transformation of its variance esti-
mates v̂ar(Ŵ ), and γ2 > 0. The parameters γ1 and γ2 are estimated by ordinary
least squares estimation from the regression

log v̂ar(Ŵ ) = γ1 + γ2Ŵ + ε,

where realizations of v̂ar(Ŵ ) and Ŵ are obtained by a preliminary bootstrap.
For the specific transform (106), the inverse function is equal to

g−1(x) = − 2
γ2

log
(
−γ2

2 x
)
− γ1

γ2
(107)

52



A bootstrap confidence interval at 95% can be computed using (106) and (107)
in the confidence interval defined above.

)Davidson and Flachaire (2007) and Cowell and Flachaire (2007) consider
a semiparametric bootstrap, where bootstrap samples are generated from a
distribution which combines a parametric estimate of the upper tail with a non-
parametric estimate of the rest of the distribution. The upper tail is modelled
by a Pareto distribution with parameter α estimated by the Hill estimator on
the k greatest-order statistics of a sample of size n, for some integer k ≤ n,

α̂ =
(

1
k

k−1∑
i=0

log y(n−i) − log yn−k+1

)−1

(108)

where y(j) is the jth order statistic of the sample. Each observation of a boot-
strap sample is, with probability ptail, a drawing from the CDF of the Pareto
distribution F (y) = 1 − (y/y0)−α̂, y > y0, where y0 is the order statistic of
rank n(1 − ptail), and, with probability 1 − ptail, a drawing from the empirical
distribution of the sample of smallest n(1 − ptail)-order statistics. In order for
the bootstrap to test a true null hypothesis, we need to compute the value of
the welfare index for the bootstrap distribution defined above. The CDF of the
bootstrap distribution can be written as

Fs(y) = 1
n

n(1−ptail)∑
i=1

ι[y(i) ≤ y] + ι[y ≥ y0] ptail
(
1− (y/y0)−α̂

)
, (109)

where ι(.) is the indicator function (1). Indices of interests are functionals of the
income distribution and so the index for this bootstrap distribution, Ŵs, can
be computed.59 A bootstrap confidence interval can be computed as defined in
(105), where c∗0.025 and c∗0.975 are the 2.5-th and 97.5-th percentiles of the EDF
of the bootstrap t-statistics t∗b = (Ŵ ∗b − Ŵs)/v̂ar(Ŵ ∗b )1/2. In practice, k and
ptail are chosen a priori. The number of observations k used to compute the Hill
estimator can be selected such that α̂ does not vary significantly when more
observations are taken, and ptail can be chosen such that the re-sampling from
the Pareto distribution is based on a smallest proportion of observation than
k/n. It leads the previous authors to select k = n1/2 and ptail = hk/n with
0 < h ≤ 1 in their experiments.

An alternative approach could be to generate bootstrap samples from a
distribution estimated by finite mixture models. It allows us to estimate any
density function, by allowing the number of components to vary, and, once the
number of component is selected, to use a parametric distribution to generate
bootstrap samples (see section 3.3). In order for the bootstrap to test a true null
hypothesis, we need to compute the value of the welfare index for the mixture
distribution, Ŵm. With additively decomposable inequality measures, the index

59For instance, the Theil index would be equal to Îs = νs/µs − logµs, where µs =
n−1

∑n(1−ptail)
i=1 y(i) + ptailα̂y0/(α̂− 1) and νs = n−1

∑n(1−ptail)
i=1 y(i) log y(i) + ptail[log y0 +

1/(α̂− 1)]α̂y0/(α̂− 1).
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asym boot varstab semip mixture
Lognormal
σ = 0.5 0.927 0.936 0.939 0.937 0.942
σ = 1.0 0.871 0.913 0.907 0.921 0.946
σ = 1.5 0.746 0.854 0.850 0.915 0.944
Singh-Maddala
q = 1.7 0.915 0.931 0.933 0.926 0.928
q = 1.2 0.856 0.905 0.899 0.905 0.912
q = 0.7 0.647 0.802 0.796 0.871 0.789

Table 7: Coverage of asymptotic and bootstrap confidence intervals at the 95%
level for the Theil index, for several bootstrap approaches, n = 500.

for the mixture distribution is easy to calculate, since the mixture distribution
is a decomposition by groups. For instance, the class of Generalized Entropy
(GE) indices can be expressed as a simple additive function of within-group and
between-group inequality. Let there be K groups and let the proportion of the
population falling in group k be pk, the class of GE indices is equal to60

IξGE =
K∑
k=1

pk

[
ȳk
ȳ

]ξ
IξGE,k −

1
ξ2 − ξ

(
K∑
k=1

pk

[
ȳk
ȳ

]ξ
− 1
)

(110)

where ȳk is the mean income in group k, ȳ is the mean income of the population
(ȳ = K−1∑K

k=1 pkȳk), and IξGE,k is the GE index in group k. For an income
distribution estimated as a finite mixture of lognormal distributions,

Fm(y) =
K∑
k=1

π̂kΛ(y; µ̂k, σ̂k), (111)

the value of the GE index is then then equal to (110) with pk = π̂k and ȳk =
exp(µ̂k + σ̂2

k/2). The Gini index is not additively decomposable, but a formula
can be found in Young (2011) for a mixture of lognormal distribution. Bootstrap
samples are generated from the mixture distribution Fm(y) and a bootstrap
confidence interval is computed as defined in (105), where c∗0.025 and c∗0.975 are
the 2.5-th and 97.5-th percentiles of the EDF of the bootstrap t-statistics t∗b =
(Ŵ ∗b − Ŵm)/v̂ar(Ŵ ∗b )1/2.

Table 7 presents coverage of asymptotic and bootstrap confidence intervals
at the 95% level for the Theil index, with n = 500. The first two columns
correspond to asymptotic (asym) and standard bootstrap (boot) methods, they
reproduce the results given in Table 6, given here as benchmarks. The other
columns show the results for the alternative bootstrap methods presented above.
Results obtained by the approach proposed by Schluter (2012) are presented in
the third column (varstab), bootstrapping a variance stabilizing transform of
the Theil index. In the fourth column, the semiparametric bootstrap proposed

60See Cowell (2011).
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by Davidson and Flachaire (2007) and Cowell and Flachaire (2007) is used to
generate bootstrap samples (semip), with k = n1/2 and h = 0.6. Finally, boot-
strap samples generated from a mixture of lognormal distributions is considered
in the last column (mixture). The simulation results show that, in the presence
of very heavy-tailed distributions (σ = 1.5, q = 0.7), significant improvements
can be obtained with alternative methods over asymptotic and standard boot-
strap methods. However, none of the alternative methods provides very good
results overall.

4.5.4 Testing equality of inequality measures

Confidence intervals are often used to make comparisons between several sam-
ples. The values of an index computed from independent samples are statis-
tically different if the confidence intervals do not intersect. We can thus test
if inequality or poverty measures are different between several countries or dif-
ferent periods of time, by comparing their confidence intervals. However, the
previous results suggest that this approach may be unreliable when comparing
inequality measures if the underlying distributions are quite heavy-tailed.

Another principal way of doing inference is performing hypothesis tests.
Testing the equality of inequality measures with a t-statistic, Dufour et al.
(2013) show that almost exact inference can be obtained with a specific boot-
strap method, if the samples come from distributions not too far away from each
other, even with very heavy-tailed distributions and very small samples. They
also show that this method outperforms other methods when the distributions
are far away from each other.

Let us consider two independent samples X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , ym} assumed to be two sets of n and m independent observations
from distributions Fx and Fy. The null hypothesis that an inequality measure
W is the same in the two distributions, H0 : Wx = Wy, can be tested with a
t-statistic,

τ = (Ŵx − Ŵy)/[v̂ar(Ŵx) + v̂ar(Ŵy)]1/2, (112)

where τ follows asymptotically the standard Normal distribution. A standard
bootstrap approach would be to generate bootstrap samples X? and Y ? by
re-sampling with replacement, respectively, n observations from X and m ob-
servations from Y . The bootstrap samples are drawings from X and Y , from
which an inequality measure would provide different numerical results. The null
hypothesis tested from the original sample is then not respected in the boot-
strap data generating process. A modified t-statistic has to be computed to test
a true null hypothesis from a bootstrap sample b,

τ?b = [Ŵx?
b
− Ŵy?

b
− (Ŵx − Ŵy)]/[v̂ar(Ŵx?

b
) + v̂ar(Ŵy?

b
)]1/2 (113)

The bootstrap distribution is the EDF of the B bootstrap statistics, τ?b for
b = 1, . . . , B, it is used as an approximation of the true distribution of the
t-statistic τ .
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Dufour et al. (2013) propose generating bootstrap samples X?? and Y ??,
by re-sampling with replacement, respectively, n and m observations from the
combined sample of n+m observations,{

x1

x̄
, . . . ,

xn
x̄
,
y1

ȳ
, . . . ,

ym
ȳ

}
, (114)

where x̄ and ȳ are sample means. The bootstrap samples are drawn from the
same set of observations, the null hypothesis tested from the original sample
is then respected in the bootstrap data generating process. The bootstrap t-
statistic is,

τ??b = (Ŵx??
b
− Ŵy??

b
)/[v̂ar(Ŵx??

b
) + v̂ar(Ŵy??

b
)]1/2. (115)

If the underlying distributions are identical, Fx = Fy, this approach is closely
related to permutation tests, known to provide exact inference in finite sam-
ples.61 Dufour et al. (2013) show that this bootstrap method is still valid when
Fx 6= Fy, and, it outperforms asymptotic and standard bootstrap methods. A
nice property respected by this approach is that the null hypothesis is respected
in the bootstrap re-sampling scheme. This property is known to provide more
efficient bootstrap methods, it is the Golden Rule 1 for the bootstrap in David-
son (2007).

To illustrate, let us consider a simulation experiment concerned by testing
the equality of the Gini index, H0 : IGini(Fx) = IGini(Fy). Data are generated
from Singh-Maddala distributions, SM(y; a, b, q), for which the upper-tail be-
haves like a Pareto distribution with shape parameter α = aq. The smaller is
α, the heavier is the upper tail of the distribution. In the experiments, we con-
sider several Singh-Maddala distributions for which the Gini index is identical
but the shape parameter varies, α = 4.76, 4.18, 3.80, 3.53, 3.19, 2.78, 2.59.62 The
sample size is very small, n = m = 50, and the distributions quite heavy-tailed
to stress-test the methods employed in testing. The number of replications is
equal to 10 000 and the number of bootstrap samples is B = 999. We compute
the rejection probability, or rejection frequency, as the proportion of p-value less
than a nominal level equals to 0.05.63 Inference is exact if the rejection prob-
ability is equal to 0.05. Table 8 shows rejection frequencies for the Gini index,
as Fy is moving away from Fx with heavier upper tails (as αx−αy increases),64

for asymptotic (asym), standard bootstrap (boot) and the bootstrap method
61See Fisher (1935), Dwass (1957), Good (2000), Dufour (2006). A permutation test is

similar, but re-sampling is done without replacement.
62It corresponds to Singh-Maddala distributions with parameters (a, q) equal to (2.8, 1.7),

(3.0, 1.3921126), (3.2, 1.1866026), (3.4, 1.0388049), (3.8, 0.8387663), (4.8, 0.5784599) and
(5.8, 0.4473111). They share the same (scale-invariant) Gini index, equals to 0.2887138.

63For a two-tailed test, an asymptotic p-value is computed as pas = 2min (Φ(τ); 1− Φ(τ))
and a bootstrap p-value similarly, but bootstrap distribution replaces the asymptotic one,
pboot = 2min

(
1
B

∑B

b=1 ι(τ
?
b ≤ τ); 1

B

∑B

b=1 ι(τ
?
b > τ)

)
. The null hypothesis is rejected if the

p-value is smaller than the nominal level.
64Fx is fixed and Fy moves away from Fx, with shape parameters αx = 4.76 and αy =

4.76, 4.18, 3.80, 3.53, 3.19, 2.78, 2.59.
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αx − αy asym boot bootH0
0.00 0.0770 0.0614 0.0500
0.58 0.0796 0.0612 0.0496
0.96 0.0825 0.0639 0.0510
1.23 0.0865 0.0668 0.0539
1.57 0.0956 0.0719 0.0586
1.97 0.1138 0.0824 0.0705
2.57 0.1289 0.0911 0.0805

Table 8: Rejection frequencies for the Gini index, H0 : IGini(Fx) = IGini(Fy),
as Fx moves away from Fx (as αx − αy increases), at nominal level α = 0.05,
n = 50.

proposed by Dufour et al. (2013) (boot H0).65 The values in column 4 are
always closer to the nominal level 0.05 than the values in columns 2 and 3, they
are also very close to 0.05 when αx − αy < 1.57. It suggests that the bootstrap
method proposed by Dufour et al. (2013) outperforms asymptotic and standard
bootstrap methods and that reliable inference is obtained when the underlying
distributions are not too far away from each other.

4.6 Parametric approaches
Sections 4.2 to 3.4 deal solely with distribution-free methods: in a sense we are
working directly with the sample data. An alternative approach assumes that
the distribution is known,66 up to some parameters, and can be consistently
estimated. A preliminary parametric estimation of the distribution is then ob-
tained and the moments of the parametric distribution are estimated. When the
distribution is parametric, inequality indices can be expressed as functions of
the distribution parameters. Table 9 shows the formulas of the Theil, MLD and
GE measures of inequality for the Lognormal and Pareto distributions. They
are also given for the Generalized Beta distribution of the second kind (GB2),
a four-parameter distribution defined in equation (5) when c = 1, Γ(.) is the
gamma function and ψ(.) = Γ′(.)/Γ(.) is the digamma function.67

The Singh-Maddala distribution is the special case of the GB2 distribution
when p = 1; the Dagum distribution is the special case when q = 1 (see Figure
6). Then, to derive the expressions of the Theil, MLD and GE indices for the
Singh-Maddala and Dagum distributions, set p = 1 and q = 1 in the equations
given in the last column in Table 9. An inequality measure can be estimated

65Van Kerm (2002) compares asymptotic and bootstrap estimates of inequality measures
in large samples, using both simple random sampling and cluster sampling. Davidson and
Flachaire (2007) consider testing the difference of two inequality measures with independent
samples, but no significant improvement of their semiparametric bootstrap method over stan-
dard bootstrap method is found. Brzezinski (2013) shows that, when estimating top-income
shares, the semi-parametric bootstrap approach outperforms the standard bootstrap in sam-
ples of moderate size.

66See section 3.1 for a discussion of the common functional forms that may be applied.
67see Jenkins (2009)
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by replacing the unknown parameters by consistent parameter estimates. In-
equality measures are then expressed as non-linear functions of one or several
consistent estimates. From the CLT, they are asymptotically Normal and their
asymptotic variance can be derived using the delta method.68

For several of the standard parametric distributions the Gini index can be
also be expressed fairly easily as a function of the unknown parameters of
the underlying distribution. The Gini index for the Lognormal distribution,
Λ(y;µ, σ2), and for the Pareto distribution, Π(y;α), is equal to

IGini
(
Λ(y;µ, σ2)

)
= 2Φ

(
σ√
2

)
− 1, (116)

and
IGini (Π(y;α)) = 1

2α− 1 (117)

respectively. For the Singh-Maddala distribution and for the Dagum distribu-
tion, defined in equation (5) when c = 1 and when, respectively, p = 1 and
q = 1, the Gini index is equal to

IGini (SM(y; a, b, q)) = 1−
Γ(q)Γ(2q − 1

a )
Γ(q − 1

a )Γ(2q)
(118)

IGini (D(y; a, b, p)) =
Γ(p)Γ(2p+ 1

a )
Γ(2p)Γ(p+ 1

a )
− 1 (119)

The Singh-Maddala and Dagum distributions are encompassed by the General-
ized Beta distribution of the second kind (GB2), defined in equation (5) when
c = 1, for which the formula of the Gini index can also be obtained. However,
its expression is lengthy and involves the generalized hypergeometric function,
see McDonald (1984) or Kleiber and Kotz (2003) for an explicit formula. Since
the Gini index is defined as non-linear functions of one or several consistent esti-
mates. From the CLT, it is asymptotically Normal and the asymptotic variance
can be derived using the delta method.

5 Distributional comparisons
Apart from the simple welfare indices discussed in section 4, we also need to be
able to implement ranking tools. These tools provide the researcher with intu-
itively appealing methods of making distributional comparisons and are associ-
ated with important results in the welfare economics of distributional analysis.

68Software integrated commands can be used when calculations are cumbersome. Jenkins
(2009) used the nlcom command in STATA to compute standard errors of GE indices for the
GB2 distribution.
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Λ(y;µ, σ2) Π(y;α) GB2(y; a, b, p, q)
I1

GE
σ2

2
1

α−1 − log
(

α
α−1

)
− log

(
Γ(p+ 1

a
)Γ(q− 1

a
)

Γ(p)Γ(q)

)
+ ψ(p+ 1

a
)

a
− ψ(q− 1

a
)

a

I0
GE

σ2

2 log
(

α
α−1

)
− 1

α
log
(

Γ(p+ 1
a

)Γ(q− 1
a

)
Γ(p)Γ(q)

)
− ψ(p)

a
+ ψ(q)

a

IξGE
e

(ξ2−ξ)σ
2

2 −1
ξ2−ξ

α
α−ξ ( α

α−1 )−ξ−1
ξ2−ξ

1
ξ2−ξ

(
Γ(p+ ξ

a
)Γ(q− ξ

a
)Γξ−1(p)Γξ−1(q)

Γξ(p+ 1
a

)Γξ(q− 1
a

) − 1
)

Table 9: Parametric generalised entropy inequality measure for Lognormal (Λ), Pareto
(Π) and Generalized Beta of the second kind (GB2) distributions.

5.1 Ranking and dominance: principles
The quantile and cumulation functionals Q and C defined in section 4.1 can
be used to establish dominance criteria for income distribution comparisons in
terms of welfare or inequality, and related concepts are available for comparisons
in terms of poverty.

5.1.1 Dominance and welfare indices

First-order dominance

Using (23), for a given F ∈ F , the graph {q,Q(F, q) : q ∈ Q} describes Pen’s
parade (Pen 1974). This is the basis for first-order distributional dominance
(or first-order ranking) results. The concept of dominance can be explained
as follows: consider two distributions F,G ∈ F. Then F is said to first-order
dominate G if the following pair of conditions hold:

∀q ∈ Q : Q(F, q) ≥ Q(G, q),
∃q ∈ Q : Q(F, q) > Q(G, q).

}
(120)

To see the importance of this concept suppose we consider the class of all indices
expressible in the form69 WAD(F ) additive social-welfare functionals giving the
aggregate of φ (y) where φ (.) is some twice differentiable evaluation function
of income. In particular take the important subclass where welfare respects
the monotonicity principle – the evaluation of income is everywhere strictly
increasing:

W1 :=
{
W |W (F ) =

ˆ
φ (y) dF (y) , φ′ (y) > 0

}
.

Then the statement “W (F ) ≥ W (G), for any W ∈ W1” is equivalent to the
statement “F first-order dominates G.” If the Parade graph of F lies somewhere
above and nowhere below the Parade graph of G then welfare in F must be
higher than in G, for any social-welfare function that respects monotonicity
(Quirk and Saposnik 1962).

69See equation (28)
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Second-order dominance

The functional (25) can be used to characterise a number of standard concepts
associated with second-order dominance.

• For a given F ∈ F , the graph {q, C(F, q) : q ∈ Q} describes the generalised
Lorenz curve (GLC) This is the basis for second-order distributional dom-
inance results (Shorrocks 1983). The definition of second-order dominance
can be derived from (120) just by replacing the quantile functional Q by
the cumulant functional C. We also focus on a narrower subclass of welfare
functions:

W2 :=
{
W |W (F ) =

ˆ
φ (y) dF (y) , φ′ (y) > 0, φ” (y) ≤ 0

}
.

The concavity restriction φ” (y) ≤ 0 implies that a transfer of income
from a poorer to a richer individual can never increase social welfare; is
a weak form of the transfer principle (Dalton 1920). Then the statement
“W (F ) ≥ W (G), for any W ∈ W2” is equivalent to the statement “F
second-order dominates G.” If the GLC of F lies somewhere above and
nowhere below the GLC of G then welfare in F must be higher than in G,
for any social-welfare function that respects monotonicity and the transfer
principle (Hadar and Russell 1969). However, in distributional analysis
attention is focused not only the basic principle of second order dominance,
as just described, but also on restricted versions of this relationship that
incorporate equivalence relationships on the members of F.

• Suppose we want the second-order comparisons to be scale independent.
This requires that, for any F ∈ F and any λ > 0 the distribution of y and
of y/λ are regarded as equivalent for the the purposes of distributional
comparison; this implies that, when comparing distributions we may di-
vide incomes by an arbitrary positive constant. A natural choice for this
constant is the mean of the distribution. The scale normalisation of the
GLC by the mean (26) gives the (relative) Lorenz functional:70

L(F ; q) := C(F ; q)
µ(F ) (121)

and the graph {q, L(F ; q) : q ∈ Q} gives the relative Lorenz curve (RLC).

• As an alternative to scale independence, we might be interested in a form
of origin independence for the distributional comparisons which would
require that, for any F ∈ F and any δ ∈ R the distribution of y and
of y + δ are regarded as equivalent. Instead of the scale normalisation
used in defining the relative Lorenz curve we impose a “translational”
normalisation so as to define the absolute Lorenz curve. This is the graph
{q, A(F ; q) : q ∈ Q}, where

A(F ; q) := C(F ; q)− qµ(F ).
70This is equivalent to the income share (27).
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5.1.2 Stochastic dominance

The first-order and second-order dominance previously defined can be encom-
passed in a unified method, stochastic dominance, and extended to higher-order
dominance.71 Let us define dominance curves as follows:

Ds
F (y) := 1

(s− 1)!

ˆ y

0
(y − t)s−1 dF (t). (122)

Distribution F is said to dominate distribution G stochastically at order s if the
following pair of conditions hold:

∀y ∈ R : Ds
F (y) ≤ Ds

G(y),
∃y ∈ R : Ds

F (y) < Ds
G(y).

}
(123)

The case s = 1 corresponds to first-order dominance based on Pen’s parade,
previously defined in (120). Indeed, first-order stochastic dominance of G by
F implies that F (y) ≤ G(y) for all y and there exists y over some interval for
which the inequality holds strictly. It is similar to (120) expressed in terms of
the quantile functions rather than CDFs.

The case s = 2 corresponds to second-order dominance based on the gen-
eralised Lorenz curve (GLC), previously defined. Indeed, from (122) and (25),
we have D2

F (yq)−D2
G(yq) = C(G; q)−C(F ; q). Then, the pair of conditions in

(123) is similar to that in (120) where the quantile functional Q is replaced by
the cumulant functional C.

There is a clear relation between dominance and poverty. From (85) and
(122), we can see that Ds

F (ζ0) is equal to the FGT poverty index, up to a scale
factor. If, for all [ζ−0 ; ζ+

0 ], Ds
F (ζ0) < Ds

G(ζ0), it follows that the FGT poverty
index is lower in F than in G for all poverty lines in the interval [ζ−0 ; ζ+

0 ]. The
poverty measure can then be viewed as restricted stochastic dominance of G by
F over that interval. The stochastic dominance criterion can also be viewed as
a generalisation of poverty measures when we let the poverty line vary over the
whole support of the distribution.72

5.2 Ranking and dominance: implementation
In order to implement ranking criteria empirically a standard approach is as
follows:73

1. Choose a finite collection of population proportions Θ ⊂ Q.

2. For each q ∈ Θ compute the sample quantiles ŷq and income cumulations
ĉq required for empirical implementation of first- and second-order rank-
ings. To do this, we replace F in (23) and (25) by the EDF F (n) – see

71Fishburn (1980), O’Brien (1984), Stark and Yitzhaki (1988), Thistle (1989), O’Brien and
Scarsini (1991), Fishburn and Lavalle (1995), Davidson (2008).

72See Atkinson (1987) and Foster and Shorrocks (1988).
73We consider distribution-free methods. For parametric Lorenz curve comparisons, see

Sarabia (2008)
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equation (8). Then we have

ŷq := Q
(
F (n); q

)
= y(κ(n,q)), (124)

where
κ(n, q) := bnq − q + 1c (125)

and bxc denotes the largest integer no greater than x; we also have

ĉq := C
(
F (n); q

)
= 1
n

κ(n,q)∑
i=1

y(i) (126)

3. Compute the variances and covariances of the sample quantiles (first-
order) or the income cumulations (second order)

4. Specify carefully the ranking hypothesis that is to be tested.

Step 1 – involves a choice of how many points to select on the Parade or on the
Lorenz curve. Step 2 is easy. Step 3 is dealt with in section 5.2.1 and Step 4 in
sections 5.2.3 and 5.2.4.

5.2.1 Asymptotic distributions

The main results follow from applying Lemmas in section 4.2.2. We also need
to define one further functional analogous to (23) and (25):

S(F ; q) :=
ˆ yq

y

y2 dF (y) =: sq. (127)

and its sample counterpart:

ŝq := S
(
F (n); q

)
= 1
n

κ(n,q)∑
i=1

y2
(i) (128)

Then we have the following two theorems:

Theorem 1 For any q, q′ ∈ Q,
√
nŷq and

√
nŷq′ are asymptotically normally

distributed with covariance:74

q [1− q′]
f(yq)f(yq′)

. (129)

Proof. Immediate from Lemmas 1 and 2 �

Theorem 2 For any q, q′ ∈ Q,
√
nĉq and

√
nĉq′ are asymptotically normally

distributed with covariance:75

ωqq′ := sq + [qyq − cq] [yq′ − q′yq′ + cq′ ]− yqcq for q ≤ q′. (130)
74See Lemma 1 of Beach and Davidson (1983).
75See Theorem 1 of Beach and Davidson (1983).
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Proof. Using Lemmas 1 and 3 the asymptotic covariance of
√
nC(F (n); q) and√

nC(F (n); q′) is given by

ωqq′ =
ˆ

IF(z;C(F ; q), F )IF(z;C(F ; q′), F ) dF (z) (131)

=
ˆ

[qyq − cq + ι(yq ≥ z)[z − yq]] [q′yq′ − cq′ + ι(yq′ ≥ z)[z − yq′ ]] dF (z)

Given that ι(xq′ ≥ z) = 1 whenever ι(xq ≥ z) = 1 the right-hand side becomes

[qyq − cq] [q′yq′ − cq′ ] +
ˆ yq′

y

[qyq − cq] [z − yq′ ] dF (z)

+
ˆ yq

y

[q′yq′ − cq′ + z − yq′ ] [z − yq] dF (z) (132)

Using the definitions in (23), (25) and (127) we find that (132) becomes (130)
�

We can also rewrite the influence function as a random variable minus its
expectation. From (42) in Lemma 3, we have

IF(z;C(F, q), F ) = Zq − E(Zq) where Zq = [z − yq]ι(z ≤ yq). (133)

From (131), we can see immediately that the asymptotic covariance of
√
nĉq

and
√
nĉq′ is equal to the covariance of Zq and Zq′

ωqq′ = cov(Zq, Zq′). (134)

From a sample yi, for i = 1, . . . , n, we can then estimate the covariance of the
generalised Lorenz curve ordinates ĉq and ĉq′ as the empirical covariance of Ziq
and Ziq′ divided by n

ĉov(ĉq, ĉq′) = 1
n
ω̂qq′ = 1

n2

n∑
i=1

(Ziq − Z̄q)(Ziq′ − Z̄q′) (135)

where
Ziq = [yi − ŷq] ι(yi ≤ ŷq) (136)

and Z̄q = n−1∑n
i=1 Ziq, ŷq is given in (124).

In a practical implementation one replaces the individual components of the
right-hand side of (130) by their sample counterparts.76to obtain the following
consistent estimate of ωqq′ :

ω̂qq′ := ŝq + [qŷq − ĉq] [ŷq′ − q′ŷq′ + ĉq′ ]− ŷq ĉq. (137)

These results can also be used for the ordinates of the (relative) Lorenz curve.
Using the standard result on limiting distributions of differentiable functions of

76ŷq , ĉq and ŝq are given by (124), (126) and (128) respectively.
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random variables (Rao 1973), or using the delta method in (60), the asymptotic
covariances of

√
nĉq/µ̂ and

√
nĉq′/µ̂ are then given by

υqq′ = 1
µ4

[
µ2ωqq′ + cqcq′ω11 − µcqωq′1 − µcq′ωq1

]
for q ≤ q′. (138)

where ωq1 := sq + [qyq − cq]µ− yqcq, ω11 := s1 − µ2 and µ = µ(F ). Again, for
practical implementation, the components of the right-hand side of (138) are
replaced by their sample counterparts. We can also use the influence function
and express it as a random variable minus its expectation. The IF of the Lorenz
curve ordinate (121) is given by77

IF(z;L(F, q), F ) = 1
µ

[
qyq −

zcq
µ

+ [z − yq]ι(z ≤ yq)
]

(139)

We can rewrite the influence function as IF(z;L(F, q), F ) = Zq −E(Zq), where

Zq = 1
µ2

[
µ[z − yq]ι(z ≤ yq)− cqz

]
. (140)

The asymptotic covariance of
√
nĉq/µ̂ and

√
nĉq′/µ̂ is equal to the covariance of

Zq and Zq′ From a sample yi, for i = 1, . . . , n, we can then estimate the covari-
ance of the (relative) Lorenz curve ordinates ĉq/µ̂ and ĉq′/µ̂ as the empirical
covariance of Ziq and Ziq′ divided by n,

ĉov
(
ĉq
µ̂
,
ĉq′

µ̂

)
= 1
n
υ̂qq′ = 1

n2

n∑
i=1

(Ziq − Z̄q)(Ziq′ − Z̄q′) (141)

where
Ziq = 1

µ̂2

[
µ̂[yi − ŷq]ι(yi ≤ ŷq)− ĉqyi

]
. (142)

and Z̄q = n−1∑n
i=1 Ziq, ŷq and ĉq are given by (124) and (126) respectively.

The case of stochastic dominance can also be considered. For a given value
z, a consistent estimator of Ds

F (z) is

D̂s
F (z) = 1

n(s− 1)!

n∑
i=1

(z − yi)s−1ι(yi ≤ z) (143)

where yi, i = 1, . . . , n is a random sample of n independent observations. Since
it is a sum of independent and identically distributed (IID) observations, this
estimator is consistent and asymptotically normal. The asymptotic covariance
is also easy to calculate.78

When we compare two distributions, random samples can be obtained from
two independent populations or from two correlated populations. The last case
typically occurs when the two samples are independent paired drawings from the

77See Cowell and Victoria-Feser (2002), Donald et al. (2012).
78It is equal to (144) with F = G.
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same population, as for instance with pre-tax and post-tax distributions. In both
cases of independent and correlated samples, it can be shown that the difference
D̂s
F (zq) − D̂s

G(zq′) is asymptotically normal, with asymptotic covariance equal
to

1
((s− 1)!)2E[(zq − yF )s−1

+ (zq′ − yG)s−1
+ ]−Ds

F (zq)Ds
G(zq′) (144)

where (x)s−1
+ = xs−1 ι(x ≥ 0). This result comes from the central limit theorem,

assuming that population moments of order 2s-2 for each distribution exist.
The asymptotic covariance can be estimated with sample counterparts, with
the expectation in (144) replaced by

1
n

n∑
i=1

(zq − yF (n),i)s−1
+ (zq′ − yG(n),i)s−1

+ (145)

and Ds(x) estimated as defined in (143). For s = 2, we find an estimate of the
covariance matrix similar to that obtained in (135) and (136), for the gener-
alised Lorenz curve ordinates. More details and explicit expressions for z being
stochastic and for poverty measures can be found in the comprehensive ap-
proach to inference on stochastic dominance presented in Davidson and Duclos
(2000).79

5.2.2 Dominance: an intuitive application

Armed with theorems 1 and 2 an intuitive approach to dominance can be imme-
diately applied. Using (126) we can plot an empirical Generalised Lorenz curve
with confidence bands. Consistent estimates of the variance of the Generalised
Lorenz curve ordinates can be calculated using (135) and (136) with q = q′.
Therefore we can immediately construct an informative graphical presentation
for distributional comparisons, (q, ĉq), with 95% confidence bands computed as
[ĉq±1.96× v̂ar(ĉq)]. One could see whether it is reasonable to conclude that the
GLC for distribution F lies above that for distribution G (second-order dom-
inance). Clearly the same idea could be pursued with empirical quantiles and
parade diagrams (first-order dominance).

Figure 15(a), to the left, shows the difference between two generalised Lorenz
curves obtained from two independent samples of 5.000 observations drawn from
Singh-Maddala distributions F and G respectively, with confidence bands at
95% evaluated at the percentiles, q = .1, .2, . . . , .99.80 This figure shows that

79On dominance with complex sample design see Beach and Kaliski (1986), Zheng (1999,
2002). For an alternative approach focusing on crossings in the tails of Lorenz curves see
Schluter and Trede (2002) and for a Bayesian approach see Hasegawa and Kozumi (2003). On
the extension to absolute dominance and deprivation dominance see Bishop et al. (1988), Xu
and Osberg (1998) and on poverty dominance see also Chen and Duclos (2008), Thuysbaert
(2008).

80F is the Singh-Maddala distribution with parameters a = 2.8, b = 0.193 and q = 1.7,
used in the introduction, and G is with parameters a = 3.8, 0.193 and 0.839. The samples are
independent and hence the variance of the difference between the ordinates is the sum of the
variances from each sample
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(a) generalised Lorenz curves
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(b) relative Lorenz curves
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Figure 15: Difference between two empirical Lorenz curves, n = 5 000

distribution G dominates distribution F at second-order, since the curve of the
differences is always significantly positive. It suggests that poverty measures
based on poverty gaps will exhibit more poverty in F than in G (Jenkins and
Lambert 1997). Table 5.2.2 shows poverty measures computed from the two
samples, with 95% confidence intervals (see section 4.4). As expected, poverty
indices are significantly greater in F than in G.

We can also plot an empirical (relative) Lorenz curve with confidence bands.
Consistent estimates of the variance of the (relative) Lorenz curve ordinates,
v̂ar(ĉq/µ̂), can be calculated using (141) and (142) with q = q′. Therefore, we
can construct a graphical representation of Lorenz curves, (q, ĉq/µ̂), with 95%
confidence bands, [(ĉq/µ̂) ± 1.96 × v̂ar(ĉq/µ̂)]. In practice, (relative) Lorenz
curves often intersect and in such cases no unambiguous ranking can be ob-
tained. Nevertheless, useful information on inequality can be drawn from Lorenz
curve comparisons.

Figure 15(b), to the right, shows the difference between two relative Lorenz
curves obtained from the two samples used in Figure 15(a). The two curves
intersect in the upper part. This figure also shows that the empirical Lorenz
curve of G lies significantly above the empirical Lorenz curve of F in the bottom
part, whereas the reverse is true in the upper part, even if not clearly significant.
It suggests that inequality measures sensitive to the bottom part of income dis-
tributions would be smaller in G than in F , while inequality measures more
sensitive to the upper part of income distributions would be smaller in F than
in G. Table 5.2.2 shows inequality measures computed from the two samples,
with 95% confidence intervals (see sections 4.3) Noting that Generalised En-
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Distribution F Distribution G
Index CI95% Index CI95%

Poverty measures*
P 0

FGT 0.1134 [0.1046;0.1222] 0.0260 [0.0216;0.0304]
P 1

FGT 0.0299 [0.0270;0.0329] 0.0053 [0.0042;0.0065]
PSen 0.0426 [0.0385;0.0466] 0.0077 [0.0061;0.0093]
PSST 0.0579 [0.0523;0.0635] 0.0106 [0.0083;0.0129]
Generalised Entropy measures
I−1

GE 0.1803 [0.1694;0.1913] 0.1568 [0.1468;0.1667]
I0

GE 0.1416 [0.1351;0.1481] 0.1420 [0.1324;0.1516]
I1

GE 0.1360 [0.1289;0.1430] 0.1570 [0.1411;0.1729]
I2

GE 0.1548 [0.1431;0.1665] 0.2266 [0.1798;0.2734]
IGini 0.2849 [0.2785;0.2913] 0.2909 [0.2816;0.3001]

* The poverty line is half the median of the sample drawn from
distribution F : ζ0 = 0.07565776.

Table 10: Inequality and poverty measures, with confidence intervals at 95%,
computed from two samples of 5 000 observations drawn independently from F
and G.

tropy (GE) measures, IξGE, are more sensitive to the bottom (top) of income
distributions with smaller (higher) parameter ξ, we find the results suggested
by the previous Lorenz curve comparisons. Indeed, I−1

GE is significantly smaller
in G than in F , while I1

GE and I2
GE are smaller in F than in G, even if not

significantly different (confidence intervals intersect).
This approach is clearly ad hoc and we need to examine the issues involved

more carefully; we do this in sections 5.2.3 and 5.2.4. Graphical representation
of two empirical Lorenz curves, with confidence intervals, allows us to make
individual comparisons. We can test if each individual Lorenz curve ordinates
are significantly different between two curves. To be able to make conclusions on
dominance or non-dominance, we need to test simultaneously that all ordinates
from one curve are significantly greater or not smaller than the ordinates from
the other curve. Appropriate test statistics need to be used to make multiple
comparisons and to test simultaneously that several inequalities hold. Moreover,
Lorenz curve ordinates are typically strongly positively correlated and, thus, test
statistics need to take into account the covariance structure between the Lorenz
curve ordinates.

5.2.3 The null hypothesis: dominance or non-dominance

Performing inference on stochastic dominance is more complex than on a single
welfare index. The hypotheses tested are usually based on a set of inequalities.
For instance, first-order stochastic dominance requires that,

F (y) ≤ G(y) for all y ≥ 0, (146)
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in order to say that distribution F dominates distribution G stochastically at
order one. The theoretical literature also include the condition that F (y) < G(y)
for some y, as defined in (123). However, no statistical test can distinguish
between these two forms of weak and strict dominance.81 Since we are interested
on statistical issues hereafter, we make no distinction between weak and strict
dominance and we can write all inequalities as weak.

Inference on dominance in the population would be drawn from the corre-
sponding sample properties. From a given sample, we can consistently estimate
the two distributions by their EDF counterparts, F (n)(x) and G(n)(x). Sample
dominance is then defined as F (n)(y) ≤ G(n)(y) for all y. It is clear that domi-
nance in the population cannot be rejected if there is dominance in the sample.
It is rejected if sample non-dominance is statistically significant only. A similar
reasoning applies for non-dominance in the population. It follows that, to infer
dominance, we should test the null hypothesis of non-dominance, and, to infer
non-dominance, we should test the null of dominance.

It can be illustrated with a simple example of two distributions with the
same support and three points, y1 < y2 < y3.82 Since F (y3) = G(y3) = 1,
we will say that distribution F dominates distribution G in the population if
di = G(yi) − F (yi) ≥ 0 for i = 1, 2. Figure 16 shows two bi-dimensional plots
of d̂1 and d̂2, where the null hypothesis is, respectively, dominance and non-
dominance. Distribution F dominates G in the sample when d̂i ≥ 0, for i = 1, 2.
Then, the first quadrant, denoted I (grey area), corresponds to dominance in
the sample, while the quadrants II, III and IV correspond to non-dominance in
the sample.

First, let us consider the null hypothesis of dominance, as shown in Fig-
ure 16a, to the left. To reject dominance in the population, the non-dominance
in the sample must be statistically significant, that is, the rejection zone has to
be far enough from the dominance area, for example, in the shading lines area.
The rejection zone is exclusively in the area of non-dominance, while the (re-
maining) non-rejection zone corresponds to the dominance area plus the white
L-shaped band within the non-dominance area. Then, rejecting the null hypoth-
esis of dominance corresponds to the case of non-dominance, while non-rejecting
it is inconclusive.

Second, let us consider the null hypothesis of non-dominance, as shown in
Figure 16b, to the right. With a similar reasoning, we can see that the rejec-
tion zone is exclusively in the area of dominance, while the non-rejection zone
is composed of both non-dominance and dominance situations (grey L-shape
band). Then, rejecting the null hypothesis of non-dominance corresponds to
the case of dominance, while non-rejecting it is inconclusive.

The previous example illustrates that, positing the null of non-dominance is
the only way to draw strong conclusion of dominance. However, it comes at cost:
dominance will be inferred if there is strong evidence in its favour only. From

81Under the null of an inequality in one direction, a test cannot reject equality. Indeed,
equality is on the frontier of the inequality hypothesis and, a test cannot distinguish statisti-
cally between being ion the frontier and being very close to the frontier.

82see Davidson and Duclos (2013).
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(a) H0: dominance

d̂1

d̂2

dominance

rejection
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III
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(b) H0: non−dominance

d̂1

d̂2

rejection

zone

III

III IV

Figure 16: Tests of dominance and non-dominance. The first quadrant, I, cor-
responds to dominance of G by F in the sample (grey area). The quadrants II,
III and IV correspond to non-dominance.

Figure 16b, we can see that rejecting the null of non-dominance is quite demand-
ing, since it requires that both statistics d̂1 and d̂2 are statistically significant. It
may be too demanding, especially in the tails where both distributions tend to
the same values and where we usually have sparse data and little information.
Davidson and Duclos (2013) show that, with distributions continuous in the
tails, it is impossible to reject the null of non-dominance over the full support
of the distributions. It leads them to develop restricted stochastic dominance,
limiting attention to some interval in the middle of the distribution.

The most common approach in the literature has developed tests of stochas-
tic dominance positing the null of dominance.83 The previous example illus-
trates the standard feature in statistics that, non-rejecting the null does not
imply that the null is true, and so selecting the null hypothesis remains allows
for the possibility of being wrong at some level.84 The level at which we may be
wrong by accepting the null is unknown (L-shape bands in Figures 16a and 16b),
but it would be reduced by using statistical tests with greater power properties
in finite sample.

83See Beach and Richmond (1985), McFadden (1989), Bishop et al. (1992), Anderson
(1996), Schmid and Trede (1996), Davidson and Duclos (2000), Barrett and Donald (2003),
Linton et al. (2005), Maasoumi and Heshmati (2008).

84It is usually done when a coefficient is not significant in estimation results and, when
the analysis that follows is based on the selected regression model without the associated
covariate.
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Finally, both approaches can be seen as complementary. Rejecting the null
of dominance or non-dominance allows us to infer, respectively, non-dominance
and dominance when comparing two distributions.

5.2.4 Hypothesis testing

Test statistics have been developed in the literature under the null hypothesis
of dominance and non-dominance. We distinguish both cases, for which we can
interpret them, respectively, as union-intersection and intersection-union tests.

Under the null of dominance

Statistical test can be constructed to test the null hypothesis of dominance,
against the alternative of non-dominance. Under the null hypothesis that F
dominates G, we have

H0 : Ds
F (y) ≤ Ds

G(y), for all y ∈ Y,
H1 : Ds

F (y) > Ds
G(y), for some y ∈ Y. (147)

where Y denotes a given set contained in the union of the support of the two
distributions. An appropriate test statistic could be interpreted as a union-
intersection test, since the null hypothesis is expressed as an intersection of
individual hypotheses, and the alternative as an union (Roy 1953). A natural
test is based on the supremum of individual differences,

τ = supy∈Y
(
D̂s
F (y)− D̂s

G(y)
)
. (148)

It is clear that the null hypothesis is rejected if τ is significant and positive.
McFadden (1989) proposed a test based on (148) for two independent samples
of IID observations. For s = 1, it is a variant of the Kolmogorov-Smirnov
statistic, with known properties. For s = 2, the asymptotic distribution under
the null is not tractable. Barrett and Donald (2003) proposed simulation-based
methods for estimating critical values, taking into account comparisons at all
points of the support (functional approach) rather than at a fixed number of
arbitrarily chosen points. Linton et al. (2005) proposed to use subsampling
methods, permitting to estimate critical values in general settings, with arbi-
trary order s, dependent observations, continuous and discrete supports. For
multiple comparisons restricted to a fixed number of points (y1, . . . , yT ), a Wald
test of inequality restrictions can also be used. Let us note the covariance matrix
estimates of D̂s

F and D̂s
G, respectively, as Ω̂F and Ω̂G, the Wald test statistic is

computed by solving

minδ≥0 (D̂s
F − D̂s

G − δ)>
(

Ω̂F + Ω̂G
)

(D̂s
F − D̂s

G − δ). (149)

The statistic is obtained by using an algorithm to solve quadratic program-
ming problems. The distribution of the statistic is a mixture of chi-square with
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weights that require simulation methods to be consistently estimated (Dard-
anoni and Forcina 1999).

Lorenz dominance can be tested using similar methods. Bishop et al. (1989)
and Davidson and Duclos (1997) proposed a test for a fixed number of points,85

while Donald and Barrett (2004) and Bhattacharya (2007) have considered ver-
sions of Lorenz dominance tests in a functional approach, taking into account
comparisons at all points of the supports.

Under the null of non-dominance

Other statistical tests have been developed to test the null hypothesis of non-
dominance, against the alternative of dominance. Under the null that F does
not dominate G, we have

H0 : Ds
F (y) ≥ Ds

G(y), for some y ∈ Y,
H1 : Ds

F (y) < Ds
G(y), for all y ∈ Y. (150)

An appropriate test could be interpreted as an intersection-union test, since the
null hypothesis is expressed as an union and the alternative as an intersection
of individual hypotheses (Gleser 1973). The idea behind the intersection-union
method is that the null is rejected only if each of the individual hypotheses can
be rejected. A natural test is based on the infimum of individual differences,

τ ′ = infy∈Yr
(
D̂s
G(y)− D̂s

F (y)
)
. (151)

It is clear that the null hypothesis is rejected if τ ′ is significant and positive.
The statistic τ ′ has to be defined over Yr, some closed interval contained in
the interior of the joint support of the two distributions Y. The main reason is
that the null hypothesis would never be rejected if we consider the tails of the
distributions, where data are sparse and where the differences between the two
distributions tend to zero. Specifically, Yr should be a restricted interval in Y
that removes the tails of the distributions. Kaur et al. (1994) proposed a test
based on (151) for s = 2 with independent samples and continuous distributions
F and G. Critical values can be taken from the Normal distribution, making the
test easy to implement. However, it can have low power properties (Dardanoni
and Forcina 1999). Davidson and Duclos (2013) and Davidson (2009b) proposed
a test for higher order, for correlated samples as well as uncorrelated samples,
and for continuous and discrete distributions. They also show that appropriate
bootstrap methods permit to obtain much better finite sample properties.

6 Other estimation problems
In sections 4 and 5 we assumed that data are always drawn from a representative
sample of the whole population. For some researchers this state of affairs is

85see also Bishop et al. (1991a, 1991b, 1992)
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something of a luxury. In this section we discuss a number of common problems
that need to be taken into account in practical application and the statistical
methods of dealing with them.

6.1 Contamination
By data contamination we mean a set of observations that do not “belong” to the
sample – see section 2.3. The essentials of the formal approach can be explained
using a simple model based on the distribution function (in fact we have already
seen the elements of this model in a different context – see section 4.2). The idea
is that, instead of observing a distribution F ∈ F directly, one sees it after it
has been mixed with another distribution that represents contamination. The
elementary model of this is presented in equation (33) where one observes a
distribution G given by

G = [1− δ]F + δH(z) (152)

where δ represents the proportion of contamination in the mixture that we
observe and H(z) is the elementary “contamination distribution” (32) a single
point mass at z ∈ Y. From this minimalist structure one can easily develop
more interesting specifications of the model of contamination using a mixture
of F with a distribution that is richer than H(z). A number of questions im-
mediately arise: Does contamination matter in analysing income distributions?
How does contamination affect distributional comparisons? How may one ap-
propriately estimate models of income distribution if there is reason to believe
that contamination is an important issue?

6.1.1 The concept of robustness

To address the question “how important”, we can use the tool introduced in
the discussion of asymptotic inference (section 4.2). The Influence Function
is precisely designed to gauge the sensitivity of a statistic to contamination.
Consider some statistic T (for example an inequality measure, a poverty index
or a Lorenz ordinate): then IF quantifies the impact of an infinitesimal amount
of contamination on the statistic T , namely ∂

∂δT (G)
∣∣
δ→0 (assuming that T is

differentiable) – see Hampel (1971, 1974), Hampel et al. (1986). Clearly the size
of this differential will depend on the exact specification of the contamination
distribution: in the context of the elementary model (152) this would mean that
it will depend on the exact location in Y of the point z (where the contamination
is concentrated). Of particular interest are cases where this IF is unbounded
for some value of z: the interpretation of this is that the statistic T is highly
sensitive to an infinitesimal amount of contamination at point z. In the present
context this is precisely what we mean by saying that a statistic is non-robust;
obviously if the IF for the statistic T is bounded for all values of z then it
makes sense to describe T as a robust statistic: we will come to some examples
of robust and non-robust statistics in a moment. However, first it is worth
making the common-sense point that even if we are only using robust statistics
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in our analysis, this does not mean that we can ignore the possibility of data
contamination: in practice it may be that the assumption that δ is vanishingly
small is just unreasonable.

6.1.2 Robustness, welfare indices and distributional comparisons

Does contamination matter for the tools that we discussed in sections 4 and 5?

Basic cases. First, take two statistics whose properties can be easily de-
duced, the mean and median. Using the definition of the mixture distribution
(152) with point-contamination (32) and the linearity of the mean functional,
we can write the mean of the observed mixture distribution as

µ (G) = µ
(

[1− δ]F + δH(z)
)

= [1− δ]µ (F ) + δµ
(
H(z)

)
(153)

Evaluating (153) for the elementary point-contamination distribution (32) we
obtain:

µ (G) = [1− δ]µ (F ) + δz. (154)

The observed mean is a simple weighted sum (with weights 1− δ, δ) of the true
mean µ (F ) and the value of z where the contamination is concentrated. Now
differentiate (154) with respect to δ and we find the IF for the functional µ as
follows:

IF(z;µ, F ) = z − µ (F ) . (155)

It is easy to see from (155) that IF(z;µ, F ) is unbounded as z tends to −∞ or
+∞: the mean is a non-robust statistic. So if you want to use the mean as a
welfare index then the introduction of a very small amount of contamination
sufficiently far out in one of the tails of the distribution will cause the observed
value of the mean to be pulled away from the true value.86 Now consider the
median, as a particular case of the quantile functional (23); using the basic
result Lemma 2 and setting q = 0.5 to obtain the median we have

IF(z;Q (·, 0.5) , F ) = q − ι (q ≥ F (z))
f (Q (F, 0.5)) = q − ι(y0.5 ≥ z)

f(y0.5) . (156)

It is clear that, as long as there is positive density at the median y0.5, the
IF in (156) is bounded (Cowell and Victoria-Feser 2002). So, in contrast to
the mean, the median is robust. The intuition is clear: if you throw a single
alien observation into the formula for the mean then, if that observation is large
enough, it can have a huge effect when averaged in with the other sample values.
But the median simply marks the “half-way” point in the distribution: if you
introduce a single alien observation to the right of the median, then the size of
that observation (how far it is to the right of the median) has no effect on the
observed half-way point.

86Using (42) the same type of reasoning can be used to show that Lorenz ordinates are also
non-robust (Cowell and Victoria-Feser 2002).
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Inequality. It turns out that most commonly-used inequality indices behave
in a way that is similar to the mean: they are non-robust (Cowell and Victoria-
Feser 1996b). To see why, let us check the properties of the WQAD class of
welfare indices (30) on which many standard inequality measures are based.
The influence function for a typical member of this class is

ϕ (z, µ(F))−WQAD(F) + [z − µ(F)]
ˆ
ϕµ (z, µ(F)) dF(z) (157)

where ϕ (y, µ(F )) is the evaluation of each individual income y used in the
formula (30). It is clear that contamination could have an impact through more
than one route – there is the direct effect from the evaluation of z, the first term
in (157); there is also an indirect route through the effect on the mean, the third
term in (157). Notice that this indirect route contains the expression, z−µ(F ),
as the right-hand side of (155): from this we can see that, if ϕµ (z, µ(F )) is not
everywhere zero, contamination will cause quasi-additive welfare indices to be
non-robust. Now consider the direct route: clearly if ϕ (z, µ(F )) is unbounded as
z approaches infinity or as z approaches zero the particular index in the WQAD
class will be non-robust; this is precisely what happens with nearly all commonly
used inequality measures.87 Why does this happen? Inequality measures are
usually designed to be sensitive to extreme values at one or other end of the
distribution, so placing a tiny amount of contamination sufficiently far out in
one of the tails is going to have a big impact on measured inequality, because
of its built-in sensitivity. As an example take the generalised entropy measures.
From equations (49)-(51) we see that f

ϕ (z, µ(F )) = [z/µ(F )]ξ − 1
ξ2 − ξ

.

Clearly this is unbounded for ξ ≥ 0 as z → ∞ and is unbounded for ξ ≤ 0
as z → 0: so the inequality indices are non-robust for contamination amongst
very high incomes in the case of top-sensitive members of the GE family and
for contamination near zero in the case of bottom-sensitive members of the GE
family.88

Poverty. By contrast conventional poverty indices such as the FGT class (85)
and the Sen index (92) are robust (Cowell and Victoria-Feser 1996a). Again the
intuition is straightforward. From (78) the influence function for an additively
separable poverty measure with a fixed poverty line ζ0 is

IF(z;P, F ) = p (z, ζ0)− P (F )
87The implication of this is that, even with a richer model of contamination than the

elementary (32) leaves the mean unchanged, quasi-additively decomposable inequality indices
will be non-robust.(Cowell and Victoria-Feser 1996b).

88The logarithmic variance and the Gini coefficient are also non-robust – see (71) above and
Cowell and Victoria-Feser (1996b), Cowell and Flachaire (2007).
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where p(·) is the poverty evaluation function. From (85) we can see that for the
FGT class

p (z, ζ0) = [max (1− z/ζ0, 0)]ξ

so that p (0, ζ0) = 1, p (z, ζ0) is non-increasing in z for z < ζ0 and p (z, ζ0) = 0 for
z ≥ ζ0. In plain language contamination at the very bottom of the distribution
(below the poverty line) has an impact that it is bounded below; but a very high
observation has no effect on poverty, whether that observation is a genuine high
income or contamination; poverty measures such as the FGT class are robust
under contamination.

6.1.3 Model estimation

If inequality measures are typically non-robust, what is to be done about the
possibility of contamination? A potentially useful approach is to use a para-
metric functional form f (y; θ) to model all or part of the income distribution
and then compute inequality from the modelled distribution. But of course the
robustness property of the inequality index based on the modelled distribution
will depend on the parameter vector θ ∈ Rp is estimated. If one consider using
Maximum Likelihood Estimators (MLE), for example, the robustness problem
remains: although MLE are attractive in terms of their efficiency properties,
they are usually non-robust. If we consider the wider class of M -estimators
characterised by89

n∑
i=1

ψ(yi; θ) = 0 (158)

where ψ is a function R×Rp → Rp one can find estimators with suitable robust-
ness properties: these are the bounded-IF M -estimators with minimal asymp-
totic covariance matrix, known as Optimal Bias-Robust Estimators (OBRE) –
see Huber (1981), Hampel et al. (1986). One can see OBRE as the solution to
a trade-off between efficiency and robustness.

A standard way of specifying the OBRE is as follows. Fix a bound c ≥ √p
on the IF ; then the OBRE are defined as the solution in θ of

n∑
i=1

ψ(xi; θ) =
n∑
i=1

[s(xi; θ)− a(θ)] ·Wc(xi; θ) = 0 (159)

where s(x; θ) = ∂/∂θ log f(x; θ) (the scores function) and

Wc(x; θ) = min
{

1 ; c

‖A(θ)[s(x; θ)− a(θ)]‖

}
(160)

and Wc(xi; θ) is a weight imputed to each observation according to its influence
on the estimator. The p× p matrix A(θ) and a(θ) ∈ Rp are defined by

E
[
ψ(x; θ)ψ(x; θ)T

]
=

[
A(θ)TA(θ)

]−1 (161)
E [ψ(x; θ)] = 0 (162)

89The MLE belong to the class (158): in this case ψ is equal to the scores function.
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The constant c acts as a regulator between efficiency (high values of c) and
robustness (low values of c). The solution of (159) must usually be found iter-
atively.90

6.2 Incomplete data
We now turn to the problems of estimation and inference in a situation where,
in part of of the sample, some information is unavailable. As we noted in section
2.3, this situation is sometimes imposed by data providers, sometimes created
by researchers who are attempting to deal with problems of data contamination
as discussed in section 6.1.

6.2.1 Censored and truncated data

Here we are dealing with the cases summarised in the first row of Table 2 in
section 2.3 in which we take z and z as fixed boundaries.

Truncated data. For data represented by case A in Table 2 inference can be
approached as for inference in the complete-information case with a redefined
population: the limits of the support of the distribution (y, y) are replaced by
the narrower truncation limits (z, z). If we wish to say more it may be possible
to use a parametric method to estimate the truncated part of the distribution.

Censoring with minimal information. Now consider Case B in Table 2.
Clearly if we do not use the observed point masses at z and z, this could be
just treated as case A. However, if we want to do more first-order comparisons
can be carried out. We need the following statistics: n (the full sample size),
n ( the number of observations equal to z) and n (the number of observations
equal to z).

Censoring with rich information. Clearly it is possible to do more in case C
than in the previous two cases: more welfare indices (for the whole population)
can be handled. Depending on the richness of information in the censored
parts it may be possible to carry out inference on Lorenz-curve ordinates and
some welfare indices. First, if, in addition to the information described in the
discussion of case B, the means of the censored parts of the sample are given,91

then second order rankings and the Gini coefficient can be estimated. Then it
makes sense to define the following:

ĉlow := 1
n

n∑
i=1

y(i),

90SeeVictoria-Feser and Ronchetti (1994), Cowell and Victoria-Feser (1996b) and for
grouped data see Victoria-Feser and Ronchetti (1997).

91In some cases means will be available from data-providers.

76



ĉhigh := 1
n

n∑
n−n+1

y(i).

Inference may also be possible using the same methodology as for the complete
data case. To do this we would additionally need the following information

ŝlow := 1
n

n∑
i=1

y2
(i)

ŝhigh := 1
n

n∑
n−n+1

y2
(i)

If these variance terms from the excluded portion of the sample are also made
available then the asymptotic variances and covariances for the income cumula-
tions (GLC ordinates) for q, q′ ∈ (β, β) are found as follows. Replace (126) and
(128) by the following

ĉq := ĉlow + 1
n

κ(n,q)∑
i=κ(n,β)+1

y(i) (163)

ŝq := ŝlow + 1
n

κ(n,q)∑
i=κ(n,β)+1

y2
(i) (164)

and plug into (137). To compute asymptotic variance for the (relative) Lorenz
curve and the Gini coefficient we also need the following: µ̂ = ĉβ + ĉhigh, ŝ1 :=
ŝβ + ŝhigh, ω̂q1 := ŝq + [qŷq − ĉq] µ̂− yq ĉq, ω̂11 := ŝ1 − µ̂2.

Comparing the outcome from these computations with the full-information
case in section 5.2.1 we can draw two important conclusions (Cowell and Victoria-
Feser 2003). First, if the necessary information about the censored part of the
distribution is used, the standard errors are the same as in the full information
case. Second, when the information about the censored part is not available the
standard errors are smaller.

6.2.2 Trimmed data

In the case of trimmed data a fixed proportion of the sample is discarded –
see the second row of Table 2. The trimmed samples for computing welfare
indices and making distributional comparisons is usually based on robustness
arguments (Cowell and Victoria-Feser 2006): outliers may seriously bias the
point estimates as well as the variances of the distributional statistics that are
of interest – see the discussion in section 6.1.

Here we assume that a given proportion β has been removed from the bot-
tom of the distribution and 1 − β̄ has been removed from the top. If (yβ , yβ)
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denotes the range of the trimmed sample values, then yβ and yβ are random.
Because of this, and in contrast to the discussion of truncated and censored
data (section 6.2.1), case D in Table 2 requires more extensive reworking of the
full-information analysis in section 5.2.

Inference is carried out on the full distribution92 conditional on the fact
that a known proportions have been trimmed from the tails. The trimmed
distribution F̃β is defined as:

F̃β(y) :=


0 if y < Q(F, β)

b
[
F (y)− β

]
if Q(F, β) ≤ y < Q(F, β)

1 if y ≥ Q(F, β)

. (165)

where b := 1/
[
β̄ − β

]
. Using (165) the β-trimmed counterparts to (25) and

(127) the income cumulations are given by

cβ,q := C(F̃β ; q) = b

ˆ yq

yβ

y dF (y), (166)

sβ,q := S(F̃β ; q) := b

ˆ yq

yβ

y2 dF (y) (167)

and the counterpart of (26) is given by µβ := µ(F̃β). Once again, the sample
analogues of (165)-(167) are obtained by replacing F by the empirical distribu-
tion F (n). For example cβ,q is estimated by93

ĉβ,q := C
(
F̃

(n)
β ; q

)
= b

n

κ(n,q)∑
i=1

y(i)ι(i > κ(n, β) + 1), (168)

where {y(i), i = 1, ..., n} is the ordered sample, and µβ is estimated by the mean
of the trimmed sample

µ̂β := µ(F̃ (n)
β ) = b

n

n∑
i=1

y(i)ι(κ(n, β) + 1 < i < κ(n, β)). (169)

Lorenz criteria In order to apply second-order dominance criteria we need
to know the properties of the income cumulation for the trimmed distribution
F̃β and its empirical counterpart F̃ (n)

β . The income cumulations based on the
ordinary and trimmed distributions are related as follows:

C(F̃β ; q) = b
[
C(F ; q)− C(F ;β)

]
, (170)

92Given that the integration of IF · IFT is required over the full distribution to derive the
asymptotic covariance matrix, this might appear to invalidate the applicability of nonpara-
metric techniques because of the lack of information on the structure of the trimmed data.
Cowell and Victoria-Feser (2003) show that this supposition is groundless.

93Note that at q = β for β = 1−β one gets the traditional trimmed mean which generalises
the median as a robust estimator of location.
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from which it is clear that plotting Lorenz curves, generalised Lorenz curves and
so on is straightforward.

The estimation of the asymptotic covariance between
√
nĉβ,q and

√
nĉβ,q′

follows as before, from an application of the IF. We need to evaluate
ˆ
IF (z;C(·; q), F̃β)IF (z;C(·; q′), F̃β) dF (z)

and then we may compare the results with those in the complete-information
case.94 Using the definition of the Influence Function then (170) implies that
IF for the cumulative income functional with trimmed data is:95

IF(z;C(·; q), F̃β) = −cβ,q + b
[
qyq − βyβ + ι(yq ≥ z)[z − yq]− ι(yβ ≥ z)[z − yβ ]

]
= −cβ,q + b

[
qyq − βyβ − ι(yq ≥ z)yq + ι(yβ ≥ z)yβ

]
+ b

[
ι(yq ≥ z)− ι(yβ ≥ z)

]
z.

(171)

Taking the mean of IF(z;C(·; q), F̃β)IF(z;C(·; q′), F̃β) for each z = yi it is clear
that no value of z = yi < yβ or z = yi > yβ will contribute to the value of (171).

Assume that the set of population proportions satisfies Θ ⊂
[
β, β̄

]
. Then

equation (171) yields the following result (Cowell and Victoria-Feser 2003):

Theorem 3 Given an original untrimmed sample of size n and lower and upper
trimming proportions β, 1 − β̄ ∈Q, for any q, q′ ∈ Θ such that q ≤ q′ the
asymptotic covariance of

√
nĉβ,q and

√
nĉβ,q′ is given by

$qq′ = b2
[
ωqq′ + ωββ − ωβq − ωβq′

]
where ωqq′ is defined in (130).

If we take the set of proportions Θ =
{
qi = β + i

n : i = 1, ..., n/b
}
, then $qq′

can be estimated by

$̂qiqj =
[
qiy(i) − βy(1) −

i∑
k=1

y(k)

bnβ

]
×[

[1− qj ] y(j) −
[
1− β

]
y(1) +

j∑
k=1

y(k)

bnβ

]
−

i∑
k=1

y(i)y(k) − y2
(k)

bnβ
+ y(1)

[
qiy(i) − βy(i) −

i∑
k=1

y(i)

bnβ

]
(172)

In the case of the Lorenz curve ordinates the asymptotic covariance of
√
nĉβ,q/µ̂β

and
√
nĉβ,q′/µ̂β is given by

94In Lemma 1 F (z) is estimated by F (n) so that the integral reduces to the mean over the
sample.

95As before cβ,q , cβ,q′ , yq , yq′ and yβ can be estimated by their sample counterparts.
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υqq′,β = b2

µ4
β

[
µ2
β$qq′ + cβ,qcβ,q′$ββ − µβcβ,q$q′β − µβcβ,q′$qβ

]
. (173)

Compare this with (138).

QAD Welfare indices To evaluate inequality and poverty indices we can
again follow the method of section 4, but perform the computations on the
trimmed distribution F̃β defined in (165) – once again ignoring the information
on the excluded part of the sample. This means that the trimmed version of
(30) becomes

WQAD(F̃β) = b

ˆ
ϕ
(
x, µ(F̃β)

)
dF (x) (174)

The sample analogues of WQAD(F̃β) in (174) are then given by

ŵQAD,β := WQAD(F̃ (n)
β ) := b

n

n∑
i=1

ϕ
(
y(i), µ̂β

)
ι(κ(n, β)+1 < i < κ(n, β)) (175)

which is the counterpart of (43) but applied to the trimmed sample. Evaluating
the IF we have96

IF(z;WQAD, F̃β) = bϕ
(

max
(
yβ ,min(z, yβ)

)
, µ(F̃β)

)
−WQAD(F̃β)

+ bIF(z, C(·;β), F̃β)
ˆ Q(F,β)

Q(F,β)
ϕµ
(
x, µ(F̃β)

)
dF (x)(176)

Once again, an estimate of the asymptotic variance of
√
nWQAD(F̃ (n)

β ) can be
easily obtained by computing the mean of squares of IF(z;WQAD, F̃β), z = yi,
i = 1, . . . , n.97 Define the following distribution (corresponding to case E in
Table 2):

F ∗β (y) :=


0 if y < Q(F, β)

F (y) if Q(F, β) ≤ y < Q(F, β)

1 if y ≥ Q(F, β)

. (177)

96To see this evaluate the mixture distribution and apply (34) to get

−WQAD(F̃β) + bϕ
(
z, µ(F̃β)

)
ι(z ≤ y

β
)ι(z ≥ yβ)− bϕ

(
y
β
, µ(F̃β)

)
ι(z ≤ y

β
)

+bϕ
(
yβ , µ(F̃β)

)
ι(z ≤ yβ) + bIF (z, C(·;β), F̃β)

ˆ Q(F,β)

Q(F,β)
ϕµ
(
x, µ(F̃β)

)
dF (x)

+bβϕ
(
y
β
, µ(F̃β)

)
− bβϕ

(
yβ , µ(F̃β)

)
where the first two lines follow by analogy with (45). The third line is found by considering
the way the mixture distribution affects the limits of integration in (174) using Lemma 2.
Rearranging gives (176).

97Notice that the contribution of z = yi < yβ or z = yi > y
β
to (176) is nil.
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We can then state the following (Cowell and Victoria-Feser 2003):

Theorem 4 The asymptotic variance of
√
nWQAD(F̃ (n)

β ) for the trimmed dis-
tribution F̃β is

b2var(ϕ
(
x, µ(F̃β)

)
;F ∗β )

+2b3cov
(
x, ϕ

(
x, µ(F̃β)

)
;F ∗β

) ˆ Q(F,β)

Q(F,β)
ϕµ
(
x, µ(F̃β)

)
dF (x)

+b4var(x;F ∗β )
[ˆ Q(F,β)

Q(F,β)
ϕµ
(
x, µ(F̃β)

)
dF (x)

]2

(178)

Note that in (178) the variance and covariance terms for the linear function-
als are defined on the distribution F ∗β as opposed to the trimmed distribution
(165). All the components of (178) can be estimated from the trimmed sample.

The Gini coefficient With trimmed data, the Gini coefficient can be ex-
pressed as

IGini(F̃β) = 1− 2
ˆ β

β

C(F̃β , q)
C(F̃β , β)

dq. (179)

Using the same procedure as before we first evaluate the IF for the Gini coeffi-
cient with trimmed data as:

IF(z; IGini, F̃β) = 2
µβ

ˆ β

β

cβ,q dq − 2b
µβ

[ˆ β

β

qyq dq +
ˆ β

β

ι(yq ≥ z)[z − yq] dq
]

+ 2
µβ

[
ι(yβ ≥ z)[z − yβ ] + βyβ

]
+ 2
µ2
β

ˆ β

β

cβ,q dq (−µβ+

b
[
βyβ − βyβ + ι(yβ ≥ z)[z − yβ ]− ι(yβ ≥ z)[z − yβ ]

])
.

Using this or the results of Theorem 3, we can obtain98

Theorem 5 The asymptotic variance of
√
nIGini(F̃ (n)

β ) is 4b2ϑβ/µ4
β where

ϑβ = µ2
β

ˆ β

β

ˆ q

β

$q′q dq′ dq + µ2
β

ˆ β

β

ˆ β

q

$qq′ dq dq +

$ββ

[ˆ β

β

cβ,q dq
]2

− 2µβ
ˆ β

β

cβ,q dq
ˆ β

β

$qβ dq (180)

The estimates of ϑβ are found by making use of (172), with µ̂β being the
trimmed sample mean (169).

98For proof of IF(z; IGini, F̃β) and Theorem 5 see Cowell and Victoria-Feser (2003).
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6.3 Semiparametric methods
The problems that we address here may have arisen from situations where the
researcher has concerns about data contamination and robustness (see section
6.1) where the data provider has truncated or censored the data (see section
6.2).99

The type of problem to be analysed can be simplified if we restrict attention
to one leading case. If the support of the income distribution is bounded below
then the problems with contaminated data are going to occur only in the upper
tail of the distribution (Cowell and Victoria-Feser 2002). It may be reasonable
to use a parametric model for the upper tail of the distribution (modelled on a
proportion β ∈ Q of upper incomes) and to use the the empirical distribution
function directly for the rest of the distribution (the remaining proportion the
1− β of lower incomes. There are four main issues

• What parametric model should be used for the tail?

• How should the model be estimated?

• How should the proportion β be chosen?

• What are the implications for welfare indices and dominance criteria?

6.3.1 The model

The parametric model most commonly used for the upper tail is the Pareto
distribution (2) – see the discussion in section 3.1.1. In principle the Pareto
model has two parameters: we suppose here that the parameter y0 is determined
by the 1− β quantile Q(F ; 1− β) defined in (23) ; the dispersion parameter α
is of special of interest and is to be estimated from the data.100

The semi-parametric distribution is then

F̃ (y) =


F (y) y ≤ Q(F ; 1− β)

1− β
(

y
Q(F ;1−β)

)−α
y > Q(F ; 1− β)

. (181)

For y > Q(F ; 1− β), the density f̃ is

f̃(y;α) = βαQ(F ; 1− β)αy−α−1 .

In particular
f̃(y1−β ;α) = βα

y1−β
. (182)

99This section draws on Cowell and Victoria-Feser (2007).
100For the results which follow α is assumed to be greater than 2 for the variance to exist.
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6.3.2 Model estimation

To estimate the Pareto model for the upper tail of the distribution, one could of
course use the MLE but the MLE for the Pareto model is known to be sensitive
to data contamination (Victoria-Feser and Ronchetti 1994). Alternatively one
could use OBRE as discussed in section 6.1.3, with p = 1. Given a sample
{yi, i = 1, . . . n} and a bound c ≥ 1 on the IF, the OBRE are defined implicitly
by the solution α̂(F̃ ) in

ˆ ∞
Q(F ;1−β)

ψ(y; α̂(F̃ ), Q(F ; 1− β)) dF̃ (y) = 0.

When ψ is the score function s(y;α,Q(F ; 1−β)) = 1
α− log(y)+log(Q(F ; 1−β))

we get the MLE. We get the OBRE when

ψ(y;α) = [s(y;α)− a(α)]Wc(y;α)

with
Wc(y;α) = min

{
1; c

‖A(α)[s(y;α)− a(α)]‖

}
(183)

A(α) and vector a(α) are defined implicitly by

E [ψ(y;α)ψ′(y;α)] = [A(α)′A(α)]−1

E [ψ(y;α)] = 0.

As explained in section 6.1.3, the constant c parameterises the efficiency-robustness
tradeoff. A common method for choosing c is to choose an efficiency level (rel-
ative to that of MLE) and derive the corresponding value for c: for the Pareto
model, a value of c = 2 leads to an OBRE achieving approximately 85% effi-
ciency.

6.3.3 Choice of β

Clearly one could adopt a heuristic approach selecting by eye the amount β of
the upper tail to be replaced.

Alternatively one could use the robust approach in Dupuis and Victoria-
Feser (2006) who develop a robust prediction error criterion by viewing the
Pareto model as a regression model. Rearranging (2) or (4) one can represent the
linear relationship between the log of the y and the log of the inverse cumulative
distribution function

log
(
y

y0

)
= − 1

α
log (1− F (y;α)) .

Given a sample of ordered data y(i), the Pareto regression plot of log
(
y(i)
)

versus − log
(
n+1−i
n+1

)
, i = 1, . . . , n can be used to detect graphically the the

point above which the plot yields a straight line.
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6.3.4 Inequality and dominance

The effect on inequality of semiparametric modelling is easy to see. For example
if we wish to see how the Generalised Entropy indices are affected one substitutes
F̃ – defined in (181) – into (49)-(51) to obtain IξGE(F̃ ). For first-order and
second-order dominance results we need to look once more at the quantile and
cumulative-income functionals.

The quantile functional obtained using (181) is given by

Q(F̃ , q) =


Q(F, q) q ≤ 1− β

Q(F ; 1− β)
(

1−q
β

)−1/α̂(F̃ )
q > 1− β

. (184)

The cumulative-income functional becomes

C(F̃ ; q) =



´ Q(F,q)
z

y dF (y) q ≤ 1− β

´ Q(F,1−β)
z

y dF (y)

+β α̂(F̃ )
1−α̂(F̃ )

Q(F ; 1− β)

( 1−q
β

) α̂(F̃ )−1

α̂(F̃ ) − 1

 q > 1− β

. (185)

The graph of (185) gives the semi-parametric generalised Lorenz curve. The
mean of the semi-parametric distribution is given by (185) with q = 1, namely

µ(F̃ ) =
ˆ Q(F,1−β)

z

y dF (y)− βQ(F ; 1− β) α̂(F̃ )
1− α̂(F̃ )

= c1−β − βy1−β
α̂

1− α̂ .

(186)
So, using (185) and (186), the semi-parametric Lorenz curve is just the graph
of

L(F̃ ; q) = C(F̃ ; q)
µ(F̃ )

. (187)

Estimates of the GLC and the Lorenz curve for the semiparametric model can
be found by replacing F̃ with F (n) in (185) and (187).

7 Conclusions
On reaching the end of a lengthy and technical chapter the authors should
confess to an uneasy feeling: a proportion of our potential readership might not
have the stamina to work their way through every equation and every footnote.
So, we would like to offer time-poor readers three things that may capture the
essence of this chapter’s contribution:

• a summary of lessons learned that we hope will be useful for practitioners
and for other researchers;
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• a little worked example that includes an application of many of the tools
that we have discussed;

• a quick-reference table of the main formulas that should be useful to data-
providers as well as to the users of data.

7.1 Important lessons: a round-up
Density estimation, parametric (section 3.1):

(1) The Generalised Beta distribution encompass all the standard parametric
distribution for income distribution. (2) A “good” goodness-of-fit criterion is im-
portant: do use the Anderson-Darling statistic, the Cramér-von-Mises statistic
or the Cowell-Davidson-Flachaire (2011) measure; do not use the χ2 statistic.

Density estimation, semi- and non-parametric (sections 3.2-3.4):

Standard kernel-density methods are very sensitive to the choice of the band-
width and the standard approach (the Silverman rule-of-thumb) is known to
often oversmooth in parts of the distribution where the data are dense and
undersmooth where the data are sparse. This standard approach may not be
suitable for income distributions, which are typically heavy-tailed: the use of
the adaptive kernel method or mixture model may be more appropriate.

Welfare measures (section 4):

(1) We propose a global approach to the derivation of variance expressions for all
inequality measures. The method uses the Influence Function (see subsection
4.2.1) to provide a shortcut to the formulas we need. (2) It is necessary to
analyse the tails (plot of Hill estimators) and use appropriate methods with
heavy-tailed distributions (see subsection 4.5.3).

Distributional comparisons (section 5):

(1) As with the welfare measures we propose an approach to the variance and
covariance formulas that again makes use of the Influence Function. (2) A plot
of Lorenz curve differences can provide useful information, even where Lorenz
curves cross.

Data problems (section 6):

(1) Careful modelling is essential to understanding what can be done in the case
of possible data-contamination or incomplete data; again the Influence Function
is a valuable tool. (2) If one tries to “patch” an empirical distribution with a
parametric model for the upper tail then special attention needs to be given to
the way the parameters of the model are to be estimated.
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7.2 A worked example
To illustrate these lessons, let us consider an empirical analysis of inequality
measurement on the income distribution in the United Kingdom in 1992 and
1999.101

1. As noted in section 7.1, income distributions are usually very skewed and
heavy-tailed: so fixed-bandwidth kernel density estimation, selected by Sil-
verman’s rule-of-thumb, may not be ideal (see section 3.2). Figure 17(a)
shows the application of one of the recommended methods adaptive ker-
nel density estimation (where the bandwidth varies with the degree of
concentration of the data) of income distributions in 1992 and 1999.102

The distribution in 1999 has a smaller mode and is shifted to the right,
compared to 1992.

2. Statistical inference on inequality measures may be unreliable, in par-
ticular when the underlying distribution is quite heavy-tailed (see sec-
tion 4.5.3). A Hill plot is a useful tool for studying the tail behaviour in
empirical studies: it represents the Hill estimator of the tail parameter,
against the number of k-greatest order statistics used to compute it. An
estimate of the tail parameter can be selected when the plot becomes sta-
ble about a horizontal straight line.103 Figure 17(b) shows Hill plots of
income distribution in 1992 and 1999, over the range of 0.25% and 25% of
order statistics used to compute it, with 95% confidence intervals (in gray).
In 1992, the Hill estimate appears to be slightly more than 3, while it is
very close to 3 in 1999. It suggests that the distribution in 1999 is slightly
more heavy-tailed than those in 1992, both being quite heavy-tailed.104

3. Strong results on inequality ranking can be drawn from Lorenz curves
comparison, if the curves do not intersect (see section 5). However, in
empirical studies intersecting Lorenz curves are not unusual and we find
that this is the case in our example, with the difference between two Lorenz
curves plotted in Figure 17(c). The Lorenz curve for 1999 is above that for
1992 at the bottom of the distribution; the situation is reversed at the top
of the distribution. It suggests that inequality measures more sensitive to
transfers in the top (bottom) of the distribution would be larger (smaller)

101The data are from the family expenditure survey (FES), a continuous survey of samples of
the UK population living in households. We take disposable household income before housing
costs, divide household income by an adult-equivalence scale defined by McClements, and
exclude the self-employed. The number of observations in 1992 and 1999 are, respectively,
equal to 6597 and 5491.

102We obtain a very similar Figure with an estimation based on a mixture of lognormal
distributions. A kernel density estimation with a fixed bandwidth gives a slightly different
picture, the difference being quite similar to that obtained in Figure 9.

103The Hill plot is not always revealing. The Hill estimator is designed for the Pareto
distribution. But the Hill plot can be very volatile – and thus difficult to interpret – when
the upper-tail of the underlying distribution is far from a Pareto; see Resnick (1997, 2007)

104Note that the variance of a Pareto distribution exists if the Pareto index is greater than 2.
Moreover, the less heavier-tailed Singh-Maddala distribution used in our simulations (q = 1.7
in Tables 6 and 7), corresponds to a tail parameter equals to aq = 4.76.
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in 1999 than in 1992. However, the 95% confidence intervals shows that, at
each point, Lorenz curve differences are not clearly statistically significant,
and, thus inequality measures may not be statistically different in 1992
and 1999.

4. Several inequality measures are computed in Figure 17(d): the Gini index
and the Generalised Entropy (GE) measures with a sensitivity parame-
ter equals to −0.5, 0, 1, 2. GE inequality measures are known to be more
sensitive to transfers in the top (bottom) of the distribution as its pa-
rameter increases (decreases). Moreover, GE indices with parameters 0,
1 and 2 are, respectively, the mean logarithmic deviation, the Theil and
half the square of the coefficient of variation indices. Standard bootstrap
confidence intervals are given in brackets. The two distributions are quite
heavy-tailed, but the tail parameters are not very different. Reliable in-
ference for testing equality of coefficients can then be obtained with a
bootstrap method that respects the null hypothesis (see section 3.4): the
p-values are given in the last column. The results show that the values
of inequality measures that are more sensitive to the top (bottom) of the
distribution are larger (smaller) in 1999 than in 1992. However, taking
into account statistical inference leads us not to reject the hypothesis that
the inequality measures are similar in 1992 and in 1999. These results
are consistent with the previous analysis drawn from the Lorenz curves
comparison.

7.3 A cribsheet
Finally we offer something for those who are really short of time or patience. In
this chapter we have proposed a unified approach for computing variances and
covariances for many inequality and poverty measures, as well as Lorenz curve
ordinates. This unified approach involves some quite simple – or at least not
very complicated – formulas. Table 11 provides a one-page summary of the key
formulas for the principal statistical tasks in distributional analysis.
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Indexa 1992 1999 p-valueb

IGini 0.3214 0.3200 0.8088
[0.314;0.329] [0.311;0.329]

I−0.5
GE 0.2279 0.2175 0.8737

[0.190;0.369] [0.186;0.378]
I0

GE 0.1742 0.1740 0.9749
[0.166;0.184] [0.163;0.185]

I1
GE 0.1794 0.1853 0.5245

[0.167;0.194] [0.170;0.203]
I2

GE 0.2415 0.2651 0.3703
[0.210;0.288] [0.227;0.336]

aI0
GE, I

1
GE and I2

GE are, respec-
tively, the MLD, the Theil index and
half the square of the coefficient of
variation.

bBootstrap p-value for testing the
equality of coefficients.

(d) Inequality measures

Figure 17: Inequality analysis on household income in 1992 and 1999 in United
Kingdom: (a) Adaptive kernel density estimation; (b) Hill estimator of the tail
index (Hill plots); (c) Difference of Lorenz curves; and, (d) Inequality measures,
with bootstrap confidence intervals and p-value for testing equality.
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Coefficient Variance: v̂ar(Coef) = 1
n
var(Z) = 1

n2

n∑
i=1

(Zi − Z̄)2, where Zi is equal to

Inequality measures

ÎξGE = 1
n(ξ2−ξ)

n∑
i=1

[( yi
µ̂

)ξ − 1] Zi = 1
ξ2−ξ ( yi

µ̂
)ξ − ξ yi

µ̂

[
ÎξGE + 1

ξ2−ξ

]
Î0

GE = − 1
n

n∑
i=1

log( yi
µ̂

) Zi = yi
µ̂
− log yi

Î1
GE = 1

n

n∑
i=1

( yi
µ̂

) log( yi
µ̂

) Zi = yi
µ̂

[
log( yi

µ̂
)− Î1

GE − 1
]

ÎMD = 1
n

n∑
i=1
|yi − µ̂| Zi = 2(q̂ − 1)yi + 2(yi − µ̂) ι(yi ≥ µ̂)

ÎGini = 2
∑n

i=1
iy(i)

µ̂n(n−1) − n+1
n−1 Zi = 1

µ̂

[
− (ÎGini + 1)y(i) + 2i−1

n
y(i) − 2

n

i∑
j=1

y(j)

]
Poverty measures

P̂ ξFGT = 1
n

n∑
i=1

Zi = Z̄ Zi =
∣∣1− y

ζ0

∣∣ξ ι(y ≤ ζ0)

P̂Sen = 2
nnpζ0

np∑
i=1

(ζ0 − y(i))(np − i+ 1
2 ) Zi = 2n

ζ0np

[
ζ0
2 ( 2np

n
− P̂Sen)− 2np−2i+1

2n y(i) − 1
n

i∑
j=1

y(j)

]
ι(y(i) ≤ ζ0)

P̂SST = 2
ζ0n(n−1)

np∑
i=1

(ζ0 − y(i))(n− i) Zi = 2n
ζ0(n−1)

[
ζ0(1− np

n
)− 2n−2i+1

2n y(i) + 1
n

np∑
j=1

y(j) − 1
n

i∑
j=1

y(j)

]
ι(y(i) ≤ ζ0)

Lorenz curves

ĉq = 1
n

κ(n,q)∑
i=1

y(i) Ziq = [yi − ŷq] ι(yi ≤ ŷq)

ĉq/µ̂ = 1
µ̂n

κ(n,q)∑
i=1

y(i) Ziq = 1
µ̂2

[
µ̂(yi − ŷq) ι(yi ≤ ŷq)− ĉqyi

]
Z = {Z1, . . . , Zn} and Z̄ = 1

n

∑n

i=1
Zi ; µ̂ = 1

n

∑n

i=1
yi is the sample mean ; y(i) is the ith order statistic of the sample ; q̂ = 1

n

∑n

i=1
ι(yi ≤ µ̂) ; ζ0 is the

poverty line ; np =
∑n

i=1
ι(yi ≤ ζ0) is the number of poor ; q is a sample proportion ; κ(n, q) = bnq − q + 1c is the largest integer no greater than nq− q+ 1 ;

and ŷq = y(κ(n,q)) is a sample quantile. Î0
GE and Î1

GE are, respectively, the Mean Logarithmic Deviation and the Theil inequality indices.

Table 11: Formulas for computing coefficient estimates and variances for inequality measures, poverty measures and (general
or relative) Lorenz curve ordinates.
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