

Taxation and Intra/Intergenerational Equity

Hans Fehr

University of Wuerzburg, CESifo and Netspar

9th International Winter School on Inequality and Social Welfare Theory - January 13-16, 2014

Contents

1. Motivation

- 2. Structure of Stochastic OLG Model
- 3. Recent Applications
 - Should capital income be taxed? (with F. Kindermann)
 - Should pensions be progressive? (with M. Kallweit and F. Kindermann)
 - Should pensions be means-tested? (with J. Uhde)
- 4. Conclusions and Outlook

Motivation

Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Motivation

Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.

Motivation

Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.

Typical recommendations of traditional models:

- Elimination of capital income tax (consumption tax);
- Replace paygo pension system by funded system;
- Strong tax-benefit linkage in paygo pension system;

Motivation

Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.

Typical recommendations of traditional models:

- Elimination of capital income tax (consumption tax);
- Replace paygo pension system by funded system;
- Strong tax-benefit linkage in paygo pension system;

⇒ Redistribution towards rich future cohorts optimal!

Motivation

Only recently risk and uncertainty are included in simulation models.

Motivation

Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

 include the precautionary savings motive for self insurance;

Motivation

Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;

Motivation

Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;
- consider alternative risk-sharing mechanisms (human capital investment, family insurance).

Motivation

Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;
- consider alternative risk-sharing mechanisms (human capital investment, family insurance).
- \rightarrow Policy recommendations are different!

Structure of Stochastic OLG Model

Households

- \rightarrow belong to specific skill class within a cohort;
- \rightarrow work for 45 years, retire at age 65;
- \rightarrow live up to a maximum age of 100;

Structure of Stochastic OLG Model

Households

- \rightarrow belong to specific skill class within a cohort;
- \rightarrow work for 45 years, retire at age 65;
- \rightarrow live up to a maximum age of 100;
- ightarrow decide about labor supply, consumption and savings;
- \rightarrow face idiosyncratic lifespan, (disability) and income risk;
- \rightarrow are liquidity constraint (no borrowing).

Structure of Stochastic OLG Model

Households

- \rightarrow belong to specific skill class within a cohort;
- \rightarrow work for 45 years, retire at age 65;
- \rightarrow live up to a maximum age of 100;
- ightarrow decide about labor supply, consumption and savings;
- \rightarrow face idiosyncratic lifespan, (disability) and income risk;
- \rightarrow are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.

Structure of Stochastic OLG Model

Households

- \rightarrow belong to specific skill class within a cohort;
- \rightarrow work for 45 years, retire at age 65;
- \rightarrow live up to a maximum age of 100;
- ightarrow decide about labor supply, consumption and savings;
- \rightarrow face idiosyncratic lifespan, (disability) and income risk;
- \rightarrow are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.

Government Progressive tax and paygo pension systems of various designs.

Structure of Stochastic OLG Model

Households

- \rightarrow belong to specific skill class within a cohort;
- \rightarrow work for 45 years, retire at age 65;
- \rightarrow live up to a maximum age of 100;
- ightarrow decide about labor supply, consumption and savings;
- \rightarrow face idiosyncratic lifespan, (disability) and income risk;
- \rightarrow are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.

Government Progressive tax and paygo pension systems of various designs.

Incomplete market structure No insurance markets.

Should capital income be taxed?

Lucas (1990): Supply-Side Economics

"Capital income taxation will initially be high, imitating a capital levy on the initial stock. If the system converges to a balanced growth path, capital taxation will converge to zero."

Efficiency effects of immediate change to long-run optimal policy amount to 1% of aggregate consumption in any period

Should capital income be taxed?

Lucas (1990): Supply-Side Economics

"Capital income taxation will initially be high, imitating a capital levy on the initial stock. If the system converges to a balanced growth path, capital taxation will converge to zero."

Efficiency effects of immediate change to long-run optimal policy amount to 1% of aggregate consumption in any period

Conesa/Kitao/Krueger (2009):

Optimal long-run income tax structure:

- flat income tax with 23% tax rate and basic allowance of 7200\$
- capital income tax rate 36%

Explanation: Insurance benefits dominate distortions!

Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition? Who wins, who loses?

Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition? Who wins, who loses?

What is optimal tax structure with respect to efficiency?

Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition? Who wins, who loses?

What is optimal tax structure with respect to efficiency?

Why is this optimal?

Should capital income be taxed?

Standard time-separable expected utility

$$W(c, 1-l) = E\left[\sum_{j=1}^{J} \beta^{j-1} u(c_j, 1-l_j)\right]$$

Should capital income be taxed?

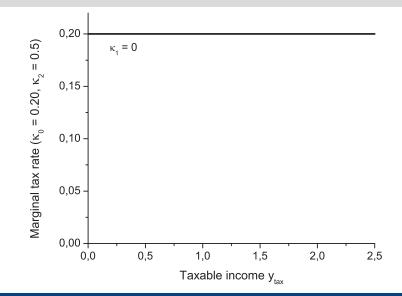
Standard time-separable expected utility

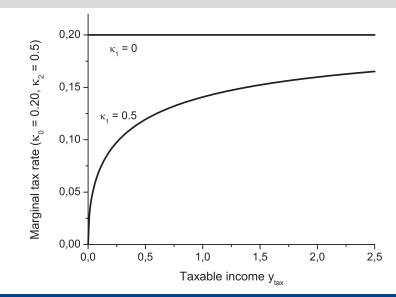
$$W(c, 1-l) = E\left[\sum_{j=1}^{J} \beta^{j-1} u(c_j, 1-l_j)\right]$$

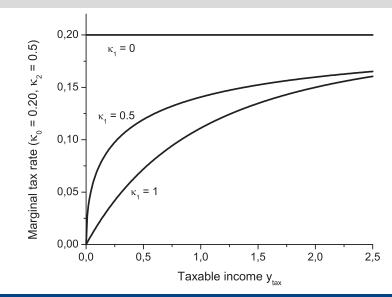
Dynamic budget constraint:

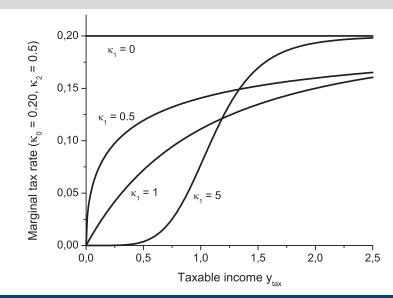
$$(1 + \tau_c)c + a' = [1 + r_t(1 - \tau_{k,t})](a + Tr_t) + y + SS_t - \tau_{SS,t}\min[y, \bar{y}] - T_t(y_{tax})$$

with $y = w_t \cdot \alpha \cdot \epsilon \cdot \eta \cdot l$


Should capital income be taxed?


Government policy:


$$G_t + (1 + r_t)B_t = \tau_c C_t + T_{inc} + (1 + n)B_{t+1}$$


- Public consumption {G_t}_{t=1}[∞] and consumption tax τ_c exogenous
- Progressive income tax schedule

$$T(y_{\text{tax}}) = \begin{cases} \kappa_0 \cdot \left[y_{\text{tax}} - (y_{\text{tax}}^{-\kappa_1} + \kappa_2)^{-1/\kappa_1} \right] & \text{otherwise} \\ \kappa_0 \cdot y_{\text{tax}} + \kappa_2 & \text{if } \kappa_1 \to 0 \\ \kappa_0 \cdot \max\left[y_{\text{tax}} - \kappa_2 \text{ ; } 0 \right] & \text{if } \kappa_1 \to \infty \end{cases}$$

Should capital income be taxed?

Simulation methodology:

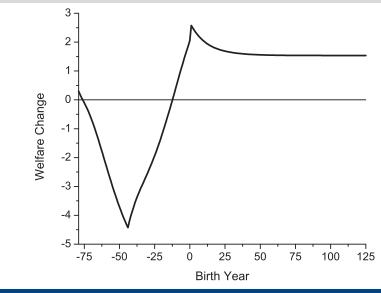
► Initial equilibrium synthetic income taxation $(\tau_{k,0} = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768)$

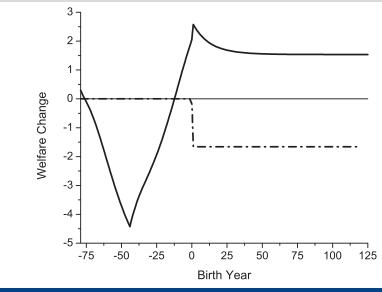
Should capital income be taxed?

Simulation methodology:

- ► Initial equilibrium synthetic income taxation $(\tau_{k,0} = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768)$
- One-time, unannounced change in income tax policy (τ_k, κ₀, κ₁)
- κ₂ balances intertemporal budget
- Debt balances periodic budget

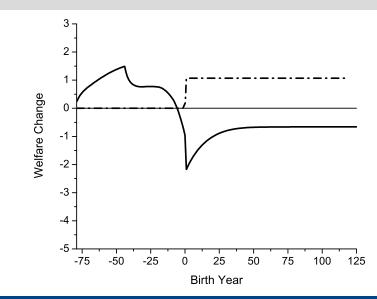
Should capital income be taxed?


Simulation methodology:


- ► Initial equilibrium synthetic income taxation $(\tau_{k,0} = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768)$
- One-time, unannounced change in income tax policy $(\tau_k, \kappa_0, \kappa_1)$
- κ₂ balances intertemporal budget
- Debt balances periodic budget
- Transition path and new long-run equilibrium
- Calculate welfare effects for different generations
- Determine efficiency effects of the income tax policy

Should capital income be taxed?

Simulation results: Long-run welfare


	Conesa et	optimal	
	al. (2009)	scheme	
τ_k	0.36	0.43	
κ_0	0.23	0.20	
κ_1	7	∞	
κ ₂	34711	12108	
Hours worked	-0.66	0.69	
Labor supply N	-0.18	1.18	
Capital stock K	-6.50	-8.16	
Debt B/Y	0.00	0.00	
Output Y	-2.50	-2.29	
Consumption C	-1.45	-0.34	
Long run CEV	1.31	1.48	

	Long-run welfare		aggregat	aggregate efficiency	
	Conesa et al. (2009)	optimal scheme	base case	optimal scheme	
τ_k	0.36	0.43	0.43	0.14	
κ_0	0.23	0.20	0.20	0.17	
κ_1	7	∞	∞	0	
κ2	34711	12108	12195	712	
Hours worked	-0.66	0.69	0.72	5.84	
Labor supply N	-0.18	1.18	1.19	5.04	
Capital stock K	-6.50	-8.16	-8.02	11.14	
Debt B/Y	0.00	0.00	-0.72	2.98	
Output Y	-2.50	-2.29	-2.23	7.20	
Consumption C	-1.45	-0.34	-0.30	7.59	
Long run CEV	1.31	1.48	1.54	-0.66	
CEV ^c (g.e.)			-1.66	1.07	

Should capital income be taxed?

Should capital income be taxed?

Conclusion:

- Immediate switch to optimal long-run policy comes at efficiency costs
- High capital income taxation burdens current generations

Should capital income be taxed?

Conclusion:

- Immediate switch to optimal long-run policy comes at efficiency costs
- High capital income taxation burdens current generations
- ► Efficiency perspective → still optimal to tax capital income, but at much lower rates
- Optimal capital income tax rate:
 - 14 percent in closed economy
 - 6 percent in open economy

Should capital income be taxed?

Conclusion:

- Immediate switch to optimal long-run policy comes at efficiency costs
- High capital income taxation burdens current generations
- ► Efficiency perspective → still optimal to tax capital income, but at much lower rates
- Optimal capital income tax rate:
 - 14 percent in closed economy
 - 6 percent in open economy
- ► Low interest elasticity of precautionary savings → the smaller the share of precautionary savings, the lower the interest rate tax

Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased; (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased; (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?

Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased; (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?

Labor supply distortions vs. insurance benefits: Fehr and Habermann (2008).

Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased; (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?

Labor supply distortions vs. insurance benefits: Fehr and Habermann (2008).

Why Germany? Expected increase in old-age poverty!

Should pensions be progressive?

Government structure

Tax System

- consumption, (progressive) labor and capital income taxes, public debt
- consumption tax rate is used to balance budget

Should pensions be progressive?

Government structure

Tax System

- consumption, (progressive) labor and capital income taxes, public debt
- consumption tax rate is used to balance budget

Pension System

pays old-age benefits and disability benefits

•
$$p_j = AF(j_R) \times ep_{j_R} \times APA$$

•
$$ep_{j+1} = ep_j + \left[(1 - \lambda) \frac{y_j}{\overline{y}} + \lambda \right]$$

 $\lambda = 0 \Rightarrow \text{ perfectly earnings related}$
 $\lambda = 1 \Rightarrow \text{ perfectly flat}$

Should pensions be progressive?

Table: Macroeconomic effects of flat pensions (base model)

Year	2009	2020	2030	2050	∞
<i>Macroeconomic aggregates</i> Labor input Capital	-5.6 0.0	-4.9 -2.2	-4.8 -2.8	-4.7 -3.0	-4.7 -3.0
<i>Prices</i> Wage Interest rate Consumption tax rate	2.1 -0.3 1.6	0.9 -0.1 2.0	0.5 -0.1 2.2	0.4 -0.1 2.4	0.4 -0.1 2.4
<i>Pension system</i> Expenditure (in % of GDP) Contribution rate	-0.1 0.5	0.1 0.8	0.4 1.2	0.5 1.3	0.5 1.4

Should pensions be progressive?

Table: Welfare effects of flat pensions (base model)*

Birth	Age in		without LSRA						
year	2009	by	by skill level			by productivity			
Retire	es	low	mid	high					
1920	89	-2.44	-2.32	-2.08				0.00	
1940	69	-2.22	-2.09	-1.87				0.00	
Worke	rs	low	mid	high	low	mid	high		
1960	49	0.93	0.23	-0.63	2.50	-0.15	-1.18	0.00	
1980	29	1.03	0.50	-0.58	2.07	0.21	-0.77	0.00	
Future	Generat	ions							
2000	9		0.35					-0.46	
2020	_		0.18					-0.46	
2060	_		0.22					-0.46	
∞	-		0.20					-0.46	

Should pensions be progressive?

Table: Aggregate efficiency of alternative progressivity levels*

model version	0.10	0.20	0.30	λ 0.40	0.50	 0.90	1.00
base + disability + retirement	0.05 0.18 0.17	0.08 0.31 0.31	0.06 0.35 0.37	0.04 0.32 0.34	-0.00 0.22 0.23	 -0.45	-0.46 -0.60 -0.58

*In percent of initial resources.

Should pensions be progressive?

- Positive insurance effect is stronger than the efficiency losses from labor supply distortions for a wide range of parameter combinations;
- Pensions should be more progressive at least in Germany;
- International trend towards less pension progressivity might be suboptimal;

Should pensions be means-tested?

Welfare analysis of means-testing has to trade-off:

- reduction of labor supply distortions;
- changes in savings distortions;
- insurance provision against old-age poverty risk;
- (liquidity effects;)

Should pensions be means-tested?

Welfare analysis of means-testing has to trade-off:

- reduction of labor supply distortions;
- changes in savings distortions;
- insurance provision against old-age poverty risk;
- (liquidity effects;)

Research questions:

- When is means-testing optimal?
- What resources should be tested for?
- What is the optimal taper rate?

Previous Literature (UK, AU)

Means-testing improves long-run welfare

- \rightarrow Sefton, van de Ven and Weale (EJ 2008, 2009)
- \rightarrow Kumru and Piggott (WP 2010)

Means-testing deteriorates welfare

 \rightarrow Kudrna and Woodland (JoM 2011)

Previous Literature (UK, AU)

Means-testing improves long-run welfare

- \rightarrow Sefton, van de Ven and Weale (EJ 2008, 2009)
- \rightarrow Kumru and Piggott (WP 2010)

Means-testing deteriorates welfare

 \rightarrow Kudrna and Woodland (JoM 2011)

Our paper: Reform of the UK pension system

- We consider transition path to long-run equilibrium;
- Isolate aggregate efficiency effects of policy reforms;
- Single vs. two-tier system, alternative basic pension, etc.

Should pensions be means-tested?

Pension system

Means-tested flat tier (progressive):

$$b_j^m = \max\left\{\overline{b} - \varphi\left[heta\max(a_j - \kappa; 0) + b_j^e\right]; \underline{b}
ight\}.$$

Relevant parameters:

- \overline{b} minimum income guarantee
- $arphi \in [0,1]$ taper rate
- $\theta \in [0, 1]$ imputed return on assets

 \underline{b} - basic state pension

Earnings-related second tier (non-progressive):

$$b_j^e = \Gamma(\hat{w}_{J_R}).$$

Should pensions be means-tested?

Calibration and simulation

- Preferences and income process as in Sefton et al. (2008) and Kumru and Piggott (2010);
- 2. Small open economy: No factor price effects;
- 3. Initial equilibrium: UK 2003

$$\Rightarrow \quad \overline{b} = 0.3\overline{w}, \varphi = 1.0, \theta = 0.1;$$

- 4. Policy reforms: Reductions of φ , θ
- 5. Compute transition path after reform: welfare effects
- 6. Compute transition path with compensation payments: aggregate efficiency effects

Should pensions be means-tested?

Simulation Results: Single tier - only asset test($\varphi = 0.0$)

Macroeconon	Welfare and efficiency b					
	Period 1	$ $ reform ∞	Age in Iow year	S median	kill leve high	LSRA
Labor supply Consumption Private assets Consumption tax ^c Contribution rate ^c	-1.1 -0.9 0.0 1.6 4.9	0.6 -0.1 -3.8 0.4 4.9	65-69 45-49 25-29 15-19 ∞	4.8 0.3 -1.3	10.4 1.7 -0.7 -1.2 -1.2	12.5 2.3 -0.3

^aChanges in percent over value in initial equilibrium.

^bChanges are reported in percentage of initial resources.

^cChanges in percentage points.

Should pensions be means-tested?

Simulation Results: Two-tier system - optimal design

	Taper rate Pension income	Taper rate Private Wealth	Efficiency effect (%)
Initial Equilibrium	1.0	1.0	
Pension Credit	0.4	0.4	-1.4
Universal Benefits	0.0	0.0	-0.4
Pension-taper reform	0.0	1.0	-2.7
Asset-taper reform	1.0	0.0	+0.8
Higher MIG-level ($\overline{b} = 0.4 \overline{w}$)	1.0	1.0	-1.6
Basic Pension ($\underline{b} = 0.15\overline{w}$)	1.0	1.0	+0.6

Should pensions be means-tested?

Conclusions

 Asset-testing deteriorates efficiency, pension-testing increases efficiency!

Should pensions be means-tested?

Conclusions

- Asset-testing deteriorates efficiency, pension-testing increases efficiency!
- Benefits from pension-testing compensate cost from asset-testing! (due to low savings elasticity!)

Should pensions be means-tested?

Conclusions

- Asset-testing deteriorates efficiency, pension-testing increases efficiency!
- Benefits from pension-testing compensate cost from asset-testing! (due to low savings elasticity!)
- 100% taper rate is efficient in a resource-tested two-tier system (i.e. pension credit reform in UK reduces economic efficiency)!

Should pensions be means-tested?

Conclusions

- Asset-testing deteriorates efficiency, pension-testing increases efficiency!
- Benefits from pension-testing compensate cost from asset-testing! (due to low savings elasticity!)
- 100% taper rate is efficient in a resource-tested two-tier system (i.e. pension credit reform in UK reduces economic efficiency)!
- Elimination of asset-testing while keeping pension-testing is optimal policy!

Conclusions and Outlook

Central result of stochastic life-cycle models:

- Social security and progressive tax systems offer substantial insurance gains;
- Public policy has focussed too much on labor market and savings distortions!
- Trade-off between equity and efficiency might be overstated!

Conclusions and Outlook

Central result of stochastic life-cycle models:

- Social security and progressive tax systems offer substantial insurance gains;
- Public policy has focussed too much on labor market and savings distortions!
- Trade-off between equity and efficiency might be overstated!

Future work:

- Modelling institutional features such as housing and families;
- Modelling other sources of risk (aggregate risk) and intergenerational risk-sharing;