9th Winter School on Inequality and Social Welfare Theory Canazei January 13-16 2014

Using preference information from structural labour supply models when evaluating policies

A. Decoster

Centre for Economic Studies KU Leuven

1. Structure

- individual preferences: double role
 - positive (explain behaviour)
 - normative (evaluative)
- in both: preference heterogeneity

positive

Peichl, Colombino

- observed heterog.
- unobserved heterog.

in both

- preferences
- constraints (wages)

normative

Trannoy, Schokkaert

distinction between e.g. inequality following from

- difference in abilities
- difference in preferences
- difference in choices

INTER FOR ECONOMIC STUD

1. Structure

- this talk: bridge, link, fertilization
- promising for two reasons:
 - 1. in LS, positive = structural
 - choice explained by model in terms of primitives \rightarrow preferences
 - \rightarrow constraints

 $(c_i, l_i) = \arg \max \left[u_i(c, l) \left| c \le f\left(I_i, w_i l \right) \right] \right]$

2. often used for policy simulations
 => need for evaluation tools

• build the bridge in two directions

positive model normative literature

 standard discrete choice model

individual welfare metrics
 respecting preference
 heterogeneity

Decoster & Haan (2010, 2014) Bargain, Decoster, Dolls, Neumann, Peichl and Siegloch (2013)

 richer structural specification
 (Oslo-model)
 work in progress with Capéau & Vanleenhove

Decoster: Preferences information from structural labour supply models

1. Structure

2. individual welfare metrics

- Fleurbaey (2006), Fleurbaey (2008)
 - F. & Maniquet (2011), F. & Blanchet (2013)
- Lecture Alain Trannoy Monday
- Lecture Erik Schokkaert Wednesday
- 3. Decoster & Haan (2010) Bargain et al. (2013)
- 4. Oslo-model

CENTER FOR ECONOMIC STUDIES

CENTER FOR ECONOMIC STUDIE

KU LEUVEN

2. preference heterogeneity

- several 'solutions' have been used
- 1. discard preferences completely

e.g. dominance principle

- 2. discard preference *heterogeneity*
- 3. money metric utility
- 4. reference bundles

KU LEUVEN

ENTER FOR ECONOMIC STUD

c (net income)

KU LEUVEN

CENTER FOR ECONOMIC STUDIES

- several 'solutions' have been used
- 1. discard preferences completely

e.g. dominance principle

2. discard preference *heterogeneity*

e.g. common utility function, 'perfectionism'

- 3. money metric utility
- 4. reference bundles

INTER FOR ECONOMIC STU

l (hours worked)

KU LEUVEN

- several 'solutions' have been used
- 1. discard preferences completely

e.g. dominance principle

2. discard preference heterogeneity

e.g. common utility function, 'perfectionism'

- 3. money metric utility ("rebirth")
- 4. reference bundles

INTER FOR ECONOMIC ST

KU LEUVEN

Decoster: Preferences information from structural labour supply models 9th Winter School Inequality and Social Welfare Theory, Canazei January 13-16 2014

CENTER FOR ECONOMIC STUDIES

- many other possibilities:
 - wage criterion
 - reference bundles

ENTER FOR ECONOMIC STUDIES

- different ways to fix the comparison
- no need to impose `perfectionism'
- not only possible to use preference info
- also: respect preference heterogeneity
- of course:

built on different underlying ethical priors

KULEU

INTER FOR ECONOMIC ST

Let us now turn to the objection that the choice of reference parameters z_0 is crucial and arbitrary. For the equivalence approach more generally, what is at stake is the choice of reference sets $(B_{\lambda})_{\lambda \in \mathbb{R}_+}$. The generality of the equivalence approach is helpful here because it suggests that the literature which criticizes the money-metric utility for being dependent on the reference price vector does not fully pursue the logic of its own critique. This literature accepts to take budget sets at given prices as the class of reference sets $(B_{\lambda})_{\lambda \in \mathbb{R}_+}$. But this too should be questioned if one really wanted the analysis to be independent of the reference. Conversely, if one accepts to work with budget sets, why not examine if some reference prices are more plausible than others?

More directly, the answer to this objection is that if the equivalence approach depends on reference parameters, it can avoid arbitrariness if it develops an ethical theory of the choice of the reference. Some examples in the literature on fair social orderings show that rather natural axioms of fairness may force to adopt certain reference parameters. For

KU LEUVEN

- different underlying ethical priors
- not always so clearly articulated (work to be done)
- our question: does it matter empirically?

- 1. Context
- 2. Individual welfare metrics
- 3. Decoster & Haan (2010, 2011) Bargain et al. (2013)
- 4. Oslo-model
- 5. Conclusion

- KU LEUVEN
- preference heterogeneity inferred from 'standard' discrete choice model labour supply

$$(c_i, l_i) = \arg \max \left[u_i(c, l) \left| c \le f(I_i, w_i l) \right] \right]$$

- where preferences are structurally specified
- to check sensitivity of choice of individual welfare metric in empirical context of LS-model
- we calculated three metrics:

KU LEUVEN

We calculated

$$u_i(c_i, l_i) = u_i(W_i^1, 0)$$
$$u_i(c_i, l_i) = u_i(W_i^2 + w^R l_2, l_2)$$
$$u_i(c_i, l_i) = u_i(W_i^3 l_3, l_3)$$

$$(c_i, l_i) = \arg \max \left[u(c, l; \mathbf{z}_i) \, | c \le f(I_i, w_i l) \right]$$

- two applications:
 - labour supply model German married women
 - cross country comparison for 12 countries

KU LEUVEN

ENTER FOR ECONOMIC STUDIES

- Germany SOEP-dataset (2005)
- limited decision females in couple (N=2076)
 - labour supply spouse is given
 - enters through non-labour income
- based on estimation of discrete choice model
 - J=5 discrete alternatives
 (0; median of [0-15], [16-34], [35-40], >40)
 - allows non linearities & non convexities in budget set
 - deterministic part + stochastic term:

KU LEUVEN

The state specific level of utility for household i, V_{ij} , at j = 0, ..., J, discrete states is defined as:

 $V_{ij} = u(c_{ij}, (1 - l_{ij}); \mathbf{z}_i) + \epsilon_{ij}.$

with a Box-Cox functional form for deterministic part (cfr. Aaberge et al. (2004):

$$u(c_{ij}, (1 - l_{ij}); \mathbf{z}_i) = \beta_c \frac{c_{ij}^{\alpha_c} - 1}{\alpha_c} + \beta_l(\mathbf{z}_i) \frac{(1 - l_{ij})^{\alpha_l} - 1}{\alpha_l}$$

where β_c , β_l , α_c and α_l are the parameters to be estimated.

We introduce observed heterogeneity by taste-shifters for female's preferences for leisure:

$$\beta_{l} = \beta_{l0} + \boldsymbol{\beta}_{l1}^{'} \mathbf{z}_{i}$$

where \mathbf{z}_i includes:

age of both spouses

formal education (three levels)

the number and age of children

regional information (East/West)

	Coefficient	Standard Error
Preferences for Consumption		
α_c	0.20	0.14
β_{c}	3.47	0.59
Preferences for Leisure		
α_l	-1.82	0.33
β_{l0}	0.64	0.27
β_{l1} :		
Age of wife	1.79	0.95
Age of husband	-1.02	0.86
Child younger 3	1.75	0.41
Child between 4 and 6	0.95	0.23
East Germany	-0.64	0.15
Low Education	0.40	0.15
Medium Education	0.28	0.10

Table 2: Estimated parameters of Box-Cox utility function

3. Empirical application 1: variation in the

stats	gross wage	MRS
	+	
mean	12.9	8.5
min	3.8	0.7
max	91.8	27.1
sd	5.9	5.1
p10	7.0	2.4
p25	9.0	6.0
p50	11.9	7.4
p75	15.1	9.1
p90	19.7	16.9

Decoster: Preferences information from structural labour supply models

- Who is worst-off? => calculate welfare metric
- 100 draws from distribution error-term
- net income, leisure: expected values
- welfare metric: also expected value
- sensitivity of welfare ordering for
 - stylized households
 - for actual distribution

- Who is worst-off ?
- 24 stylized households:
 - female wage €10
 - husband is working full time
 - preference characteristics in label e.g. W-K-M-45
 - West/East
 - Kids/No Kids (children less than 3 years old)
 - Low, Medium, High education
 - Age of female in years (and husband same age)
 - simulate labour supply and net income:

net		W2	W2	W2	
income	W1	€7	€12	€20	WЗ
WKM45	WKL25	WNL25	ENH25	ENH45	ENH45
WKL45	WKL45	EKL25	ENM25	ENL45	WNH25
WKM25	EKL45	WKL25	WNL25	ENM45	ENH25
WKL25	EKL25	WKM25	WNM25	ENH25	ENM25
WKH45	WKH45	EKL45	WNM45	WNH25	WNH45
EKL45	WKM25	WNL45	WNH45	WNL45	WNM25
EKL25	WKM45	EKM45	ENM45	WNH45	ENL25
WNL25	EKH25	WNM45	WNL45	ENL25	ENL45
WNM45	EKM25	WKL45	EKH25	WNL25	EKH45
WNL45	WNL25	EKM25	EKL25	WNM25	WNL25
WNM25	EKM45	WKH45	EKM25	WKL25	ENM45
EKH45	WNL45	WKH25	ENH45	ENM25	WNM45
ENL45	WNM25	WNM25	ENL25	WNM45	EKM25
WKH25	WKH25	ENH45	EKM45	WKM25	WNL45
EKM45	WNM45	WKM45	EKH45	EKH25	EKM45
EKM25	EKH45	EKH25	EKL45	WKL45	EKL25
EKH25	WNH45	ENM45	WKM25	WKM45	EKL45
WNH25	ENM45	EKH45	WKL25	WKH25	WKH25
WNH45	ENL45	WNH45	WKL45	WKH45	WKH45
ENM45	ENL25	ENL45	WKH45	EKL25	WKM25
ENM25	WNH25	ENM25	WKH25	EKL45	WKL25
ENL25	ENH45	ENH25	ENL45	EKM25	WKM45
ENH45	ENM25	WNH25	WKM45	EKM45	EKH25
ENH25	ENH25	ENL25	WNH25	EKH45	WKL45

Decoster: Preferences information from structural labour supply models 9t

net		W2	W2	W2	
income	W1	€7	€12	€20	W3
WKM45	WKL25	WNL25	ENH25	ENH45	ENH45
WKL45	WKL45	EKL25	ENM25	ENL45	WNH25
WKM25	EKL45	WKL25	WNL25	ENM45	ENH25
WKL25	EKL25	WKM25	WNM25	ENH25	ENM25
WKH45	WKH45	EKL45	WNM45	WNH25	WNH45
EKL45	WKM25	WNL45	WNH45	WNL45	WNM25
EKL25	WKM45	EKM45	ENM45	WNH45	ENL25
WNL25	EKH25	WNM45	WNL45	ENL25	ENL45
WNM45	EKM25	WKL45	EKH25	WNL25	EKH45
WNL45	WNL25	EKM25	EKL25	WNM25	WNL25
WNM25	EKM45	WKH45	EKM25	WKL25	ENM45
EKH45	WNL45	WKH25	ENH45	ENM25	WNM45
ENL45	WNM25	WNM25	ENL25	WNM45	EKM25
WKH25	WKH25	ENH45	EKM45	WKM25	WNL45
EKM45	WNM45	WKM45	EKH45	EKH25	EKM45
EKM25	EKH45	EKH25	EKL45	WKL45	EKL25
EKH25	WNH45	ENM45	WKM25	WKM45	EKL45
WNH25	ENM45	EKH45	WKL25	WKH25	WKH25
WNH45	ENL45	WNH45	WKL45	WKH45	WKH45
ENM45	ENL25	ENL45	WKH45	EKL25	WKM25
ENM25	WNH25	ENM25	WKH25	EKL45	WKL25
ENL25	ENH45	ENH25	ENL45	EKM25	WKM45
ENH45	ENM25	WNH25	WKM45	EKM45	EKH25
ENH25	ENH25	ENL25	WNH25	EKH45	WKL45

Decoster: Preferences information from structural labour supply models

- Who is worst-off ?
- Now we combine with variation of actual gross wages and non labour incomes in the dataset

Quintiles	Income	Rente	Reference	Reference	Reference	Wage
		Criterion	wage 7	wage 12	wage 20	Criterion
		Share of he	ouseholds in .	East German	y	
1	0.31	0.22	0.33	0.47	0.61	0.62
2	0.21	0.18	0.20	0.17	0.16	0.18
3	0.17	0.20	0.17	0.15	0.07	0.14
4	0.17	0.24	0.15	0.12	0.10	0.05
5	0.17	0.19	0.16	0.11	0.08	0.04

Share of households with low education

1	0.23	0.24	0.21	0.17	0.11	0.09
2	0.14	0.14	0.14	0.18	0.20	0.14
3	0.12	0.09	0.12	0.11	0.13	0.19
4	0.05	0.05	0.05	0.07	0.07	0.08
5	0.03	0.02	0.03	0.03	0.03	0.06

	Si	hare of hous	ehold with ch	ildren young	er 3	
1	0.22	0.29	0.23	0.12	0.03	0.00
2	0.16	0.12	0.15	0.17	0.11	0.02
3	0.07	0.08	0.09	0.12	0.19	0.04
4	0.09	0.06	0.07	0.10	0.15	0.18
5	0.05	0.03	0.03	0.06	0.10	0.33

Decoster: Preferences information from structural labour supply models

KU LEUVEN

CENTER FOR ECONOMIC STUDIES

KU LEUVEN

- two applications:
 - labour supply model German married women
 - cross country comparison for 12 countries

Soc Choice Welf (2013) 41:789–817 DOI 10.1007/s00355-012-0707-x

ORIGINAL PAPER

Welfare, labor supply and heterogeneous preferences: evidence for Europe and the US

Olivier Bargain · André Decoster · Mathias Dolls · Dirk Neumann · Andreas Peichl · Sebastian Siegloch **KU LEUVEN**

ENTER FOR ECONOMIC STUDIE

- 1. Context
- 2. Individual welfare metrics
- 3. Decoster & Haan (2010) Bargain et al. (2013)
- 4. Oslo-model
- 5. Conclusion

KU LEUVEN

• build the bridge in two directions

positive model

normative literature

 standard discrete choice model

individual welfare metrics
 respecting preference
 heterogeneity

richer structural specification
 (Oslo-model)
 work in progress with Capéau & Vanleenhove

- disentanglement increasingly important in normative literature
 - see lectures Trannoy/Schokkaert
 - "responsible" for preferences
 - "not responsible" for circumstances
 - justified, unjustified inequalities

ENTER FOR ECONOMIC ST

- example 1: regional CGE-model Belgium
- region-specific calibration:

$$U(C,L) = \beta_C \ln \left(C - \gamma_C\right) + \beta_L \ln \left(L - \gamma_L\right)$$

	β_C	β_L
Brussels	0.737	0.263
Flanders	0.774	0.226
Wallonia	0.808	0.192

Table 4.2: Calibrated preference parameters

• example 2: choice of hours (single females)

Decoster: Preferences information from structural labour supply models 9th Winter School Inequality and Social Welfare Theory, Canazei January 13-16 2014

- do we really believe this is driven by (only) "preferences"?
- answer from "the Oslo-model":
 - heterogeneity in preferences
 - ànd much more heterogeneity in choice sets
- richer model (structure)
 - not because of better fit (=> dummies)
 - but structural interpretation allows additional simulations (besides only tax changes)

KU LEUVEN

- Dagsvik (1994)
- Aaberge, Dagsvik and Strøm (1995)
- Aaberge, Colombino and Strøm (1999)
- Dagsvik and Strøm (2006)
- Aaberge, Colombino & Wennemo (2009)
- Aaberge and Colombino (2013)

standard model

- choice of discrete h
- h: uniform distr.
- gross wage given

Oslo model

- choice of j: (h,w,k)
- h: non uniform
- gross wage distrib.

difference: in choice set

Tilburg

From Aaberge et al. (2000):

Decoster: Preferences information from structural labour supply models 9th Winter School Inequality and Social Welfare Theory, Canazei January 13-16 2014

KU LEUVEN

ENTER FOR ECONOMIC STUDIES

Oslo

KU LEUVEN

standard model

- choice of discrete h
- h: uniform distr.
- gross wage given
- tax-benefit system
- functional form U(.)
- assumptions about stochastic part
- . => prob (h)

Oslo model

- choice of j: (h,w,k)
- h: non uniform
- gross wage distrib.
- tax-benefit system
- functional form U(.)
- assumptions about stochastic part
- . => prob (h,w)

probability:

$$\begin{split} \varphi(h) &= & \Pr\left[U\left(f(wh,I),h\right) = \max_{y\in B} U\left(f(wy,I),y\right)\right] \\ &= & \frac{\exp\left[v\left(w,h\right)\right]}{\int\limits_{y\in B} \exp\left[v\left(w,y\right)\right]dy}, \end{split}$$

 standard multinomial logit-model (relative attractiviness of the choice)

• Oslo
•
$$\phi(w,h) = \Pr\left[U\left(f(wh,I),h\right) = \max_{(x,y)\in B} U\left(f(xy,I),y\right)\right]$$

$$= \frac{\exp\left[v\left(w,h\right)\right]}{\int\limits_{(x,y)\in B} \exp\left[v\left(x,y\right)\right]} \frac{p(w,h)}{p(x,y)} dx \cdot dy},$$

weighted by measure of `availability'

- KU LEUVEN
- Structural => empirical specifications
 - preferences
 - opportunities (job availability)

preferences: Box-Cox

The functional form of the deterministic part of utility is the following for singles, where C = f(wh, I) stands for monthly household disposable income and L = 1 - (h/168) for leisure time of either the single male or the single female:

$$v(C,L) = \beta_c \left(\frac{C^{\alpha_c} - 1}{\alpha_c}\right) + \beta_L \left(\frac{L^{\alpha_L} - 1}{\alpha_L}\right), \qquad (26)$$

with observed heterogeneity in preferences modelled by means of covariates which influence the leisure coefficient β_L linearly:

$$\beta_L = \beta_{L0} + \sum_k \beta_{Lk} z_k, \tag{27}$$

and the k-vector of covariates \mathbf{z} containing the following variables:

preferences couples

$$v(C, L_m, L_f) = \beta_c \left(\frac{C^{\alpha_c} - 1}{\alpha_c}\right) + \beta_{Lf} \left(\frac{L^{\alpha_{Lf}} - 1}{\alpha_{Lf}}\right) + \beta_{Lm} \left(\frac{L^{\alpha_{Lm}} - 1}{\alpha_{Lm}}\right) + \beta_{Lfm} \left(\frac{L^{\alpha_{Lm}} - 1}{\alpha_{Lm}}\right) \left(\frac{L^{\alpha_{Lm}} - 1}{\alpha_{Lm}}\right)$$

unitary model

job availability

$$\varphi(w,h) = \frac{\exp\left[v\left(w,h\right)\right] \left[p(w,h)\right]}{\int\limits_{(x,y)\in B} \exp\left[v\left(x,y\right)\right] \cdot \left[p(x,y)\right] \cdot dx \cdot dy}$$

market versus non-market

$$p(w,h) = \begin{cases} p_1 \cdot g(w,h) & \text{if } h, w > 0\\ p_0 & \text{if } h, w = 0 \end{cases}$$

$$q_0 = \frac{p_1}{p_0}$$

job availability

market versus non-market

$$\log q_0 = \theta_0 + \theta_1 E du_{low} + \theta_2 E du_{high} + \theta_3 W a l + \theta_4 B x l$$

market subset

$$g(w,h) = g_1(w) \cdot g_2(h)$$
, (10)

in which $g_1(w)$ and $g_2(h)$ are respectively the densities of wages and offered hours for market opportunities (w, h > 0).

- job availability
 - market subset
 - wages: lognormal (covariates: age, education)
 - $g_{2}(h) = \begin{cases} \gamma_{1} & h \in [01.0, 18.5[\\ \gamma_{1} \exp \gamma_{2} & h \in [18.5, 20.5[\\ \gamma_{1} & h \in [20.5, 29.5[\\ \gamma_{1} \exp \gamma_{3} & h \in [29.5, 30.5[\\ \gamma_{1} & h \in [30.5, 37.0[\\ \gamma_{1} \exp \gamma_{4} & h \in [37.0, 40.5[\\ \gamma_{1} & h \in [40.5, 70.0[\end{cases} \end{cases}$ • hours:

- hinges on the separability of g(h,w)
- non parametrically identified:
 - $v(C,h).g_2(h)$
 - **q**₀
 - g₁(w)

KU LEUVEN

ENTER FOR ECONOMIC STUDIES

- ML-estimation
 - 200 draws to approximate Choice Set
- on EU-SILC 2007
 - 571 single females
 - 449 single males
 - 1457 couples
- tax benefit simulator of EUROMOD

4. Oslo-model: baseline

- coefficients for utility function
- coefficients for opportunities
 - market versus non market (q_0)
 - hours (peaks): g₂(h)
 - wage distribution: $g_1(w)$
- elasticities
- fit of
 - hours choice and participation rates
 - income distribution

4. Oslo-model: baseline

		supply classicities. cou	PICS						
	Unconditional elast	Conditional elast	Participation elast						
	Female in couple								
$Quartile \ 1$	0.81	0.09	0.62						
$Quartile \ 2$	0.49	0.04	0.40						
Quartile 3	0.45	0.05	0.34						
Quartile 4	0.34	0.10	0.17						
Total	0.50	0.07	0.36						
	Mal	le in couple							
$Quartile \ 1$	0.42	0.14	0.22						
Quartile 2	0.36	0.14	0.18						
Quartile 3	0.30	0.13	0.14						
Quartile 4	0.29	0.14	0.13						
Total	0.33	0.14	.16						
Source: Own	Calculations EU-SILC (2007))							

Table 10: Labor supply elasticities: couples

Decoster: Preferences information from structural labour supply models 9th Winter School Inequality and Social Welfare Theory, Canazei January 13-16 2014

KU LEUVEN

- preferences: by means of MRS
- based on v(C,h)
 - random term: part of preferences, neglected
- compared with a "Tilburg"-model
 - Choice set:
 - only own, observed wage
 - uniform hours distribution
 - remove the opportunity differentiation
 - "peaks" kept in

	Oslo-model	Tilburg model
Total population	10.25	
$\# \ children \ 0-3: \ 0$	10.18	
$\# \ children \ 0$ -3: 1	11.25	
# children 0-3: 2	14.02	
Age: 25-35	8.97	
Age: 35-50	9.55	
Age: 50+	13.07	

MRS are calculated in a fixed bundle C = 2000, h = 38

	Oslo-model	Tilburg model
Total population	10.25	8.09
$\# \ children \ 0$ -3: 0	10.18	8.04
$\# \ children \ 0-3: \ 1$	11.25	8.76
# children 0-3: 2	14.02	10.61
Age: 25-35	8.97	7.29
Age: 35-50	9.55	7.68
Age: $50+$	13.07	9.81

MRS are calculated in a fixed bundle C = 2000, h = 38

Table 6: Opportunity estimation						
	Coeff.	t-value		Coeff.	t-value	
Peak dumm	ies: Femal	e	Peak dumn	nies: Male	!	
Peak dummy 1 (γ_2)	0.699^{**}	0.114	Peak dummy 1 (γ_2)	0.635^{**}	0.231	
Peak dummy 2 (γ_3)	1.493^{**}	0.106	Peak dummy 2 (γ_3)	0.843**	0.189	
Peak dummy 3 (γ_4)	2.287^{**}	0.075	Peak dummy 3 (γ_4)	2.670^{**}	0.059	
Opp	ortunities:	Female	Ol	portunitie	s: Male	
Constant (θ_{0f})	0.798^{**}	0.291	Constant (θ_{0f})	-2.500^{**}	0.233	
Low educated	-0.366^{**}	0.172	Low educated	-0.356	0.234	
High educated	0.664^{**}	0.175	High educated	-0.267	0.266	
Wallonia	-0.416^{**}	0.145	Wallonia	-0.657^{**}	0.218	
Brussels	-0.857^{**}	0.209	Brussels	-1.211^{**}	0.277	
Brussels	-0.857**	0.209	Brussels	-1.211^{**}	0.277	

*Significant at 10% level, ** Significant at 5% level

Source: Own Calculations, EU-SILC (2007)

- opportunities:
 - by calculating q_0
 - g(h,w)

4. Oslo-model: baseline

	1) Market opportunities (%)	2) Non-market opportunities (%)	O0(1/2)
D 1 '			
Belgium	73.04	26.96	3.30
Low educated	61.98	38.02	1.72
Middle educated	70.08	29.92	2.50
High educated	81.38	18.62	4.79
Wallonia	70.35	29.65	2.69
Low educated	59.80	40.20	1.49
Middle educated	68.21	31.79	2.15
High educated	80.65	19.35	4.17
Brussels	64.00	36.00	1.97
Low educated	48.90	51.10	0.96
Middle educated	57.99	42.01	1.38
High educated	72.83	27.17	2.68
Flanders	79.30	20.70	4.39
Low educated	69.27	30.73	2.25
Middle educated	76.48	23.52	3.25
High educated	86.33	13.67	6.32

Table 1. Market and non-market apparturities, famale

- two counterfactual choices
 to be compared with the baseline
- Equal Opportunities (EO)
 - Choice set identical for all individuals
 - still gender specific:
 - male: 45 yrs old, middle educated, Flanders
 - female: 40 yrs old, middle educated, Flanders
 - Choice: on own preferences
 - random terms: identical as baseline

- two counterfactual choices
 to be compared with the baseline
- Equal Preferences (EP)
 - Choice set from baseline
 - Choice: preferences of reference individual
 - gender specific
 - male: 45 yrs old, middle educated, Flanders
 - female: 40 yrs old, middle edcuated, Flanders
 - random terms: identical as baseline

4. Oslo-model: Counterfactuals

KU LEUVEN

Table 19: Participation rate: single female								
Participation rate $(\%)$:	Baseline	EO	\mathbf{EP}	Δ EO-Base (pctp)	Δ EP-Base (pctp)			
Total population:	71.0	79.2	78.9	8.2	7.9			
Quartile 1	50.1	71.6	58.9	21.5	8.8			
Quartile 2	59.2	74.9	74.8	15.6	15.6			
Quartile 3	86.1	81.7	89.7	-4.4	3.6			
Quartile 4	87.1	88.3	91.1	1.3	4.1			
Low educated	41.1	66.2	58.7	25.1	17.6			
Middle educated	63.5	83.8	72.5	20.3	9.0			
High educated	91.8	82.0	94.0	-9.8	2.2			
Flanders	80.7	82.0	87.9	1.3	7.2			
Wallonia	62.9	77.1	71.8	14.2	8.9			
Brussels	62.3	76.0	70.1	13.7	7.8			
age 25-35	76.3	85.5	77.5	9.2	1.2			
age 35-50	73.7	80.4	76.8	6.7	3.1			
age $50+$	62.7	67.7	87.7	5.0	20.0			
		_						

EO= Equal Opportunities, EP= Equal Preferences, FTE= Full Time Equivalent (=2000 hours/year)

Decoster: Preferences information from structural labour supply models

Table 17: Inequality								
	Baseline	EO	\mathbf{EP}					
Gini:	24.01	20.65	24.42					
Variance wage	24.56	19.77	25.77					
Variance hours	322.73	266.92	296.58					

4. Oslo-model: conclusion (1)

 Oslo-model seems to be promising structural model for empirical EO research

to do next

- preliminary results driven mainly by wages
- => investigate separate effects in differential opportunities (e.g. only the q₀)
- re-estimate model on "rich data"
 - dig deeper in identification issues...
- integrate random term in simulation of EP
- use formal decomposition of labour earnings
- calculate 'just' and 'unjust' inequalities