Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intunive applicatio

Hypothesis testing

Other problems Robustness

Semiparametric

Statistical Methods for Distributional Analysis

Frank Cowell¹ Emmanuel Flachaire²

¹STICERD London School of Economics

²GREQAM, Marseille.

Winter School, Canazei. January 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method

Finite-mixture mo

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

- 3 Density
 - Parametric estimation
 - Kernel method
 - Finite-mixture models
 - Finite sample
- 4 Welfare indices
 - Asymptotic inference
 - Inequality measures
 - Poverty measures
 - Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Dac

• The null hypothesis

ethods										
						1	 (E)	 . ⊢	1	900

Stat methods FAC-EF Prepared for the Handbook on Income Distribution Introduction • volume 2 edited by Atkinson and Bourguignon Welfare indices ヘロト 人間ト 人注ト 人注ト 二注一

Sac

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

- Implementation
- The null hypothesis
- Hypothesis testing

Other problems

- Robustness
- Incomplete da
- Semiparametric

• Prepared for the Handbook on Income Distribution

- volume 2
- edited by Atkinson and Bourguignon

Not really new work

- but perhaps some fresh insights
- survey of theory, methods underlying good practice
- guide to the tools available to the practitioner in this field

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Semiparametric

• Prepared for the Handbook on Income Distribution

- volume 2
- edited by Atkinson and Bourguignon

• Not really new work

- but perhaps some fresh insights
- survey of theory, methods underlying good practice
- guide to the tools available to the practitioner in this field
- Not just standard inference
 - how to model distributions
 - how to handle data problems

stat methods												
FAC-EF												
roduction												
ta												
ensity												
ametric estimation												
mel method												
ite-mixture models												
ite sample												
lfare indices												
mptotic inference												
uality measures												
erty measures												
te sample												
mparisons												
ciples												
lementation												
itive application												
e null hypothesis												
oothesis testing												
er problems												
ustness												
nplete data												
niparametric					-	Þ	6	▶ 4	-≣⇒	\equiv >	1	50

Stat methods FAC-EF • Income y. (earnings, wealth, consumption...) Belongs to a set $\mathbb{Y} = [y, \overline{y}) \subseteq \mathbb{R}.$ Introduction Welfare indices < ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Stat methods

FAC-EF

Introduction

Data

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hupothasis tasting

Other problems

Robustness

Incomplete data

Semiparametric

• *Income y*. (earnings, wealth, consumption...) Belongs to a set $\mathbb{Y} = [\underline{y}, \overline{y}) \subseteq \mathbb{R}$.

< □ > < @ > < E > < E > E のQ@

• Population proportion $q \in \mathbb{Q} := [0, 1]$.

Stat methods

FAC-EF

Introduction

Data

- Density Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Introition annlianti
- The null hypothesis
- Hypothesis testing

Other problems

- Robustness
- Semiparametric

• *Income y.* (earnings, wealth, consumption...) Belongs to a set $\mathbb{Y} = [\underline{y}, \overline{y}) \subseteq \mathbb{R}$.

- Population proportion $q \in \mathbb{Q} := [0, 1]$.
- *Distribution F*. Set of all distribution functions will be denoted 𝔽.

Stat methods

FAC-EF

Introduction

Data

- Density Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Semiparametric

- *Income y.* (earnings, wealth, consumption...) Belongs to a set $\mathbb{Y} = [\underline{y}, \overline{y}) \subseteq \mathbb{R}$.
- Population proportion $q \in \mathbb{Q} := [0, 1]$.
- *Distribution F*. Set of all distribution functions will be denoted 𝔽.
- *Indicator function* $\iota(\cdot)$. For logical condition *D*:

 $\iota(D) = \begin{cases} 1 & \text{if } D \text{ is true} \\ \\ 0 & \text{if } D \text{ is not true} \end{cases}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods											
FAC-EF											
ntroduction											
Data											
Density											
Parametric estimation											
Kernel method											
Finite-mixture models											
Finite sample											
Velfare indices											
Asymptotic inference											
inequality measures											
Poverty measures											
Finite sample											
Comparisons											
Principles											
Implementation											
Intuitive application											
The null hypothesis											
Hypothesis testing											
Other problems											
Robustness											
Incomplete data											
Semiparametric				< □	Þ - 1	(8)	 ₹ >	1	₹ ► .	1	$\mathcal{O}\mathcal{Q}$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypothesis testing

Other problems

Robustness

In a second star of

Semiparametric

• Complete enumeration

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hupothasis tasting

Other problems

Robustness

Incomplete dat

Semiparametric

Complete enumeration

• Sample: Administrative data

• summaries of income distributions in grouped form

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods

FAC-EF

Introduction

Data

Density Parametric estim

Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data Seminarametric

semparametric

Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density Parametric estima Kernel method

Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementatio

Intuitive application

The null hypothesis

Other problems

Robustness

Semiparametric

Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimat Kernel method

Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Semiparametric

Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• only what is legally permissible and convenient

Stat methods

FAC-EF

Introduction

Data

Density Parametric estima

Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

The sull how others is

Hypothesis testing

Other problems

Robustness

Incomplete da

Semiparametric

Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- only what is legally permissible and convenient
- design may not be ideal for economist

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

• Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data
 - only what is legally permissible and convenient
 - design may not be ideal for economist
- Survey data
 - usually purpose-built

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

• Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data
 - only what is legally permissible and convenient
 - design may not be ideal for economist

• Survey data

- usually purpose-built
- smaller size and worse response rate than administrative-data

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

• Complete enumeration

• Sample: Administrative data

- summaries of income distributions in grouped form
- official micro-data similar size to sample surveys
- very large data sets: complete collections of admin data
 - only what is legally permissible and convenient
 - design may not be ideal for economist

• Survey data

- usually purpose-built
- smaller size and worse response rate than administrative-data

= 900

Stat methods							
FAC-EF							
Introduction							
Data							
Density							
Parametric estimation							
Kernel method							
Finite-mixture models							
Finite sample							
Welfare indices							
Asymptotic inference							
Inequality measures							
Poverty measures							
Finite sample							
Comparisons							
Principles							
Implementation							
Intuitive application							
The null hypothesis							
Hypothesis testing							
Other problems							
Robustness							
Incomplete data							
Semiparametric		4	< 🗗 →	$<\equiv +$	< ≣ ≻ .	1	Sa

Stat methods FAC-EF Introduction Data Density	
FAC-EF Imple design Introduction Introduction Data Imple design Density Imple design	
Introduction Data Density	
Data Density	
Density	
Parametric estimation	
Kernel method	
Finite-mixture models	
Finite sample	
Welfare indices	
Asymptotic inference	
Incuality measures	
Poverty measures	
Finite sample	
Comparisons	
* Independention	
Intuitive application	
The null hypothesis	
Hypothesis testing	
Other problems	
Robusters	
Incomplete data	
Semijarametric	20

Stat methods	
FAC-EF	• Simple design
Introduction	• sample designed so each member of the population has equal
Data	probability of being included in sample
Density Parametric estimation Kernel method Finite-mixture models Finite sample	
Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing	
Other problems Robustness Incomplete data Semiparametric	(ロ) (間) (注) (注) を やく

Stat methods Simple design FAC-EF • sample designed so each member of the population has equal probability of being included in sample Data • ideal case that enables one to focus on the central issues of statistical inference Welfare indices <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semiparametric

Stat methods Simple design FAC-EF Data ۵ Welfare indices population

- sample designed so each member of the population has equal probability of being included in sample
- ideal case that enables one to focus on the central issues of statistical inference
- but sampling frame could be out of date or exclude part of the population

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods Simple design FAC-EF Data statistical inference ۵ Welfare indices population Complex design •

- sample designed so each member of the population has equal probability of being included in sample
- ideal case that enables one to focus on the central issues of statistical inference
- but sampling frame could be out of date or exclude part of the population

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods Simple design FAC-EF Data • Welfare indices

- sample designed so each member of the population has equal probability of being included in sample
- ideal case that enables one to focus on the central issues of statistical inference
- but sampling frame could be out of date or exclude part of the population

Complex design

• *Clustering* observations by geographical location may reduce the costs of running the survey

Stat methods Simple design FAC-EF Data ۵ Welfare indices population

- sample designed so each member of the population has equal probability of being included in sample
- ideal case that enables one to focus on the central issues of statistical inference
- but sampling frame could be out of date or exclude part of the
- Complex design
 - *Clustering* observations by geographical location may reduce the costs of running the survey
 - Stratification: oversampling certain categories to ensure that adequate representation of certain types

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

tat methods								
FAC-EF								
oduction								
a								
ensity								
ametric estimation								
nel method								
te-mixture models								
ite sample								
lfare indices								
mptotic inference								
uality measures								
rty measures								
e sample								
nparisons								
ciples								
ementation								
itive application								
null hypothesis								
pothesis testing								
er problems								
ustness								
iplete data				_	_	_	_	
niparametric			< □ ▶	< ⊡ >	< ≣ > <	.≣ ▶	-2	4) a

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Here the size to starting

Other problems

Robustness

Incomplete da

Semiparametric

• Measurement error

• similar to measurement error in other contexts

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive application

Hupothasis tasting

Other problems

Robustness

Incomplete data

Semiparametric

• Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

- Implementation
- intunive application
- Hypothesis testing

Other problems

Robustness

Semiparametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems

Robustitess

Semiparametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Data contamination

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

• mixture of true distribution and contamination distribution

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

• mixture of true distribution and contamination distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• model resembles problem of subgroup decomposition
Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

• mixture of true distribution and contamination distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• model resembles problem of subgroup decomposition

Incomplete data

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

- mixture of true distribution and contamination distribution
- model resembles problem of subgroup decomposition

Incomplete data

(1) Subset of \mathbb{Y} is specified: income-boundaries $(\underline{z}, \overline{z})$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

- mixture of true distribution and contamination distribution
- model resembles problem of subgroup decomposition

Incomplete data

- **(1)** Subset of \mathbb{Y} is specified: income-boundaries $(\underline{z}, \overline{z})$
- ② Subset of \mathbb{Q} is specified: proportions $\left(\underline{\beta}, \overline{\beta}\right)$ in tails

ヘロト 人間 トイヨト イヨト

San

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Measurement error

- similar to measurement error in other contexts
- observed income = true income adjusted by error term
- model resembles problem of factor-source decomposition

Data contamination

- mixture of true distribution and contamination distribution
- model resembles problem of subgroup decomposition

Incomplete data

- **(1)** Subset of \mathbb{Y} is specified: income-boundaries $(\underline{z}, \overline{z})$
- ② Subset of \mathbb{Q} is specified: proportions $\left(\underline{\beta}, \overline{\beta}\right)$ in tails

ヘロト 人間 トイヨト イヨト

San

hods				
F				
n				
mation				
odels				
es				
ce				
n				
ms				
				-
				-

Stat methods				
FAC-EF		Inform	nation re Exclu	ded Sample
Introduction		None	Sample	<i>Multiple</i>
Data			ргоротной	siansnes
Density	limits $(\underline{z},\overline{z})$ fixed; $\left(\underline{eta},ar{eta} ight)$ unknown	Α	В	С
Parametric estimation	$(0,\overline{0})$ $(1,(-),1)$	n	(\mathbf{F})	(\mathbf{F})
Kernel method	proportions (\underline{p}, p) fixed; (\underline{z}, z) unknown	ν	(E)	(Г)
Finite-mixture models				

E

900

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

How athenia tanting

Other problems

Robustness

. . .

Semiparametric

Welfare indices

Stat methods				
FAC-EF		Inform	nation re Exclu	ded Sample
Introduction		None	Sample proportion	Multiple statistics
Density	limits $(\underline{z},\overline{z})$ fixed; $(\underline{\beta},\overline{\beta})$ unknown	Α	В	С
Parametric estimation Kernel method	proportions $\left(\underline{\beta},\overline{\beta}\right)$ fixed; $(\underline{z},\overline{z})$ unknown	D	(E)	(F)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A: standard form of truncation

Stat methods				
FAC-EF		Inform	nation re Exclu	ded Sample
atroduction		None	Sample proportion	Multiple statistics
ensity	limits $(\underline{z},\overline{z})$ fixed; $(\underline{\beta},\overline{\beta})$ unknown	Α	B	С
arametric estimation	proportions $(\beta, \overline{\beta})$ fixed; $(\underline{z}, \overline{z})$ unknown	D	(E)	(F)

- A: standard form of truncation
- B: "censoring". Point masses at $(\underline{z}, \overline{z})$ estimate the population-share of the excluded part.

イロト イ理ト イヨト イヨト

=

Dac

Other problems Robustness Incomplete data

Welfare indices

D

D

Welfare indices

Stat methods				
FAC-EF		Inform	nation re Exclu	ded Sample
troduction		None	Sample proportion	Multiple statistics
ensity	limits $(\underline{z},\overline{z})$ fixed; $(\underline{eta},\overline{eta})$ unknown	Α	B	С
arametric estimation	proportions $(\underline{\beta}, \overline{\beta})$ fixed; $(\underline{z}, \overline{z})$ unknown	D	(E)	(F)

- A: standard form of truncation
- B: "censoring". Point masses at $(\underline{z}, \overline{z})$ estimate the population-share of the excluded part.
- C: Extension of estimation problem with grouped data

イロト イ理ト イヨト イヨト

1

Sar

Stat methods				
FAC-EF		Inform	nation re Exclu	ded Sample
troduction ata		None	Sample proportion	Multiple statistics
ensity	limits $(\underline{z},\overline{z})$ fixed; $(\underline{eta},\overline{eta})$ unknown	Α	В	С
arametric estimation ernel method	proportions $(\underline{\beta}, \overline{\beta})$ fixed; $(\underline{z}, \overline{z})$ unknown	D	(E)	(F)

- A: standard form of truncation
- B: "censoring". Point masses at $(\underline{z}, \overline{z})$ estimate the population-share of the excluded part.
- C: Extension of estimation problem with grouped data
- D: Trimming

Incomplete data Semiparametric

Welfare indices

D

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

3 Density

Parametric estimation

- Kernel method
- Finite-mixture models
- Finite sample
- Welfare indices
- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Parametric density estimation

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data Semiparametric Most of the standard parametric income distributions are special cases of the Generalized Beta distribution:

イロト 不得 トイヨト イヨト

Э

Sac

Goodness of Fit

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

- Cowell et al. (2011) developed a GoF test based on axiomatic discussion, with social-welfare foundations:

$$G_{\xi} = \frac{1}{\xi^2 - \xi} \sum_{i=1}^n \left[\left[\frac{u_i}{\mu_u} \right]^{\xi} \left[\frac{2i}{n+1} \right]^{1-\xi} - 1 \right],$$

where u_i = F(y_(i); θ̂) and y_(i) is the *i*th smallest observat.
The pearson χ² statistic has poor finite sample properties

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation

Kernel method

Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

3 Density

- Parametric estimation
- Kernel method
- Finite-mixture models
- Finite sample
- Welfare indices
- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Histograms

Naive estimator

Semiparametric

Kernel estimator

Semiparametric

Bandwidth selection

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation

Kernel method

Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric

The kernel density estimator

$$\hat{f}(y) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{y-y_i}{h}\right)$$

is not really affected by the choice of the kernel K(), but it is sensitive to the choice of the bandwidth h

Bandwidth selection:

• Silverman's rule-of-thumb, $\hat{h}_{opt} = 0.9 \min\left(\hat{\sigma}; \frac{\hat{q}_3 - \hat{q}_1}{1.349}\right) n^{-\frac{1}{5}}$.

- Plug-in method
- Cross-validation

Adaptive kernel

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation

Kernel method

Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

- When the concentration of the data is markedly heterogeneous, a fixed bandwidth may be quite restrictive.
- The adaptive kernel estimator is defined as follows:

$$\hat{f}(y) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h\lambda_i} K\left(\frac{y-y_i}{h\lambda_i}\right),$$

where λ_i is a parameter that varies with the local concentration of the data, $\lambda_i = [g/\tilde{f}(y_i)]^{\alpha}$.

•

Adaptive kernel

Outline

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method
- Finite-mixture models
- Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles
- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data
- Semiparametric

Introduction

Data

3 Density

- Parametric estimation
- Kernel method

• Finite-mixture models

- Finite sample
- Welfare indices
- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Finite-mixture models

.

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models

Finite sample

- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Semiparametric

- Under regularity conditions, any distribution can be consistently estimated by a mixture of Normal distributions
- Estimate any income distrib. with a mixture of lognormals :

$$f(\log y; \Theta) = \sum_{k=1}^{K} \pi_k \Phi(y_k; \mu_k, \sigma_k)$$

- Interpretation: a (heterogeneous) population can be decomposed into several distinct (homogeneous) groups
- Brings out the link between parametric and nonparametric estimator (K = 1 and K = n, $\pi_k = 1/n$)

Finite-mixture models

Semiparametric

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ??</p>

Finite-mixture models with covariates

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method

Finite-mixture models

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • Covariates can be introduced in probabilities to characterized group profiles

$$f(\log y|z; \Theta) = \sum_{k=1}^{K} \pi_k(z_k; \alpha_k) \Phi(y_k; \mu_k, \sigma_k)$$

• Covariates can be introduced into the modeling of the densities in each of the groups, leading us to consider mixture of regression models

$$f(\log y|x;\Theta) = \sum_{k=1}^{K} \pi_k \Phi(y_k|x_k;\mu_k,\sigma_k)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Covariates can be introduced in both components

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

3 Density

- Parametric estimation
- Kernel method
- Finite-mixture models

Finite sample

- Welfare indices
- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Finite sample properties

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model:

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample Comparisons Principles

Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data

Semiparametric

- Quality of the fit: MIAE = $E\left(\int_0^\infty \left|\hat{f}(y) f(y)\right| dy\right)$.
- Data are drawn from lognormals, Singh-Maddala and mixtures of two SM distributions.

Finite sample properties

Contained a la									
Stat methods		Sta	andard ke	ernel	Ac	laptive ke	ernel	Mixture	_
FAC-EF		Silv.	CV	Plug-in	Silv.	CV	Plug-in	lognormal	1
Introduction	Lognorma	l							
Data	$\sigma = 0.5$	0.1044	0.1094	0.1033	0.0982	0.1098	0.1028	0.0407	
Density Parametric estimation	$\sigma = 0.75$	0.1326	0.1326	0.1252	0.1098	0.1283	0.1179	0.0407	
Kernel method	$\sigma = 1$	0.1643	0.1716	0.1522	0.1262	0.1609	0.1362	0.0407	
Finite sample									
Welfare indices	Singh-Mad	ldala							
Asymptotic interence Inequality measures	q = 1.7	0.0942	0.1009	0.0951	0.0915	0.0994	0.0934	0.0840	
Poverty measures Finite sample	q = 1.2	0.1039	0.1100	0.1048	0.0947	0.1050	0.0994	0.0920	
Comparisons	q = 0.7	0.1346	0.1482	0.1326	0.1049	0.1349	0.1175	0.0873	
Principles Implementation									
Intuitive application The null hypothesis	Mixture of	two Sing	h-Madda	ıla					
Hypothesis testing	a = 0.8	0.2080	0.1390	0.1328	0.1577	0.1356	0.1224	0.1367	
Other problems	a = 0.6	0.2458	0.1528	0.1463	0.1896	0 1457	0.1293	0 1464	
Incomplete data	a = 0.4	0.2885	0.1953	0.1733	0.2234	0.4812	=0.1450	0.1366	6
Semparametric	1								

90

Stat methods
EACLEE
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models Finite sample
Walfara indicas
wenare indices
Asymptotic inference
Inequality measures
Finite sample
Comparisons
Principlas
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods • Used repeatedly in distributional analysis FAC-EF Welfare indices ヘロト 人間ト 人注ト 人注ト 二注一 Sac

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

In a second stands

Semiparametric

• Used repeatedly in distributional analysis

• Quantile functional

•
$$Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$$
 given by $Q(F;q) := \inf\{y | F(y) \ge q\}$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Here at having the starting

Other problems

Robustness

Incomplete data

semiparametric

• Used repeatedly in distributional analysis

• Quantile functional

• $Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $Q(F;q) := \inf\{y | F(y) \ge q\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $y_q := Q(F;q)$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Semiparametric

• Used repeatedly in distributional analysis

• Quantile functional

- $Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $Q(F;q) := \inf\{y|F(y) \ge q\}$
- *y_q* := *Q*(*F*;*q*)
 Examples:
 - q = 0.5 gives Q(F; 0.5), median of distribution F

- bottom decile: Q(F; 0.1)
- upper quartile: b Q(F; 0.75),

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems Robustness

Semiparametric

• Used repeatedly in distributional analysis

Quantile functional

- $Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $Q(F;q) := \inf\{y|F(y) \ge q\}$
- *y_q* := *Q*(*F*;*q*)
 Examples:
 - q = 0.5 gives Q(F; 0.5), median of distribution F

- bottom decile: Q(F; 0.1)
- upper quartile: b Q(F; 0.75),
- Cumulation functional

•
$$C: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$$
 given by $C(F;q) := \int_{y}^{y_q} y dF(y)$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Used repeatedly in distributional analysis

Quantile functional

- $Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $Q(F;q) := \inf\{y|F(y) \ge q\}$
- *y_q* := *Q*(*F*;*q*)
 Examples:
 - q = 0.5 gives Q(F; 0.5), median of distribution F

- bottom decile: Q(F; 0.1)
- upper quartile: b Q(F; 0.75),
- Cumulation functional

•
$$C : \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$$
 given by $C(F;q) := \int_{\underline{y}}^{y_q} y dF(y)$
• $c_q := C(F;q)$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete dat

Semiparametric

• Used repeatedly in distributional analysis

• Quantile functional

- $Q: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $Q(F;q) := \inf\{y|F(y) \ge q\}$
- *y_q* := *Q*(*F*;*q*)
 Examples:
 - q = 0.5 gives Q(F; 0.5), median of distribution F
 - bottom decile: Q(F; 0.1)
 - upper quartile: b Q(F; 0.75),
- Cumulation functional
 - $C: \mathbb{F} \times \mathbb{Q} \to \mathbb{Y}$ given by $C(F;q) := \int_{y}^{y_q} y \, \mathrm{d}F(y)$
 - $c_q := C(F;q)$
 - Examples:
 - $c_1 = C(F;1) = \mu(F)$, mean of distribution *F* • $\frac{c_q}{c_1} = \frac{C(F;q)}{C(F;1)}$, income share of bottom 100*q* percent

Welfare functionals

ls														
								_				_	_	
						< □	- ►	< 67	•	< ≣	▶	=)	· 1	50
Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

. . .

Semiparametric

Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

- Implementation
- Intuitive applicatio
- The null hypothesis

Pobustness

RODUSINESS

Semiparametric

Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Simplest class: $W_{AD}(F) := \int \phi(y) dF(y)$ (up to transformation involving μ)

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

How etherois testing

Other problems

Robustness

Incomplete data

Semiparametric

Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Simplest class: $W_{AD}(F) := \int \phi(y) dF(y)$ (up to transformation involving μ)

• for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intunitive application

Hypothesis testing

Other problems

Robustness

Semiparametric

Semparametric

Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases

- Simplest class: $W_{AD}(F) := \int \phi(y) dF(y)$ (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data Semiparametric

- Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases
- Simplest class: W_{AD}(F) := ∫ φ (y) dF(y) (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson
- Slightly broader class: W_{QAD}(F) := ∫ φ(y,μ(F)) dF(y)
 includes W_{AD}(F)

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

- Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases
- Simplest class: W_{AD}(F) := ∫ φ (y) dF(y) (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson
- Slightly broader class: $W_{QAD}(F) := \int \varphi(y, \mu(F)) dF(y)$

- includes $W_{AD}(F)$
- RMD, Pietra ratio

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data Semiparametric

- Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases
- Simplest class: $W_{AD}(F) := \int \phi(y) dF(y)$ (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson
- Slightly broader class: $W_{QAD}(F) := \int \varphi(y, \mu(F)) dF(y)$
 - includes $W_{AD}(F)$
 - RMD, Pietra ratio
- Rank-dependence: $W_{RD}(F) := \int \psi(y, \mu(F), F(y)) dF(y)$,

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

- Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases
- Simplest class: W_{AD}(F) := ∫ φ(y) dF(y) (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson
- Slightly broader class: $W_{QAD}(F) := \int \varphi(y, \mu(F)) dF(y)$
 - includes $W_{AD}(F)$
 - RMD, Pietra ratio
- Rank-dependence: $W_{\text{RD}}(F) := \int \psi(y, \mu(F), F(y)) \, dF(y)$,
 - Gini
 - generalised Gini

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

- Fundamental assessment tools of distributional analysis
 Inequality and poverty indices as special cases
- Simplest class: W_{AD}(F) := ∫ φ(y) dF(y) (up to transformation involving μ)
 - for grouped data $\sum_{i=1}^{m} f_i \phi(y_i)$
 - GE measures, Atkinson
- Slightly broader class: $W_{QAD}(F) := \int \varphi(y, \mu(F)) dF(y)$
 - includes $W_{AD}(F)$
 - RMD, Pietra ratio
- Rank-dependence: $W_{\text{RD}}(F) := \int \psi(y, \mu(F), F(y)) \, dF(y)$,
 - Gini
 - generalised Gini

Outline

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

) Density

- Parametric estimation
- Kernel method
- Finite-mixture models
 - Finite sample

4 Welfare indices

- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

. . .

Semiparametric

• Introducing a fundamental tool

• Mixture distributions

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems

Robustness

Incomplete da

Semiparametric

• Introducing a fundamental tool

Mixture distributions

• point mass at *z*:
$$H^{(z)}(y) = \iota(y \ge z)$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hupothasis tasting

Other problems

Robustness

Incomplete da

Semiparametric

• Introducing a fundamental tool

Mixture distributions

• point mass at *z*: $H^{(z)}(y) = \iota(y \ge z)$

• the mixture:
$$G = [1 - \delta]F + \delta H^{(z)}$$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation

intuitive applicatio

Hypothesis testing

Other problems

Robustness

Semiparametric

• Introducing a fundamental tool

Mixture distributions

- point mass at *z*: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : importance of point mass in mixture

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric • Introducing a fundamental tool

Mixture distributions

- point mass at *z*: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : importance of point mass in mixture

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• How "important" is point mass at *z*?

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • Introducing a fundamental tool

Mixture distributions

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : importance of point mass in mixture
- How "important" is point mass at *z*?
 - define this with reference to a given statistic *T*

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • Introducing a fundamental tool

Mixture distributions

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : importance of point mass in mixture
- How "important" is point mass at *z*?
 - define this with reference to a given statistic *T*
 - Influence Function: $IF(z;T,F) := \lim_{\delta \downarrow 0} \left[\frac{T(G) T(F)}{\delta} \right]$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • Introducing a fundamental tool

Mixture distributions

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : importance of point mass in mixture
- How "important" is point mass at *z*?
 - define this with reference to a given statistic *T*
 - Influence Function: $IF(z;T,F) := \lim_{\delta \downarrow 0} \left[\frac{T(G) T(F)}{\delta} \right]$
 - if differentiable: $IF(z;T,F) := \frac{\partial}{\partial \delta} T(G) \Big|_{\delta \to 0}$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Finite sample

Welfare indices

Asymptotic inference Inequality measures

Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

. . .

Semiparametric

• A simple decomposition:

•
$$T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive applicatio

Hometheorie testine

Other problems

Robustness

Incomplete data

Semiparametric

• A simple decomposition:

• $T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$

•
$$T(F^{(n)}) \approx T(F) + \frac{1}{n} \sum_{i=1}^{n} IF(y_i; T, F) + \text{remainder}$$

Lemma

- $\sqrt{n}\left(T(F^{(n)}) T(F)\right)$ is asymptotically normal
- asymptotic covariance matrix $\int IF(y;T,F)IF^{\top}(y;T,F) dF(y)$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data

• A simple decomposition:

• $T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$

•
$$T(F^{(n)}) \approx T(F) + \frac{1}{n} \sum_{i=1}^{n} IF(y_i; T, F) + \text{remainder}$$

Lemma

• $\sqrt{n}\left(T(F^{(n)}) - T(F)\right)$ is asymptotically normal

• asymptotic covariance matrix $\int IF(y;T,F)IF^{\top}(y;T,F) dF(y)$

• A short-cut to AV formula:

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatio Kernel method Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Hypothesis testing

Other problems

RODUSTICSS

Semiparametric

• A simple decomposition:

• $T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$

• $T(F^{(n)}) \approx T(F) + \frac{1}{n} \sum_{i=1}^{n} IF(y_i; T, F) + \text{remainder}$

Lemma

- $\sqrt{n}\left(T(F^{(n)}) T(F)\right)$ is asymptotically normal
- asymptotic covariance matrix $\int IF(y;T,F)IF^{\top}(y;T,F) dF(y)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• A short-cut to AV formula:

• can usually find *Z* such that: IF(y,T,F) = Z - E(Z)

Stat methods

FAC-EF

Introduction

Data

Density Parametric estim

Kernel method Finite-mixture mode: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric

• A simple decomposition:

• $T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$

• $T(F^{(n)}) \approx T(F) + \frac{1}{n} \sum_{i=1}^{n} IF(y_i; T, F) + \text{remainder}$

Lemma

- $\sqrt{n}\left(T(F^{(n)}) T(F)\right)$ is asymptotically normal
- asymptotic covariance matrix $\int IF(y;T,F)IF^{\top}(y;T,F) dF(y)$

• A short-cut to AV formula:

- can usually find Z such that: IF(y,T,F) = Z E(Z)
- therefore: $\int IF(y,T,F)^2 dF(y) = \int (Z E(Z))^2 dF(Z)$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimat Kernel method

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data Semiparametric

• A simple decomposition:

• $T(G) = T(F) + \int IF(y;T,F) d(G-F)(y) + remainder$

•
$$T(F^{(n)}) \approx T(F) + \frac{1}{n} \sum_{i=1}^{n} IF(y_i; T, F) + \text{remainder}$$

• Lemma

√n (T(F⁽ⁿ⁾) - T(F)) is asymptotically normal
asymptotic covariance matrix [IF(y; T, F)IF^T(y; T, F)dF(y)

- A short-cut to AV formula:
 - can usually find Z such that: IF(y,T,F) = Z E(Z)
 - therefore: $\int IF(y,T,F)^2 dF(y) = \int (Z E(Z))^2 dF(Z)$

•
$$\widehat{\operatorname{var}}\left(T(F^{(n)})\right) = \frac{1}{n} \widehat{\operatorname{var}}(Z) = \frac{1}{n^2} \sum_{i=1}^n (Z_i - \bar{Z})^2$$

・ロト (四) (日) (日) (日) (日) (日)

Stat methods			
ELC EE	• To apply the IF method:		
FAC-EF			
Introduction			
Data			
Density			
Parametric estimation			
Kernel method			
Finite-mixture models			
Finite sample			
Welfare indices			
Asymptotic inference			
Inequality measures			
Poverty measures			
Finite sample			
Comparisons			
Principles			
Implementation			
Intuitive application			
The null hypothesis			
Hypothesis testing			
Other problems			
Robustness			
Incomplete data			
Semiparametric		《曰》《國》《臣》《臣》 [] 臣	`

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive application

Hypothesis testing

Other problems

Robustness

Semiparametric

• To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ
- let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive applicatio

Hypothesis testing

Other problems Robustness

In a second star da

Semiparametric

• To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ
- let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

• $y_q = Q(F,q)$ is *q*th quantile for the (unmixed) distribution

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems Robustness

Incomplete dat

Semiparametric

• To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

• $y_q = Q(F,q)$ is *q*th quantile for the (unmixed) distribution • $IF(z;Q(\cdot,q),F) = \frac{q-\iota(Q(F;q)\geq z)}{f(Q(F;q))} = \frac{q-\iota(y_q\geq z)}{f(y_q)}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing Other problems

Robustness

Incomplete da

Semiparametric

• To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

y_q = Q(F,q) is qth quantile for the (unmixed) distribution
 IF(z;Q(·,q),F) = q-ι(Q(F;q)≥z)/f(Q(F;q)) = q-ι(y_q≥z)/f(y_q)

• Cumulation (mixture): $C(G;q) = [1 - \delta] \int_{\underline{y}}^{\mathcal{Q}(G,q)} y dF(y) + \delta z$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

yq = Q(F,q) is qth quantile for the (unmixed) distribution
 IF(z;Q(·,q),F) = q-ι(Q(F;q)≥z)/f(Q(F;q)) = q-ι(yq≥z)/f(yq)

• Cumulation (mixture): $C(G;q) = [1 - \delta] \int_{\underline{y}}^{Q(G,q)} y dF(y) + \delta z$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• differentiating wrt δ and setting $\delta = 0$ we get

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Semiparametric • To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

yq = Q(F,q) is qth quantile for the (unmixed) distribution
 IF(z;Q(·,q),F) = q-ι(Q(F;q)≥z)/f(Q(F;q)) = q-ι(yq≥z)/f(yq)

• Cumulation (mixture): $C(G;q) = [1 - \delta] \int_{\underline{y}}^{\mathcal{Q}(G,q)} y dF(y) + \delta z$

• differentiating wrt δ and setting $\delta = 0$ we get

•
$$qQ(F,q) - C(F,q) + \iota(q \ge F(z))[z - Q(F,q)]$$

(日)

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data • To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

y_q = Q(F,q) is qth quantile for the (unmixed) distribution
 IF(z;Q(·,q),F) = q-ι(Q(F;q)≥z)/f(Q(F;q)) = q-ι(y_q≥z)/f(y_q)

• Cumulation (mixture): $C(G;q) = [1 - \delta] \int_{\underline{y}}^{\mathcal{Q}(G,q)} y dF(y) + \delta z$

• differentiating wrt δ and setting $\delta = 0$ we get

$$\circ \ qQ(F,q) - C(F,q) + \iota(q \geq F(z))[z-Q(F,q)]$$

•
$$IF(z; C(\cdot, q), F) = qy_q - c_q + \iota(y_q \ge z)[z - y_q]$$
Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data • To apply the IF method:

- evaluate Q or C for the mixture distribution
- differentiate wrt δ

• let δ go to zero

• Quantile (mixture):
$$Q(G,q) = Q\left(F, \frac{q-\iota(y_q \ge z)\delta}{1-\delta}\right)$$

y_q = Q(F,q) is qth quantile for the (unmixed) distribution
 IF(z;Q(·,q),F) = q-ι(Q(F;q)≥z)/f(Q(F;q)) = q-ι(y_q≥z)/f(y_q)

• Cumulation (mixture): $C(G;q) = [1 - \delta] \int_{\underline{y}}^{\mathcal{Q}(G,q)} y dF(y) + \delta z$

• differentiating wrt δ and setting $\delta = 0$ we get

$$\circ \ qQ(F,q) - C(F,q) + \iota(q \geq F(z))[z-Q(F,q)]$$

•
$$IF(z; C(\cdot, q), F) = qy_q - c_q + \iota(y_q \ge z)[z - y_q]$$

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Finite sample
C
Comparisons
Principles
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Finite sample

Welfare indices

Asymptotic inference

December 2010

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypotnesis testing

Other problems

Robustness

Incomplete data

Semiparametric

•
$$\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$$

• sample mean: $\hat{\mu} := \mu\left(F^{(n)}\right) = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices

Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

•
$$\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$$

• sample mean:
$$\hat{\mu} := \mu\left(F^{(n)}\right) = \frac{1}{n}\sum_{i=1}^{n} y_i$$
.

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

• Same procedure as before

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

COMPATISONS Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data • $\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$ • sample mean: $\hat{\mu} := \mu(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} y_i$.

• Same procedure as before

• evaluate W_{QAD} for the mixture distribution

- differentiate wrt δ
- let δ go to zero

0

 $IF(z; W_{\text{QAD}}, F) = \varphi(z, \mu(F)) - W_{\text{QAD}}(F) + [z - \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dx$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• where φ_{μ} denotes the partial derivative

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data • $\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$

- sample mean: $\hat{\mu} := \mu\left(F^{(n)}\right) = \frac{1}{n}\sum_{i=1}^{n} y_i$.
- Same procedure as before
 - evaluate W_{QAD} for the mixture distribution
 - differentiate wrt δ
 - let δ go to zero

0

$$IF(z; W_{\text{QAD}}, F) = \varphi(z, \mu(F)) - W_{\text{QAD}}(F) + [z - \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dx$$

• where φ_{μ} denotes the partial derivative

•
$$IF(y, W_{QAD}, F) = Z - E(Z)$$

• where
$$Z = \varphi(y, \mu(F)) + y \int \varphi_{\mu}(y, \mu(F)) dF(y)$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation

Intuitive application The null hypothesis

Hypothesis testing

Other problems Robustness Incomplete data

•
$$\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$$

• sample mean: $\hat{\mu} := \mu\left(F^{(n)}\right) = \frac{1}{n} \sum_{i=1}^{n} y_i$.

- Same procedure as before
 - evaluate W_{QAD} for the mixture distribution
 - differentiate wrt δ
 - let δ go to zero

0

$$IF(z; W_{\text{QAD}}, F) = \varphi(z, \mu(F)) - W_{\text{QAD}}(F) + [z - \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dx$$

- where φ_{μ} denotes the partial derivative
- $IF(y, W_{QAD}, F) = Z E(Z)$
- where $Z = \varphi(y, \mu(F)) + y \int \varphi_{\mu}(y, \mu(F)) dF(y)$
- AV of $\sqrt{n}(\widehat{W}_{QAD} W_{QAD})$ is the variance of Z.

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation

Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

•
$$\widehat{W}_{\text{QAD}} := W_{\text{QAD}}(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i, \hat{\mu})$$

• sample mean: $\hat{\mu} := \mu(F^{(n)}) = \frac{1}{n} \sum_{i=1}^{n} y_i$.

- Same procedure as before
 - evaluate W_{QAD} for the mixture distribution
 - differentiate wrt δ
 - let δ go to zero

0

$$IF(z; W_{\text{QAD}}, F) = \varphi(z, \mu(F)) - W_{\text{QAD}}(F) + [z - \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dx$$

- where φ_{μ} denotes the partial derivative
- $IF(y, W_{QAD}, F) = Z E(Z)$
- where $Z = \varphi(y, \mu(F)) + y \int \varphi_{\mu}(y, \mu(F)) dF(y)$
- AV of $\sqrt{n}(\widehat{W}_{QAD} W_{QAD})$ is the variance of Z.
- Provides key to large class of indices used in economics

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Outline

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

- Density
 - Parametric estimation
 - Kernel method
 - Finite-mixture models
 - Finite sample

4 Welfare indices

• Asymptotic inference

Inequality measures

- Poverty measures
- Finite sample
- 5 Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite sample
Walfore indiana
werrare indices
Asymptotic interence
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices

Inequality measures

Poverty measures

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete dat

Semiparametric

•
$$I_{\text{GE}}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{\text{GE}}^0(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)} \right) dF(y)$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices

Asymptotic inference

Inequality measures

Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

•
$$I_{GE}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{GE}^0(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)} \right) dF(y)$
• $I_{GE}^1(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)} \right) dF(y)$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estim

Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete dat

Semiparametric

•
$$I_{\text{GE}}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{\text{GE}}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log \left(\frac{y}{\mu(F)} \right) dF(y)$
• $I_{\text{GE}}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log \left(\frac{y}{\mu(F)} \right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

•
$$I_{GE}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{GE}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• $I_{GE}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$
• $\varphi_{\mu}(y, \mu(F)) = \frac{-\xi}{\xi^2 - \xi} \left[\frac{y^{\xi}}{\mu(F)^{\xi+1}} \right] = -\frac{\xi}{\mu} \left(\varphi(y, \mu(F)) + \frac{1}{\xi^2 - \xi} \right)$
• $\widehat{\operatorname{var}}(\widehat{I}_{GE}^{\xi}) = \frac{1}{n^2} \sum_{i=1}^{n} (Z_i - \overline{Z})^2 \text{ where } Z_i \text{ is }$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data

•
$$I_{\text{GE}}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{\text{GE}}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• $I_{\text{GE}}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$
• $\varphi_{\mu}(y, \mu(F)) = \frac{-\xi}{\xi^2 - \xi} \left[\frac{y^{\xi}}{\mu(F)^{\xi+1}} \right] = -\frac{\xi}{\mu} \left(\varphi(y, \mu(F)) + \frac{1}{\xi^2 - \xi} \right)$
• $\widehat{\text{var}}(\hat{I}_{\text{GE}}^{\xi}) = \frac{1}{n^2} \sum_{i=1}^{n} (Z_i - \overline{Z})^2 \text{ where } Z_i \text{ is}$
• $(\xi^2 - \xi)^{-1} (y_i/\hat{\mu})^{\xi} - \xi(y_i/\hat{\mu}) \left[\hat{I}_{\text{GE}}^{\xi} + (\xi^2 - \xi)^{-1} \right] \text{ for } \xi \neq 0, 1$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Welfare indices Inequality measures

0

•
$$I_{GE}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{GE}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• $I_{GE}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$
• $\varphi_{\mu}(y, \mu(F)) = \frac{-\xi}{\xi^2 - \xi} \left[\frac{y^{\xi}}{\mu(F)^{\xi+1}} \right] = -\frac{\xi}{\mu} \left(\varphi(y, \mu(F)) + \frac{1}{\xi^2 - \xi} \right)$
• $\widehat{var}(\hat{I}_{GE}^{\xi}) = \frac{1}{n^2} \sum_{i=1}^{n} (Z_i - \overline{Z})^2$ where Z_i is
• $(\xi^2 - \xi)^{-1}(y_i/\hat{\mu})^{\xi} - \xi(y_i/\hat{\mu}) \left[\hat{I}_{GE}^{\xi} + (\xi^2 - \xi)^{-1} \right]$ for $\xi \neq 0, 1$
• $(y_i/\hat{\mu}) - \log y_i$

ヘロト 人間ト 人注ト 人注ト 二注一 Sac

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices

Inequality measures

Poverty measures Finite sample

Comparisons Principles

Intuitive application

Hypothesis testing

Other problems Robustness

Semiparametric

•
$$I_{GE}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{GE}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• $I_{GE}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$
• $\varphi_{\mu}(y, \mu(F)) = \frac{-\xi}{\xi^2 - \xi} \left[\frac{y^{\xi}}{\mu(F)^{\xi+1}} \right] = -\frac{\xi}{\mu} \left(\varphi(y, \mu(F)) + \frac{1}{\xi^2 - \xi} \right)$
• $\widehat{var}(\hat{I}_{GE}^{\xi}) = \frac{1}{n^2} \sum_{i=1}^{n} (Z_i - \bar{Z})^2$ where Z_i is
• $(\xi^2 - \xi)^{-1}(y_i/\hat{\mu})^{\xi} - \xi(y_i/\hat{\mu}) \left[\hat{I}_{GE}^{\xi} + (\xi^2 - \xi)^{-1} \right]$ for $\xi \neq 0, 1$
• $(y_i/\hat{\mu}) - \log y_i$
• $(y_i/\hat{\mu}) \left[\log(y_i/\hat{\mu}) - \hat{I}_{GE}^1 - 1 \right]$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices

Inequality measures

Poverty measures Finite sample

Comparisons Principles

Intuitive application

Hypothesis testing

Other problems Robustness

Semiparametric

•
$$I_{GE}^{\xi}(F) = \frac{1}{\xi^2 - \xi} \left[\int_{\underline{y}}^{\overline{y}} \left[\frac{y}{\mu(F)} \right]^{\xi} dF(y) - 1 \right]$$

• $I_{GE}^{0}(F) = -\int_{\underline{y}}^{\overline{y}} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• $I_{GE}^{1}(F) = \int_{\underline{y}}^{\overline{y}} \frac{y}{\mu(F)} \log\left(\frac{y}{\mu(F)}\right) dF(y)$
• We have $\varphi(y, \mu(F)) = \frac{1}{\xi^2 - \xi} \left[\left[\frac{y}{\mu(F)} \right]^{\xi} - 1 \right]$
• $\varphi_{\mu}(y, \mu(F)) = \frac{-\xi}{\xi^2 - \xi} \left[\frac{y^{\xi}}{\mu(F)^{\xi+1}} \right] = -\frac{\xi}{\mu} \left(\varphi(y, \mu(F)) + \frac{1}{\xi^2 - \xi} \right)$
• $\widehat{var}(\hat{I}_{GE}^{\xi}) = \frac{1}{n^2} \sum_{i=1}^{n} (Z_i - \bar{Z})^2$ where Z_i is
• $(\xi^2 - \xi)^{-1}(y_i/\hat{\mu})^{\xi} - \xi(y_i/\hat{\mu}) \left[\hat{I}_{GE}^{\xi} + (\xi^2 - \xi)^{-1} \right]$ for $\xi \neq 0, 1$
• $(y_i/\hat{\mu}) - \log y_i$
• $(y_i/\hat{\mu}) \left[\log(y_i/\hat{\mu}) - \hat{I}_{GE}^1 - 1 \right]$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods
Stat methous
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
Hypothesis testing
rij pontons testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods	
FAC-EF	• Gini has multiple equivalent forms
Introduction	
Data	
Density Parametric estimation Kernel method Finite-mixture models Finite sample	
Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing	
Other problems Robustness Incomplete data Semiparametric	(ロ) (合) (言) (言) (言) () ()

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference

Inequality measures

Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

Incomplete dat

Semiparametric

• Gini has multiple equivalent forms

• From the Lorenz curve • $I_{\text{Gini}}(F) = 1 - 2 \int_0^1 L(F;q) \, \mathrm{d}q$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatio Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems

Robustness

Incomplete dat

Semiparametric

• Gini has multiple equivalent forms

- From the Lorenz curve $I = 2 \int_{-\infty}^{\infty} I dx$
- $I_{\text{Gini}}(F) = 1 2 \int_0^1 L(F;q) \, \mathrm{d}q$
- We can use results on $C(\cdot;q)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Semiparametric

• Gini has multiple equivalent forms

- From the Lorenz curve
 I_{Gini}(F) = 1 − 2 ∫₀¹L(F;q) dq
 We can use results on C(·;q)
- Standard form for $IF(z; I_{Gini}, F)$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

6

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

I ne null nypotnesis

Other problems

Robustness

Incomplete data

Semiparametric

• Gini has multiple equivalent forms

From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ L(*F*; *q*) d*q*We can use results on C(·; *q*)

• Standard form for
$$IF(z; I_{Gini}, F)$$
:
• $1 - I_{Gini}(F) - \frac{2C(F;F(z))}{\mu(F)} + z \frac{1 - I_{Gini}(F) - 2[1 - F(z)]}{\mu(F)}$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data

• Gini has multiple equivalent forms

From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ L(*F*; *q*) d*q*We can use results on C(·; *q*)

• Standard form for
$$IF(z; I_{Gini}, F)$$
:
• $1 - I_{Gini}(F) - \frac{2C(F;F(z))}{\mu(F)} + z \frac{1 - I_{Gini}(F) - 2[1 - F(z)]}{\mu(F)}$

イロト イロト イヨト イヨト ニヨー

Sac

Alternative form

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness

Robusiness

Semiparametric

• Gini has multiple equivalent forms

- From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ L(*F*; *q*) d*q*We can use results on C(·; *q*)
- Standard form for *IF*(*z*; *I*_{Gini}, *F*):
 1 *I*_{Gini}(*F*) ^{2C(F;F(z))}/_{µ(F)} + z^{1-I_{Gini}(F)-2[1-F(z)]}/_{µ(F)}

• Alternative form

• note
$$E[C(F;F(z))] = E[z[1-F(z)]] = \frac{1-I_{\text{Gini}}(F)}{2}\mu(F)$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementatio

Intuitive application

Hypothesis testing

Other problems Robustness Incomplete data • Gini has multiple equivalent forms

- From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ *L*(*F*; *q*) d*q*We can use results on *C*(·; *q*)
- Standard form for $IF(z; I_{Gini}, F)$: • $1 - I_{Gini}(F) - \frac{2C(F;F(z))}{\mu(F)} + z \frac{1 - I_{Gini}(F) - 2[1 - F(z)]}{\mu(F)}$
- Alternative form
 - note $E[C(F;F(z))] = E[z[1-F(z)]] = \frac{1-I_{Gini}(F)}{2}\mu(F)$

• let
$$Z = [1 - I_{Gini}(F)] z - 2[C(F;F(z)) + z(1 - F(z))]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementatio

Intuitive applicatio

Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Gini has multiple equivalent forms

- From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ L(*F*; *q*) d*q*We can use results on C(·; *q*)
- Standard form for *IF*(*z*; *I*_{Gini}, *F*):
 1 *I*_{Gini}(*F*) ^{2C(F;F(z))}/_{µ(F)} + z^{1-I_{Gini}(F)-2[1-F(z)]}/_{µ(F)}
- Alternative form
 - note $E[C(F;F(z))] = E[z[1-F(z)]] = \frac{1-I_{\text{Gini}}(F)}{2}\mu(F)$

• let
$$Z = [1 - I_{\text{Gini}}(F)]z - 2[C(F;F(z)) + z(1 - F(z))]$$

• then
$$IF(z; I_{\text{Gini}}, F) = (Z - E(Z))/\mu(F)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons Principles Implementation Intuitive application

The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

• Gini has multiple equivalent forms

From the Lorenz curve *I*_{Gini}(*F*) = 1 − 2 ∫₀¹ *L*(*F*; *q*) d*q*We can use results on *C*(·; *q*)

• Standard form for
$$IF(z; I_{Gini}, F)$$
:
• $1 - I_{Gini}(F) - \frac{2C(F;F(z))}{\mu(F)} + z \frac{1 - I_{Gini}(F) - 2[1 - F(z)]}{\mu(F)}$

• Alternative form

0

• note
$$E[C(F;F(z))] = E[z[1-F(z)]] = \frac{1-I_{Gini}(F)}{2}\mu(F)$$

• let
$$Z = [1 - I_{\text{Gini}}(F)] z - 2[C(F;F(z)) + z(1 - F(z))]$$

• then
$$IF(z; I_{\text{Gini}}, F) = (Z - E(Z))/\mu(F)$$

•
$$\operatorname{var}\left(\sqrt{n}(I_{\operatorname{Gini}}(F^{(n)}) - I_{\operatorname{Gini}}(F))\right) = \operatorname{var}(Z)/\mu(F)^2$$

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Outline

Stat methods

FAC-EF

Introduction

Data

Density Parametric estim

Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles Implementation Intuitive applica

The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

- Density
 - Parametric estimation
 - Kernel method
 - Finite-mixture models
 - Finite sample

4 Welfare indices

- Asymptotic inference
- Inequality measures

Poverty measures

- Finite sample
- Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models Finite sample
Walfors indiana
Assessment in the second secon
Asymptotic inference
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatio Kernel method Finite-mixture mode

Welfare indices

Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete dat

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

• *p* is non-increasing in *y*; is zero for $y \ge \zeta(F)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference

Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete dat

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

• *p* is non-increasing in *y*; is zero for $y \ge \zeta(F)$

large class of poverty measures

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimati Kernel method Finite-mixture mod

Welfare indices Asymptotic inference

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplate dat

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

• *p* is non-increasing in *y*; is zero for $y \ge \zeta(F)$

large class of poverty measures

• example:
$$P_{\text{FGT}}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y) \qquad \xi \ge 0$$

 $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y) IF(z; \zeta, F)$
Stat methods

FAC-EF

Introduction

Data

Density

Parametric estima Kernel method Finite-mixture mo

•

Finite sample

Welfare indices Asymptotic inference

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

• *p* is non-increasing in *y*; is zero for $y \ge \zeta(F)$

large class of poverty measures

• example:
$$P_{\text{FGT}}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y) \qquad \xi \ge 0$$

 $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y) IF(z; \zeta, F)$
Case 1: $\zeta(F) = \zeta_{0}$:

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimat Kernel method Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete dat

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

p is non-increasing in *y*; is zero for *y* ≥ ζ(*F*)
large class of poverty measures

• example: $P_{\text{FGT}}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y)$ $\xi \ge 0$ • $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y)IF(z; \zeta, F)$ • Case 1: $\zeta(F) = \zeta_{0}$: • IF(y; P, F) = Z - E(Z)

イロト イロト イヨト イヨト ニヨー

Sac

•
$$IF(y; P, F) = Z - E(Z)$$

• $Z = p(y, \zeta_0)$

Stat methods

(

FAC-EF

Introduction

Data

Density

Parametric estimat Kernel method Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems Robustness

Incomplete dat:

Semiparametric

• example: $P_{\text{FGT}}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y) \qquad \xi \ge 0$ • $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y)IF(z; \zeta, F)$ • Case 1: $\zeta(F) = \zeta_{0}$:

イロト 不得 とうほ とうせい

-

Sar

•
$$IF(y; P, F) = Z - E(Z)$$

• $Z = p(y, \zeta_0)$

• AV is
$$\int p(z, \zeta_0)^2 dF(z) - P(F)^2$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estima Kernel method Finite-mixture mo

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementatio

Intuitive application

The null hypothesis

Hypothesis testing

Other problems Robustness

Semiparametric

• $P(F) := \int p(y, \zeta(F)) dF(y)$

p is non-increasing in *y*; is zero for *y* ≥ ζ(*F*)
 large class of poverty measures

• example: $P_{\text{FGT}}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y)$ $\xi \ge 0$ • $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y)IF(z; \zeta, F)$ • Case 1: $\zeta(F) = \zeta_{0}$: • IF(y; P, F) = Z - E(Z)• $Z = p(y, \zeta_{0})$ • AV is $\int p(z, \zeta_{0})^{2} dF(z) - P(F)^{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Case 2:
$$\zeta(F) = \zeta_0 + \gamma y_q$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estima Kernel method Finite-mixture mo

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementatio

Intuitive application

The null hypothesis

Hypotnesis testing

Robustness Incomplete data

Semiparametric

• $P(F) := \int p(v, \zeta(F)) dF(v)$ • p is non-increasing in y; is zero for $y \ge \zeta(F)$ large class of poverty measures • example: $P_{\text{FGT}}^{\xi}(F) = \int_0^{\zeta_0} \left(\frac{\zeta_0 - y}{\zeta_0}\right)^{\xi} dF(y)$ $\xi \ge 0$ • $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y) IF(z; \zeta, F)$ • Case 1: $\zeta(F) = \zeta_0$: • IF(y; P, F) = Z - E(Z)• $Z = p(v, \zeta_0)$ • AV is $\int p(z, \zeta_0)^2 dF(z) - P(F)^2$ • Case 2: $\zeta(F) = \zeta_0 + \gamma y_a$ • $IF(z; \zeta, F) = \gamma \frac{q - \iota(y_q \ge z)}{f(y_q)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

0

Welfare indices

Poverty measures

•
$$P(F) := \int p(y, \zeta(F)) dF(y)$$

• p is non-increasing in y ; is zero for $y \ge \zeta(F)$
• large class of poverty measures
• example: $P_{FGT}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y) \qquad \xi \ge 0$
• $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y)IF(z; \zeta, F)$
• Case 1: $\zeta(F) = \zeta_{0}$:
• $IF(y; P, F) = Z - E(Z)$
• $Z = p(y, \zeta_{0})$
• AV is $\int p(z, \zeta_{0})^{2} dF(z) - P(F)^{2}$
• Case 2: $\zeta(F) = \zeta_{0} + \gamma y_{q}$
• $IF(z; \zeta, F) = \gamma \frac{q - \iota(y_{q} \ge z)}{f(y_{q})}$

• Case 3:
$$\zeta(F) = \zeta_0 + \gamma \mu(F)$$

c /

 $\mathcal{E}(\mathbf{r}) \setminus \mathbf{I}\mathbf{r}(\cdot)$

 $\mathbf{D}(\mathbf{E})$.

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method Finite-mixture mo

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons Principles

Implementation

The null hypothesis

Other problems Robustness Incomplete data

Semiparametric

•
$$P(F) := \int p(y, \zeta(F)) dF(y)$$

• p is non-increasing in y ; is zero for $y \ge \zeta(F)$
• large class of poverty measures
• example: $P_{FGT}^{\xi}(F) = \int_{0}^{\zeta_{0}} \left(\frac{\zeta_{0}-y}{\zeta_{0}}\right)^{\xi} dF(y) \quad \xi \ge 0$
• $IF(z; P, F) = p(z, \zeta(F)) - P(F) + \int p_{\zeta}(y, \zeta) dF(y)IF(z; \zeta, F)$
• Case 1: $\zeta(F) = \zeta_{0}$:
• $IF(y; P, F) = Z - E(Z)$
• $Z = p(y, \zeta_{0})$
• AV is $\int p(z, \zeta_{0})^{2} dF(z) - P(F)^{2}$
• Case 2: $\zeta(F) = \zeta_{0} + \gamma y_{q}$
• $IF(z; \zeta, F) = \gamma \frac{q - \iota(y_{q} \ge z)}{f(y_{q})}$

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods • 1 FAC-EF Welfare indices Poverty measures

$$P_{\text{Sen}}(F) = P_{\text{FGT}}^{0} I_{\text{Gini}}^{p} + P_{\text{FGT}}^{1} (1 - I_{\text{Gini}}^{p})$$

• $P_{\text{Sen}}(F) = \frac{2}{\zeta_{0}F(\zeta_{0})} \int_{0}^{\zeta_{0}} (\zeta_{0} - y) (F(\zeta_{0}) - F(y)) \, \mathrm{d}F(y)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

•
$$P_{\text{Sen}}(F) = P_{\text{FGT}}^0 I_{\text{Gini}}^p + P_{\text{FGT}}^1 (1 - I_{\text{Gini}}^p)$$

• $P_{\text{Sen}}(F) = \frac{2}{\zeta_0 F(\zeta_0)} \int_0^{\zeta_0} (\zeta_0 - y) (F(\zeta_0) - F(y)) \, \mathrm{d}F(y)$

•
$$\hat{P}_{\text{Sen}} := P_{\text{Sen}}\left(F^{(n)}\right) = \frac{2}{nn_p\zeta_0}\sum_{i=1}^{n_p}(\zeta_0 - y_{(i)})\left(n_p - i + \frac{1}{2}\right)$$

• $F(y_{(i)})$ estimated by $F^{(n)}(y_{(i)}) = \frac{2i-1}{2n}$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Seminarametric

Semparametric

•
$$P_{\text{Sen}}(F) = P_{\text{FGT}}^0 I_{\text{Gini}}^p + P_{\text{FGT}}^1 (1 - I_{\text{Gini}}^p)$$

• $P_{\text{Sen}}(F) = \frac{2}{\zeta_0 F(\zeta_0)} \int_0^{\zeta_0} (\zeta_0 - y) (F(\zeta_0) - F(y)) \, \mathrm{d}F(y)$

•
$$\hat{P}_{\text{Sen}} := P_{\text{Sen}}\left(F^{(n)}\right) = \frac{2}{nn_p\zeta_0}\sum_{i=1}^{n_p}(\zeta_0 - y_{(i)})\left(n_p - i + \frac{1}{2}\right)$$

• $F(y_{(i)})$ estimated by $F^{(n)}(y_{(i)}) = \frac{2i-1}{2n}$

•
$$IF(z, P_{Sen}, F) = \frac{2}{\zeta_0 F(\zeta_0)} (Z - E(Z))$$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estima Kernel method

Finite-mixture mo

Welfare indices

Inequality measure

Poverty measures

Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Hypothesis testing

Other problems

Robustness

Saminaramatria

Semparametric

•
$$P_{\text{Sen}}(F) = P_{\text{FGT}}^0 I_{\text{Gini}}^p + P_{\text{FGT}}^1 (1 - I_{\text{Gini}}^p)$$

• $P_{\text{Sen}}(F) = \frac{2}{\zeta_0 F(\zeta_0)} \int_0^{\zeta_0} (\zeta_0 - y) (F(\zeta_0) - F(y)) \, \mathrm{d}F(y)$

•
$$\hat{P}_{\text{Sen}} := P_{\text{Sen}}\left(F^{(n)}\right) = \frac{2}{nn_p\zeta_0}\sum_{i=1}^{n_p}(\zeta_0 - y_{(i)})\left(n_p - i + \frac{1}{2}\right)$$

• $F(y_{(i)})$ estimated by $F^{(n)}(y_{(i)}) = \frac{2i-1}{2n}$

•
$$IF(z, P_{Sen}, F) = \frac{2}{\zeta_0 F(\zeta_0)} (Z - E(Z))$$

• $Z = \left[\zeta_0 F(\zeta_0) - \frac{\zeta_0 P_S}{2} - zF(\zeta_0) + zF(z) - C(F;F(z))\right] \iota(z \le \zeta_0)$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density Parametric estir

Finite-mixture mo

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementati

Intuitive applicati

The num hypothesis

Other problems Robustness Incomplete data • $P_{\text{Sen}}(F) = P_{\text{FGT}}^0 I_{\text{Gini}}^p + P_{\text{FGT}}^1 (1 - I_{\text{Gini}}^p)$ • $P_{\text{Sen}}(F) = \frac{2}{\zeta_0 F(\zeta_0)} \int_0^{\zeta_0} (\zeta_0 - y) (F(\zeta_0) - F(y)) \, \mathrm{d}F(y)$

• Consistent estimate:

•
$$\hat{P}_{\text{Sen}} := P_{\text{Sen}}\left(F^{(n)}\right) = \frac{2}{nn_p\zeta_0}\sum_{i=1}^{n_p}(\zeta_0 - y_{(i)})\left(n_p - i + \frac{1}{2}\right)$$

• $F(y_{(i)})$ estimated by $F^{(n)}(y_{(i)}) = \frac{2i-1}{2n}$

•
$$IF(z, P_{Sen}, F) = \frac{2}{\zeta_0 F(\zeta_0)} (Z - E(Z))$$

• $Z = \left[\zeta_0 F(\zeta_0) - \frac{\zeta_0 P_S}{2} - zF(\zeta_0) + zF(z) - C(F;F(z))\right] \iota(z \le \zeta_0)$
• $\widehat{\zeta_0}$

•
$$\widehat{\operatorname{var}}(\hat{P}_{\operatorname{Sen}}) = \frac{4}{(\zeta_0 n_p)^2} \sum_{i=1}^n (Z_i - \bar{Z})^2$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estima Kernel method

Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparisons

Principles

Implementatio

Intuitive application

I ne null nypotnesis

Other problems

Robustness

Incomplete dat

Semiparametric

•
$$P_{\text{Sen}}(F) = P_{\text{FGT}}^0 I_{\text{Gini}}^p + P_{\text{FGT}}^1 (1 - I_{\text{Gini}}^p)$$

• $P_{\text{Sen}}(F) = \frac{2}{\zeta_0 F(\zeta_0)} \int_0^{\zeta_0} (\zeta_0 - y) (F(\zeta_0) - F(y)) \, \mathrm{d}F(y)$

•
$$\hat{P}_{\text{Sen}} := P_{\text{Sen}}\left(F^{(n)}\right) = \frac{2}{nn_p\zeta_0}\sum_{i=1}^{n_p}(\zeta_0 - y_{(i)})\left(n_p - i + \frac{1}{2}\right)$$

• $F(y_{(i)})$ estimated by $F^{(n)}(y_{(i)}) = \frac{2i-1}{2n}$

•
$$IF(z, P_{Sen}, F) = \frac{2}{\zeta_0 F(\zeta_0)} (Z - E(Z))$$

• $Z = \left[\zeta_0 F(\zeta_0) - \frac{\zeta_0 P_S}{2} - zF(\zeta_0) + zF(z) - C(F;F(z)) \right] \iota(z \le \zeta_0)$

•
$$\widehat{\operatorname{var}}(\hat{P}_{\operatorname{Sen}}) = \frac{4}{(\zeta_0 n_p)^2} \sum_{i=1}^n (Z_i - \bar{Z})^2$$

•
$$Z_{i} = \frac{\zeta_{0}}{2} \left(\frac{2n_{p}}{n} - \hat{P}_{Sen} \right) - \frac{2n_{p} - 2i + 1}{2n} y_{(i)} - \frac{1}{n} \sum_{j=1}^{i} y_{(j)} \text{ for } i \le n_{p}$$

•
$$\bar{Z} = n^{-1} \sum_{i=1}^{n} Z_{i}$$

Outline

Stat methods

FAC-EF

Introduction

Data

Density Parametric estir

Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

-) Density
 - Parametric estimation
 - Kernel method
 - Finite-mixture models
 - Finite sample

4 Welfare indices

- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Finite sample properties

Theil

Stat me	thods
---------	-------

FAC-EF

	u	0	u	c	U	11	

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

	asym	boot	asym	boot	asym	boot
Lognorm	al					
$\sigma = 0.5$	0.927	0.936	0.942	0.943	0.926	0.952
$\sigma = 1.0$	0.871	0.913	0.922	0.936	0.945	0.940
$\sigma = 1.5$	0.746	0.854	0.876	0.920	0.964	0.937
Singh-Ma	addala					
q = 1.7	0.915	0.931	0.945	0.944	0.945	0.950
q = 1.2	0.856	0.905	0.925	0.934	0.945	0.951
q = 0.7	0.647	0.802	0.847	0.906	0.939	0.946

Gini

SST

Table: Coverage of asymptotic and bootstrap confidence intervals at the 95% level for the Theil, Gini and SST indices, n = 500.

Inequality indices: unreliable CI with heavy-tailed distributions!

Inference with heavy-tailed distributions

Stat methods

FAC-EF

Data

Densi

Parametric estir

Kemer memou

Finite sample

Welfare indices Asymptotic inference Inequality measures

Poverty measures

Finite sample

Comparison

Principles

Implementat

Intuitive applicatio

Hypothesis testing

Other problems Robustness Incomplete data Seminarametric

	asym	boot	varstab	semip	mixture
Lognorma	al				
$\sigma = 0.5$	0.927	0.936	0.939	0.937	0.942
$\sigma = 1.0$	0.871	0.913	0.907	0.921	0.946
$\sigma = 1.5$	0.746	0.854	0.850	0.915	0.944
Singh-Ma	ıddala				
q = 1.7	0.915	0.931	0.933	0.926	0.928
q = 1.2	0.856	0.905	0.899	0.905	0.912
q = 0.7	0.647	0.802	0.796	0.871	0.789

Table: Coverage of asymptotic and bootstrap confidence intervals at the 95% level for the Theil index, for several bootstrap approaches, n = 500.

Testing equality of inequality measures

Stat methods

FAC-EF

- Welfare indices Finite sample

Null hypothesis: 0

$$H_0: W_x = W_y$$

Independent samples: $X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_m\}$ • Test statistic:

$$au = (\hat{W}_x - \hat{W}_y) / [\widehat{\operatorname{var}}(\hat{W}_x) + \widehat{\operatorname{var}}(\hat{W}_y)]^{1/2}$$

- Monte Carlo permutation tests:
 - $F_x = F_y$: exact inference!!¹ • $F_x \neq F_y$: not valid
- Dufour et al. (2013) propose a new bootstrap method:
 - with exact inference when $F_x = F_y$ • valid when $F_x \neq F_y$

¹even with very heavy-tailed distr. and very small samples $\equiv \times < \equiv \times$ = Sar

Standard bootstrap

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric • With independent samples, we test $H_0: W_x = W_y$ with

$$au = (\hat{W}_x - \hat{W}_y) / [\widehat{\operatorname{var}}(\hat{W}_x) + \widehat{\operatorname{var}}(\hat{W}_y)]^{1/2}$$

Bootstrap samples:

X^{*}: resample with replacement *n* observations from *X*.
Y^{*}: resample with replacement *m* observations from *Y*.

• Bootstrap test:

$$\tau_b^{\star} = [\hat{W}_{x_b^{\star}} - \hat{W}_{y_b^{\star}} - (\hat{W}_x - \hat{W}_y)] / [\widehat{\text{var}}(\hat{W}_{x_b^{\star}}) + \widehat{\text{var}}(\hat{W}_{y_b^{\star}})]^{1/2}$$

• Bootstrap distribution:

EDF of the *B* bootstrap statistics, τ_b^* for $b = 1, \dots, B$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

New bootstrap method

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures

Finite sample

Comparisons

Principles

Implementatio

intuitive applicatio

Hypothesis testing

Other problems Robustness

Incomplete dat

Semiparametric

• Dufour et al (2013) propose generating bootstrap samples

X^{**}: resample with replacement *n* observations from *Z*.
Y^{**}: resample with replacement *m* observations from *Z*.

$$Z = \left\{\frac{x_1}{\bar{x}}, \dots, \frac{x_n}{\bar{x}}, \frac{y_1}{\bar{y}}, \dots, \frac{y_m}{\bar{y}}\right\}$$

where \bar{x} and \bar{y} are sample means. The bootstrap test is

$$\tau_b^{\star\star} = [\hat{W}_{x_b^{\star\star}} - \hat{W}_{y_b^{\star\star}}] / [\widehat{\text{var}}(\hat{W}_{x_b^{\star\star}}) + \widehat{\text{var}}(\hat{W}_{y_b^{\star\star}})]^{1/2}$$

• This bootstrap procedure is

- closely related to permutation test when $F_x = F_y$
- still valid when $F_x \neq F_y$
- respects the null hypothesis (Golden Rule)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite sample properties

Stat methods
FAC-EF
ntroduction
Data
ensity
arametric estimation
mel method ite-mixture models
ite sample
Ifare indices
uality measures
sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric Table: Rejection frequencies for the Gini index, $H_0: I_{\text{Gini}}(F_x) = I_{\text{Gini}}(F_y)$, as F_x moves away from F_y (as $\alpha_x - \alpha_y$ increases), at nominal level 0.05, n = 50.

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

Introduction

Data

Density

- Parametric estimation
- Kernel method
- Finite-mixture models
 - Finite sample
- Welfare indices
- Asymptotic inference
- Inequality measures
- Poverty measures
- Finite sample
- 5 Comparisons

Principles

- Implementation
- Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Stat methods
FAC-EF
THE LI
Introduction
Introduction
Data
Density
Parametric actimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparison

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete da

Semiparametric

• "F first-order dominates G"

• $\forall q \in \mathbb{Q} : Q(F,q) \ge Q(G,q)$ • $\exists q \in \mathbb{Q} : Q(F,q) > Q(G,q)$

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive applicatio The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• "F first-order dominates G"

• $\forall q \in \mathbb{Q} : Q(F,q) \ge Q(G,q)$ • $\exists q \in \mathbb{Q} : Q(F,q) > Q(G,q)$

Pen's Parade

Stat methods

FAC-EF

Introduction

Data

Density Parametric esti

Kernel method Finite-mixture mode

Welfare indices

Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

• "F first-order dominates G"

• $\forall q \in \mathbb{Q} : Q(F,q) \ge Q(G,q)$ • $\exists q \in \mathbb{Q} : Q(F,q) > Q(G,q)$

Pen's Parade

• " $W(F) \ge W(G)$, for any $W \in \mathbb{W}_1$ " • $\mathbb{W}_1 := \{W | W(F) = \int \phi(y) \, dF(y), \phi'(y) > 0\}$

Stat methods
ELC EE
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inaquality manufactures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric
1

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatio Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

semiparametric

• "F second-order dominates G"

• $\forall q \in \mathbb{Q} : C(F,q) \ge C(G,q)$ • $\exists q \in \mathbb{Q} : C(F,q) > C(G,q)$

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices Asymptotic inference

Poverty measures

Finite sample

Comparison

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric *"F* second-order dominates *G" ∀q* ∈ ℚ: *C*(*F*,*q*) ≥ *C*(*G*,*q*)

- $\exists q \in \mathbb{Q} : C(F,q) > C(G,q)$
- Generalised Lorenz Curve

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

• "*F* second-order dominates *G*" • $\forall q \in \mathbb{Q} : C(F,q) \ge C(G,q)$

- $\exists q \in \mathbb{Q} : C(F,q) > C(G,q)$
- Generalised Lorenz Curve

• " $W(F) \ge W(G)$, for any $W \in \mathbb{W}_2$ " • $\mathbb{W}_2 := \{W | W(F) = \int \phi(y) \, dF(y), \phi'(y) > 0, \phi''(y) \le 0\}$

Second-order: extensions

Contained a de
Stat methods
FAC-EF
Introduction
Data
D. I.
Density
Parametric estimation
Kernel method
Finite sample
r nine sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Second-order: extensions

Stat methods	Second-order com	narisons scale in	denendent?		
FAC-EF		puisons seure m	acpenaeni.		
Introduction					
Data					
Density					
Parametric estimation					
Kernel method					
Finite-mixture models					
Finite sample					
Welfare indices					
Asymptotic inference					
Inequality measures					
Poverty measures					
Finite sample					
Comparisons					
Principles					
Implementation					
Intuitive application					
The null hypothesis					
Hypothesis testing					
Other problems					
Robustness					
Incomplete data					
Semiparametric			$\neg \Box \vdash \neg \Box \vdash \neg$	코 돈 옷 코 돈.	1

Second-order: extensions

Stat methods • Second-order comparisons *scale independent*? FAC-EF • for any $\lambda > 0$ distribution of y and of y/λ are equivalent Welfare indices Principles イロト 不同 トイヨト イヨト Sac
Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparison

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Semiparametric

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

・ロト ・ 何ト ・ ヨト ・ ヨト ・ ヨー

Sac

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesi Hypothesis testing

Other problems Robustness Incomplete data

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

• Second-order comparisons *translation independent*?

ヘロト 人間 ト イヨト イヨト

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

- Second-order comparisons *translation independent*?
 - for any $\delta \in \mathbb{R}$ distribution of *y* and of *y* + δ are equivalent

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

- Second-order comparisons *translation independent*?
 - for any $\delta \in \mathbb{R}$ distribution of *y* and of *y* + δ are equivalent
 - Absolute LC: $A(F;q) := C(F;q) q\mu(F)$.

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Second-order comparisons *scale independent*?

• for any $\lambda > 0$ distribution of y and of y/λ are equivalent

• Relative LC:
$$L(F;q) := \frac{C(F;q)}{\mu(F)} = \frac{C(F;q)}{C(F;1)}$$

- Second-order comparisons *translation independent*?
 - for any $\delta \in \mathbb{R}$ distribution of *y* and of *y* + δ are equivalent
 - Absolute LC: $A(F;q) := C(F;q) q\mu(F)$.

Stat methods
Star methods
FAC-EF
Introduction
Data
Density
Parametric actimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
wenare mulces
Asymptotic inference
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

- Welfare indices

Principles

- Define $D_F^s(y) := \frac{1}{(s-1)!} \int_0^y (y-t)^{s-1} dF(t)$
- General *s*-order dominance:

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons

Principles

- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems
- Robustness
- Semiparametric
- comparametric

• Define
$$D_F^s(y) := \frac{1}{(s-1)!} \int_0^y (y-t)^{s-1} dF(t)$$

- General *s*-order dominance:
 - $\forall y \in \mathbb{R} : D_F^s(y) \le D_G^s(y)$ • $\exists y \in \mathbb{R} : D_F^s(y) < D_G^s(y)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons

Principles

- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data

- Define D^s_F(y) := 1/(s-1)! ∫₀^y(y-t)^{s-1} dF(t)
 General s-order dominance:
 - $\forall y \in \mathbb{R} : D_F^s(y) \le D_G^s(y)$ • $\exists y \in \mathbb{R} : D_F^s(y) < D_G^s(y)$
- Contains earlier dominance concepts
 - s = 1: first-order dominance
 - s = 2: second-order dominance

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparison

Principles

- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Seminarametric

• Define
$$D_F^s(y) := \frac{1}{(s-1)!} \int_0^y (y-t)^{s-1} dF(t)$$

- General *s*-order dominance:
 - $\forall y \in \mathbb{R} : D_F^s(y) \le D_G^s(y)$ • $\exists y \in \mathbb{R} : D_F^s(y) < D_G^s(y)$
- Contains earlier dominance concepts
 - s = 1: first-order dominance
 - s = 2: second-order dominance
- $D_F^s(\zeta_0)$ is equal to the FGT poverty index, up to a scale factor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparison

Principles

- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Seminarametric

• Define
$$D_F^s(y) := \frac{1}{(s-1)!} \int_0^y (y-t)^{s-1} dF(t)$$

- General *s*-order dominance:
 - $\forall y \in \mathbb{R} : D_F^s(y) \le D_G^s(y)$ • $\exists y \in \mathbb{R} : D_F^s(y) < D_G^s(y)$
- Contains earlier dominance concepts
 - s = 1: first-order dominance
 - s = 2: second-order dominance

• $D_F^s(\zeta_0)$ is equal to the FGT poverty index, up to a scale factor

- If, for all $[\zeta_0^-; \zeta_0^+], D_F^s(\zeta_0) < D_G^s(\zeta_0)$:
- then poverty lower in F than in G.

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparison

Principles

- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Seminarametric

• Define
$$D_F^s(y) := \frac{1}{(s-1)!} \int_0^y (y-t)^{s-1} dF(t)$$

- General *s*-order dominance:
 - $\forall y \in \mathbb{R} : D_F^s(y) \le D_G^s(y)$ • $\exists y \in \mathbb{R} : D_F^s(y) < D_G^s(y)$
- Contains earlier dominance concepts
 - s = 1: first-order dominance
 - s = 2: second-order dominance

• $D_F^s(\zeta_0)$ is equal to the FGT poverty index, up to a scale factor

- If, for all $[\zeta_0^-; \zeta_0^+], D_F^s(\zeta_0) < D_G^s(\zeta_0)$:
- then poverty lower in F than in G.

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Kernel method 5 Comparisons Implementation ۲

Intuitive application

• The null hypothesis

Stat methods
ELC EE
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
runte sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:

イロト イロト イヨト イヨト ニヨー

500

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

semiparametric

Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:

• let $\kappa(n,q)$ be largest integer $\leq nq - q + 1$

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

- Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:
 - let $\kappa(n,q)$ be largest integer $\leq nq q + 1$

• quantiles:
$$\hat{y}_q := Q\left(F^{(n)};q\right) = y_{(\kappa(n,q))}$$

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture model
- Welfare indices Asymptotic inference Inequality measures Poverty measures Einite sample
- Comparisons
- Implementation
- Intuitive application The null hypothesis Hypothesis testing
- Other problems
- Robustness
- Semiparametric
- Semparametric

- Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:
 - let $\kappa(n,q)$ be largest integer $\leq nq q + 1$

• quantiles:
$$\hat{y}_q := Q\left(F^{(n)};q\right) = y_{(\kappa(n,q))}$$

• cumulations: $\hat{c}_q := C\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}$

・ロト・西ト・ヨト・ヨー もくの

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatic Kernel method Finite-mixture mode Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• let $\kappa(n,q)$ be largest integer $\leq nq - q + 1$

• quantiles:
$$\hat{y}_q := Q\left(F^{(n)};q\right) = y_{(\kappa(n,q))}$$

• cumulations: $\hat{c}_q := C\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}$

3 Compute the variances and covariances of

- sample quantiles (first-order)
- income cumulations (second order)

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Kernel method Finite-mixture mod
- Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Implementation Intuitive application The null hypothesis Hypothesis testing
- Other problems Robustness Incomplete data Semiparametric

- Choose a finite collection of population proportions Θ ⊂ Q
 For each q ∈ Θ compute sample quantiles, cumulations:
 - let $\kappa(n,q)$ be largest integer $\leq nq q + 1$

• quantiles:
$$\hat{y}_q := Q\left(F^{(n)};q\right) = y_{(\kappa(n,q))}$$

• cumulations: $\hat{c}_q := C\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}$

- 3 Compute the variances and covariances of
 - sample quantiles (first-order)
 - income cumulations (second order)
- ④ Specify carefully the ranking hypothesis to be tested

Stat methods
otat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

semiparametric

• For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates

•
$$\sqrt{n}\hat{y}_q, \sqrt{n}\hat{y}_{q'}$$
 asymp normally distributed, cov is $\frac{q[1-q']}{f(y_q)f(y_{q'})}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method

Finite-mixture mo

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Semiparametric

oemparametre

• For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates

√nŷ_q, √nŷ_{q'} asymp normally distributed, cov is ^{q[1-q']}/_{f(yq)f(yq')}
 √nĉ_q, √nĉ_{q'} asymp normally distributed; cov is:

 ω_{qq'} := s_q + [qy_q - c_q] [y_{q'} - q'y_{q'} + c_{q'}] - y_qc_q, q ≤ q'
 S(F;q) := ∫_y^{y_q} y² dF(y) =: s_q

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Stat methods

FAC-EF

Introduction

Data

Density Parametric esti

Kernel method

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete dat

Semiparametric

• For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates

• $\sqrt{n}\hat{y}_q$, $\sqrt{n}\hat{y}_{q'}$ asymp normally distributed, cov is $\frac{q[1-q']}{f(y_q)f(y_{q'})}$ • $\sqrt{n}\hat{c}_q$, $\sqrt{n}\hat{c}_{q'}$ asymp normally distributed; cov is: • $\omega_{qq'} := s_q + [qy_q - c_q] [y_{q'} - q'y_{q'} + c_{q'}] - y_q c_q, q \le q'$ • $S(F;q) := \int_{\underline{y}}^{y_q} y^2 dF(y) =: s_q$ • $\hat{s}_q := S\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}^2$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Semiparametric

• For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates

• $\sqrt{n}\hat{y}_q$, $\sqrt{n}\hat{y}_{q'}$ asymp normally distributed, cov is $\frac{q[1-q']}{f(y_q)f(y_{q'})}$ • $\sqrt{n}\hat{c}_q$, $\sqrt{n}\hat{c}_{q'}$ asymp normally distributed; cov is: • $\omega_{qq'} := s_q + [qy_q - c_q] [y_{q'} - q'y_{q'} + c_{q'}] - y_q c_q, q \le q'$ • $S(F;q) := \int_{\underline{y}}^{y_q} y^2 dF(y) =: s_q$ • $\hat{s}_q := S\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}^2$

• Derivation:

•
$$\omega_{qq'} = \int IF(z; C(F;q), F) IF(z; C(F;q'), F) dF(z))$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

- For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates
- $\sqrt{n}\hat{y}_q$, $\sqrt{n}\hat{y}_{q'}$ asymp normally distributed, cov is $\frac{q[1-q']}{f(y_q)f(y_{q'})}$ • $\sqrt{n}\hat{c}_q$, $\sqrt{n}\hat{c}_{q'}$ asymp normally distributed; cov is: • $\omega_{qq'} := s_q + [qy_q - c_q] [y_{q'} - q'y_{q'} + c_{q'}] - y_q c_q, q \le q'$ • $S(F;q) := \int_{\underline{y}}^{y_q} y^2 dF(y) =: s_q$ • $\hat{s}_q := S\left(F^{(n)};q\right) = \frac{1}{n}\sum_{i=1}^{\kappa(n,q)} y_{(i)}^2$

• Derivation:

- $\omega_{qq'} = \int IF(z; C(F;q), F) IF(z; C(F;q'), F) dF(z))$
- but $IF(z; C(F;q), F) = qy_q c_q + \iota(y_q \ge z)[z y_q]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Incomplete data

Semiparametric

- For any $q,q' \in \mathbb{Q}$, compute covariances of ordinates
- $\sqrt{n}\hat{y}_q$, $\sqrt{n}\hat{y}_{q'}$ asymp normally distributed, cov is $\frac{q[1-q']}{f(y_q)f(y_{q'})}$ • $\sqrt{n}\hat{c}_q$, $\sqrt{n}\hat{c}_{q'}$ asymp normally distributed; cov is: • $\omega_{qq'} := s_q + [qy_q - c_q] [y_{q'} - q'y_{q'} + c_{q'}] - y_q c_q, q \le q'$ • $S(F;q) := \int_{\underline{y}}^{y_q} y^2 dF(y) =: s_q$ • $\hat{s}_q := S\left(F^{(n)}; q\right) = \frac{1}{n} \sum_{i=1}^{\kappa(n,q)} y_{(i)}^2$

• Derivation:

- $\omega_{qq'} = \int IF(z; C(F;q), F)IF(z; C(F;q'), F) dF(z))$
- but $IF(z; C(F;q), F) = qy_q c_q + \iota(y_q \ge z)[z y_q]$
- So, given that $\iota(x_{q'} \ge z) = 1$ whenever $\iota(x_q \ge z) = 1$: • $\omega_{qq'} = [qy_q - c_q] [q'y_{q'} - c_{q'}] + \int_{\underline{y}}^{y_{q'}} [qy_q - c_q] [z - y_{q'}] dF(z) + \int_{\underline{y}}^{y_q} [q'y_{q'} - c_{q'} + z - y_{q'}] [z - y_q] dF(z)$

Stat methods	
FAC-EF	
Introduction	• We can also use the "short form" of the IF method:
Data	
Density Parametric estimation Kernel method Finite-mixture models Finite sample	
Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing	
Other problems Robustness Incomplete data Semiparametric	< ロ > < 唇 > < 言 > < 言 > 、 言 の Q Q

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• We can also use the "short form" of the IF method:

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• We can also use the "short form" of the IF method:

イロト イロト イヨト イヨト ニヨー

Dac

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

• Asymptotic covariance of $\sqrt{n}\hat{c}_q$ and $\sqrt{n}\hat{c}_{q'}$:

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Semiparametric

.....

• We can also use the "short form" of the IF method:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

• Asymptotic covariance of $\sqrt{n}\hat{c}_q$ and $\sqrt{n}\hat{c}_{q'}$:

• $\omega_{qq'} = \operatorname{cov}(Z_q, Z_{q'})$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• We can also use the "short form" of the IF method:

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

• Asymptotic covariance of $\sqrt{n}\hat{c}_q$ and $\sqrt{n}\hat{c}_{q'}$:

•
$$\omega_{qq'} = \operatorname{cov}(Z_q, Z_{q'})$$

• $\widehat{\operatorname{cov}}(\hat{c}_q, \hat{c}_{q'}) = \frac{1}{n} \,\widehat{\omega}_{qq'} = \frac{1}{n^2} \sum_{i=1}^n (Z_{iq} - \bar{Z}_q) (Z_{iq'} - \bar{Z}_{q'})$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems

RODUSINESS

Incomplete data

Semiparametric

• We can also use the "short form" of the IF method:

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

• Asymptotic covariance of $\sqrt{n}\hat{c}_q$ and $\sqrt{n}\hat{c}_{q'}$:

•
$$\omega_{qq'} = \operatorname{cov}(Z_q, Z_{q'})$$

• $\widehat{\operatorname{cov}}(\hat{c}_q, \hat{c}_{q'}) = \frac{1}{n} \widehat{\omega}_{qq'} = \frac{1}{n^2} \sum_{i=1}^n (Z_{iq} - \bar{Z}_q) (Z_{iq'} - \bar{Z}_{q'})$

イロト イロト イヨト イヨト ニヨー

Dac

•
$$Z_{iq} = [y_i - \hat{y}_q] \iota(y_i \le \hat{y}_q)$$
Covariances, GLC (2)

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• We can also use the "short form" of the IF method:

•
$$IF(z; C(F,q), F) = Z_q - E(Z_q)$$

• $Z_q = [z - y_q]\iota(z \le y_q).$

• Asymptotic covariance of $\sqrt{n}\hat{c}_q$ and $\sqrt{n}\hat{c}_{q'}$:

•
$$\omega_{qq'} = \operatorname{cov}(Z_q, Z_{q'})$$

• $\widehat{\operatorname{cov}}(\hat{c}_q, \hat{c}_{q'}) = \frac{1}{n} \widehat{\omega}_{qq'} = \frac{1}{n^2} \sum_{i=1}^n (Z_{iq} - \bar{Z}_q) (Z_{iq'} - \bar{Z}_{q'})$

•
$$Z_{iq} = [y_i - \hat{y}_q] \iota(y_i \le \hat{y}_q)$$

• Consistent estimate:

$$\widehat{\boldsymbol{\omega}}_{qq'} := \widehat{s}_q + [q\widehat{y}_q - \widehat{c}_q] \left[\widehat{y}_{q'} - q'\widehat{y}_{q'} + \widehat{c}_{q'} \right] - \widehat{y}_q\widehat{c}_q$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementatio

Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Kernel method 5 Comparisons

Intuitive application

The null hypothesis

Dominance: an intuitive application

Difference between two empirical Lorenz curves, n = 5000

Dominance: an intuitive application

Stat methods		Dist	ribution <i>F</i>	Distribution G		
FAC-EF		Index	CI95%	Index	CI95%	
oduction	Poverty	measures*				
ı	$P_{\rm FGT}^0$	0.1134	[0.1046;0.1222]	0.0260	[0.0216;0.0304]	
sity	$P_{\rm FGT}^1$	0.0299	[0.0270;0.0329]	0.0053	[0.0042;0.0065]	
l method	$P_{\rm Sen}$	0.0426	[0.0385;0.0466]	0.0077	[0.0061;0.0093]	
e-mixture models	$P_{\rm SST}$	0.0579	[0.0523;0.0635]	0.0106	[0.0083;0.0129]	
are indices	General	ised Entrop	by measures			
lity measures	$I_{\rm GF}^{-1}$	0.1803	[0.1694;0.1913]	0.1568	[0.1468;0.1667]	
y measures sample	$I_{\rm GF}^{\rm OL}$	0.1416	[0.1351;0.1481]	0.1420	[0.1324;0.1516]	
parisons	$I_{\rm GF}^{\rm 1}$	0.1360	[0.1289;0.1430]	0.1570	[0.1411;0.1729]	
nentation	$I_{\rm GE}^2$	0.1548	[0.1431;0.1665]	0.2266	[0.1798;0.2734]	
e application all hypothesis	I _{Gini}	0.2849	[0.2785;0.2913]	0.2909	[0.2816;0.3001]	
pothesis testing						
stness	* The pov	verty line is h	alf the median of the	sample drawn	from	
aplete data parametric	distributio	on $F: \zeta_0 = 0.$	07565776.	< - > < 6 >		

Outline

Stat methods

FAC-EF

Welfare indices

The null hypothesis

5

- Kernel method

Comparisons

ヘロト 人間 トイヨト イヨト

3

500

The null hypothesis

The null hypothesis: dominance or non-dominance

The quadrants II, III and IV correspond to non-dominance.

イロト イ理ト イヨト イヨト

Э

Sar

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation

The null hypothesis

Hypothesis testing

Other problems Robustness Incomplete data

Kernel method 5 Comparisons

Intuitive application

• The null hypothesis

Hypothesis testing

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive applicatio

Hypothesis testing

Other problems Robustness Incomplete data • Under the null of dominance (F dominates G), we have

 $\begin{array}{ll} H_0: & D_F^s(y) \leq D_G^s(y), & \text{ for all } y \in \mathbb{Y}, \\ H_1: & D_F^s(y) > D_G^s(y), & \text{ for some } y \in \mathbb{Y}. \end{array}$

Test based on the supremum of individual differences:

$$au = \sup_{y \in \mathbb{Y}} \left(\hat{D}_F^s(y) - \hat{D}_G^s(y) \right).$$

• Under the null of non-dominance (F does not dominate G):

 $\begin{aligned} H_0: \quad D_F^s(y) \geq D_G^s(y), & \text{for some } y \in \mathbb{Y}, \\ H_1: \quad D_F^s(y) < D_G^s(y), & \text{for all } y \in \mathbb{Y}. \end{aligned}$

Test based on the infinum of individual differences:

$$\tau' = \inf_{y \in \mathbb{Y}^r} \left(\hat{D}_G^s(y) - \hat{D}_F^s(y) \right).$$

4 日 > 4 日 > 4 三 > 4 三 > 三 の 4 で

hods											
				E	 4 日	b 4	3 b.	- (E	- 1	-	nar

Stat methods	
FAC-EF	
Introduction	
Data	• Focus on data issues that go beyond sampling
Density Parametric estimation Kernel method Finite-mixture models Finite sample	- Toeus on data issues that go beyond sampning
Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing	
Other problems Robustness	

Semiparametric

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Stat methods FAC-EF • Focus on data issues that go beyond sampling Robustness • Incomplete data Semi-parametric modelling • Welfare indices Other problems

・ロト (四) (日) (日) (日) (日) (日)

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness Incomplete dat Semiparametri • Focus on data issues that go beyond sampling

- Robustness
- Incomplete data
- Semi-parametric modelling
- Reuse tools from earlier material

Stat methods	
--------------	--

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness Incomplete data Semiparametric • Focus on data issues that go beyond sampling

- Robustness
- Incomplete data
- Semi-parametric modelling
- Reuse tools from earlier material
- Apply similar techniques

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems

Robustness

Semiparametric

Introduction

Data

Density

- Parametric estimation
- Kernel method
- Finite-mixture models
 - Finite sample
- Welfare indices
 - Asymptotic inference
 - Inequality measures
 - Poverty measures
 - Finite sample
- Comparisons
 - Principles
 - Implementation
 - Intuitive application

ヘロト 人間 トイヨト イヨト

3

Sac

• The null hypothesis

Stat methods									
FAC-EF	• Suppose true distribution is mixed with contamination								
Introduction									
Data									
Density Parametric estimation Kernel method Finite-mixture models									
Velfare indices Asymptotic inference Inequality measures Poverty measures Finite sample									
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing									
Other problems Robustness Incomplete data		<i>م</i> (۲							

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimatio Kernel method

Finite-mixture mod

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Suppose true distribution is mixed with contamination

< □ > < @ > < E > < E > E のQ@

• point mass at z:
$$H^{(z)}(y) = \iota(y \ge z)$$

• the mixture:
$$G = [1 - \delta]F + \delta H^{(z)}$$

• δ : "size" of contamination

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination

• Use IF to see effect of infinitesimal contamination at z

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Incomplete data Semiparametric • Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination

• Use IF to see effect of infinitesimal contamination at z

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: the mean

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Incomplete data Semiparametric • Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination

• Use IF to see effect of infinitesimal contamination at *z*

① Example: the mean

•
$$\mu(G) = \mu\left([1-\delta]F + \delta H^{(z)}\right) = [1-\delta]\mu(F) + \delta\mu\left(H^{(z)}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Incomplete data Semiparametric • Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination
- Use IF to see effect of infinitesimal contamination at *z*

① Example: the mean

•
$$\mu(G) = \mu([1 - \delta]F + \delta H^{(z)}) = [1 - \delta]\mu(F) + \delta\mu(H^{(z)})$$

• $\mu(G) = [1 - \delta]\mu(F) + \delta z$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination

• Use IF to see effect of infinitesimal contamination at *z*

Example: the mean

•
$$\mu(G) = \mu([1 - \delta]F + \delta H^{(z)}) = [1 - \delta]\mu(F) + \delta\mu(H^{(z)})$$

• $\mu(G) = [1 - \delta]\mu(F) + \delta z$
• $IF(z; \mu, F) = z - \mu(F)$

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Incomplete data Semiparametric Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination
- Use IF to see effect of infinitesimal contamination at *z*

① Example: the mean

•
$$\mu(G) = \mu\left([1-\delta]F + \delta H^{(z)}\right) = [1-\delta]\mu(F) + \delta\mu\left(H^{(z)}\right)$$

• $\mu(G) = [1-\delta]\mu(F) + \delta z$

•
$$IF(z; \mu, F) = z - \mu (F)$$

② Example: the median

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Semiparametric

Suppose true distribution is mixed with contamination

- point mass at z: $H^{(z)}(y) = \iota(y \ge z)$
- the mixture: $G = [1 \delta]F + \delta H^{(z)}$
- δ : "size" of contamination

• Use IF to see effect of infinitesimal contamination at *z*

① Example: the mean

•
$$\mu(G) = \mu\left([1-\delta]F + \delta H^{(z)}\right) = [1-\delta]\mu(F) + \delta\mu\left(H^{(z)}\right)$$

•
$$\mu(G) = [1 - \delta]\mu(F) + \delta z$$

•
$$IF(z; \mu, F) = z - \mu(F)$$

② Example: the median

•
$$IF(z; Q(\cdot, 0.5), F) = \frac{q - \iota(q \ge F(z))}{f(Q(F, 0.5))} = \frac{q - \iota(y_{0.5} \ge z)}{f(y_{0.5})}$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Here the site testing

Other problems

Robustness

Incomplete data

Semiparametric

• Inequality and poverty indices respond differently to contamination

• Consider two important members of W_{QAD} class

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:

•
$$\varphi(z, \mu(F)) - W_{\text{QAD}}(F) + [z - \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

The num hypothesis

Other problems

Robustness

Incomplete data Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:
 - $\varphi(z, \mu(F)) W_{\text{QAD}}(F) + [z \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Inequality
 - Compute IF for GE:

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementation
- Intuitive application
- The null hypothesis
- Other problems

Robustness

- Incomplete data
- Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:
 - $\varphi(z, \mu(F)) W_{\text{QAD}}(F) + [z \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Inequality
 - Compute IF for GE:

•
$$\varphi(z, \mu(F)) = \frac{[z/\mu(F)]^{\xi} - 1}{\xi^2 - \xi}$$

• unbounded for all values of ξ

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementation
- The null hypothesi
- Hypothesis testing
- Other problems
- Robustness
- Incomplete data Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:
 - $\varphi(z, \mu(F)) W_{\text{QAD}}(F) + [z \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Inequality
 - Compute IF for GE:

•
$$\varphi(z, \mu(F)) = \frac{[z/\mu(F)]^{\xi} - 1}{\xi^2 - \xi}$$

- unbounded for all values of ξ
- also unbounded effect on mean
- Poverty

Stat methods

FAC-EF

Introduction

Data

- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementati
- Intuitive applicati
- The null hypothesis Hypothesis testing
- Other problems

Robustness

Incomplete data Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:
 - $\varphi(z, \mu(F)) W_{\text{QAD}}(F) + [z \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Inequality
 - Compute IF for GE:

•
$$\varphi(z, \mu(F)) = \frac{[z/\mu(F)]^{\xi} - 1}{\xi^2 - \xi}$$

- unbounded for all values of ξ
- also unbounded effect on mean
- Poverty
 - take ASP case (fixed poverty line ζ₀):
 IF(*z*;*P*,*F*) = *p*(*z*, ζ₀) *P*(*F*)

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementatio
- Intuitive applicati
- Hypothesis testing
- Other problems
- Robustness
- Semiparametric

- Inequality and poverty indices respond differently to contamination
- Consider two important members of W_{QAD} class
 - IF in general case:
 - $\varphi(z, \mu(F)) W_{\text{QAD}}(F) + [z \mu(F)] \int \varphi_{\mu}(z, \mu(F)) dF(z)$
 - Inequality
 - Compute IF for GE:

•
$$\varphi(z, \mu(F)) = \frac{[z/\mu(F)]^{\xi} - 1}{\xi^2 - \xi}$$

- unbounded for all values of ξ
- also unbounded effect on mean
- Poverty
 - take ASP case (fixed poverty line ζ₀):
 IF(*z*;*P*,*F*) = *p*(*z*, ζ₀) *P*(*F*)
 - example (FGT): $p(z, \zeta_0) = [\max(1 z/\zeta_0, 0)]^{\xi}$

Stat methods • Use parametric $f(y; \theta)$ for part of the income distribution? FAC-EF Welfare indices Robustness イロト イロト イヨト イヨト ニヨー Sac

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

• Use parametric $f(y; \theta)$ for part of the income distribution?

• MLE are efficient but usually non-robust

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

Here the site testing

Other problems

Robustness

Incomplete data

Semiparametric

• Use parametric $f(y; \theta)$ for part of the income distribution?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• MLE are efficient but usually non-robust

• *M*-estimators characterised by $\sum_{i=1}^{n} \psi(y_i; \theta) = 0, \psi : \mathbb{R} \times \mathbb{R}^p \to \mathbb{R}^p$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Use parametric $f(y; \theta)$ for part of the income distribution?

• MLE are efficient but usually non-robust

- *M*-estimators characterised by $\sum_{i=1}^{n} \psi(y_i; \theta) = 0, \psi : \mathbb{R} \times \mathbb{R}^p \to \mathbb{R}^p$
- OBRE defined as solution in θ of
 Σⁿ_{i=1} ψ(x_i; θ) = Σⁿ_{i=1} [s(x_i; θ) a(θ)] · W_c(x_i; θ) = 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stat methods

FAC-EF

- Introduction
- Data
- Density Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementation
- Intuitive application
- The null hypothesi
- Hypothesis testing
- Other problems

Robustness

Incomplete data Semiparametric • Use parametric $f(y; \theta)$ for part of the income distribution?

• MLE are efficient but usually non-robust

- *M*-estimators characterised by $\sum_{i=1}^{n} \psi(y_i; \theta) = 0, \psi : \mathbb{R} \times \mathbb{R}^p \to \mathbb{R}^p$
- OBRE defined as solution in θ of
 - $\sum_{i=1}^{n} \psi(x_i; \theta) = \sum_{i=1}^{n} [s(x_i; \theta) a(\theta)] \cdot W_c(x_i; \theta) = 0$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $c \ge \sqrt{p}$, fixed a bound on the *IF*
- weights: $W_c(x; \theta) = \min \left\{ 1; \frac{c}{\|A(\theta)[s(x; \theta) a(\theta)]\|} \right\}$
- scores function, $s(x; \theta) = \partial / \partial \theta \log f(x; \theta)$

Stat methods

FAC-EF

- Introduction
- Data
- Density Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive applicatio
- The null hypothesis
- Other problem

Robustness

Semiparametric

• Use parametric $f(y; \theta)$ for part of the income distribution?

• MLE are efficient but usually non-robust

- *M*-estimators characterised by $\sum_{i=1}^{n} \psi(y_i; \theta) = 0, \psi : \mathbb{R} \times \mathbb{R}^p \to \mathbb{R}^p$
- OBRE defined as solution in θ of
 - $\sum_{i=1}^{n} \psi(x_i; \theta) = \sum_{i=1}^{n} [s(x_i; \theta) a(\theta)] \cdot W_c(x_i; \theta) = 0$
 - $c \ge \sqrt{p}$, fixed a bound on the *IF*
 - weights: $W_c(x; \theta) = \min\left\{1; \frac{c}{\|A(\theta)[s(x;\theta) a(\theta)]\|}\right\}$
 - scores function, $s(x; \theta) = \partial / \partial \theta \log f(x; \theta)$
- $p \times p$ matrix $A(\theta)$ and $a(\theta) \in \mathbb{R}^p$:
 - $E[\psi(x;\theta)\psi(x;\theta)^T] = [A(\theta)^T A(\theta)]^{-1}; E[\psi(x;\theta)] = 0$ • *c*: regulator between efficiency (high) and robustness (low)

Sar
Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data Semiparametric

Kernel method

・ロマット 山田 マール・ 山マット 日

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

< □ > < @ > < E > < E > E のQ@

Other problems Robustness

Incomplete data

Semiparametric

- Empirical distribution is random
- Fixed boundaries $(\underline{z}, \overline{z})$ on excluded portion

Incomplete data Semiparametric

- Empirical distribution is random
- Fixed boundaries $(\underline{z}, \overline{z})$ on excluded portion
- Therefore size of excluded portions $(\underline{\beta}, 1 \overline{\beta})$ is random.

Sac

Incomplete data Semiparametric

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Semiparametric

Stat methods FAC-EF • A: replace support (y, \overline{y}) by narrower truncation limits (z, \overline{z}) • then as full info B: Censoring with minimal information • Welfare indices Incomplete data

Semiparametric

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Stat methods FAC-EF Welfare indices

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

- A: replace support (y, y) by narrower truncation limits (z, z)
 then as full info
- B: Censoring with minimal information
 - if we do not use the observed point masses at <u>z</u> and <u>z</u>, this could be just treated as case A

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

- Density Parametric estimation Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application
- The null hypothesis
- Other problems Robustness
- Incomplete data

Semiparametric

A: replace support (<u>y</u>, <u>y</u>) by narrower truncation limits (<u>z</u>, <u>z</u>)
then as full info

• B: Censoring with minimal information

- if we do not use the observed point masses at <u>z</u> and <u>z</u>, this could be just treated as case A
- need: n (the full sample size), n (#observations equal to z) and n
 (#observations equal to z
)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

- Density Parametric estimatior Kernel method Finite-mixture model Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis
- Other problems Robustness
- Incomplete data

Semiparametric

A: replace support (y, y) by narrower truncation limits (z, z)
then as full info

• B: Censoring with minimal information

- if we do not use the observed point masses at <u>z</u> and <u>z</u>, this could be just treated as case A
- need: n (the full sample size), n (#observations equal to z) and n (#observations equal to z)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• C: Censoring with rich information

Stat methods

FAC-EF

Introduction

Data

- Density Parametric estimation Kernel method Finite-mixture mode: Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis
- Other problems Robustness
- Incomplete data
- Semiparametric

A: replace support (y, y) by narrower truncation limits (z, z)
then as full info

• B: Censoring with minimal information

- if we do not use the observed point masses at <u>z</u> and <u>z</u>, this could be just treated as case A
- need: n (the full sample size), n (#observations equal to z) and n (#observations equal to z)
- C: Censoring with rich information
 - carry out inference on Lorenz-curve ordinates and some welfare indices

Stat methods	
FAC-EF	• Need to modify statistics to take account of missing portions
Introduction	
Data	
Density Parametric estimation Kernel method Finite-mixture models Finite sample	
Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing	
Other problems Robustness Incomplete data	(日)(何)(ミン(言)) まつの(

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture model
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementation
- Intuitive applicatio
- The null hypothesis
- Hypothesis testing
- Other problems
- Robustness

Incomplete data

Semiparametric

• Need to modify statistics to take account of missing portions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- At the bottom of the distribution:
 - $\hat{c}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}$ • $\hat{s}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}^2$

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons
- Principles
- Implementatio
- Intuitive application
- The null hypothesis
- Hypothesis testing
- Other problems
- Robustness

Incomplete data

Semiparametric

• Need to modify statistics to take account of missing portions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- At the bottom of the distribution:
 - $\hat{c}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}$ • $\hat{s}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}^2$
- At the top of the distribution:
 - $\hat{c}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}$ • $\hat{s}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}^2$

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation Intuitive application The null hypothesis
- Hypothesis testing
- Other problems Robustness

Incomplete data

Semiparametric

• Need to modify statistics to take account of missing portions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- At the bottom of the distribution:
 - $\hat{c}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}$ • $\hat{s}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}^2$
- At the top of the distribution:
 - $\hat{c}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}$ • $\hat{s}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}^2$
- Asymptotic covariance:

Stat methods

FAC-EF

- Introduction
- Data
- Density
- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles Implementation
- Intuitive applicatio
- Hypothesis testing
- Other problems Robustness
- Incomplete data
- Semiparametric

- Need to modify statistics to take account of missing portions
- At the bottom of the distribution:
 - $\hat{c}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}$ • $\hat{s}_{\text{low}} := \frac{1}{n} \sum_{i=1}^{n} y_{(i)}^2$
- At the top of the distribution:
 - $\hat{c}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}$ • $\hat{s}_{\text{high}} := \frac{1}{n} \sum_{n-\overline{n}+1}^{n} y_{(i)}^2$
- Asymptotic covariance:

•
$$\widehat{\omega}_{qq'} := \widehat{s}_q + [q\widehat{y}_q - \widehat{c}_q] [\widehat{y}_{q'} - q'\widehat{y}_{q'} + \widehat{c}_{q'}] - \widehat{y}_q\widehat{c}_q$$

• $\widehat{c}_q := \widehat{c}_{\text{low}} + \frac{1}{n}\sum_{i=\kappa(n,\underline{\beta})+1}^{\kappa(n,q)} y_{(i)}$
• $\widehat{s}_q := \widehat{s}_{\text{low}} + \frac{1}{n}\sum_{i=\kappa(n,\underline{\beta})+1}^{\kappa(n,q)} y_{(i)}^2$

Stat methods																	
FAC-EF																	
ntroduction																	
lata																	
Density Parametric estimation Kernel method Finite-mixture models Finite sample																	
Velfare indices Asymptotic inference Inequality measures Poverty measures Finite sample																	
Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing																	
Other problems Robustness Incomplete data												_		_		_	
Semiparametric							-	1	- 1 Ē	µ ⊧	- 4	-21	P 4	-	P	-2	ى رىپ

Other problems Robustness

Incomplete data

Semiparametric

< □ > < @ > < E > < E > E のQ@

- Other problems Robustness
- Incomplete data
- Semiparametric

- Hypothesis testing
- Other problems Robustness
- Incomplete data
- Semiparametric

- Fixed proportion of the sample discarded
 - remove outliers for robustness reasons?
 - proportions $(\beta, 1 \overline{\beta})$ removed from the (bottom, top)

Sac

• y_{β} and $y_{\overline{\beta}}$ are random

hods												
					$\Box \rightarrow$	< 6	1	-≣ ▶	- E	•	=	うく

• $b := 1/\left[\bar{\beta} - \underline{\beta}\right]$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimati Kernel method Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementatio

Intuitive application

The null hypothesis

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

Inference on *full distribution*, known proportions trimmed The *trimmed distribution*

$$\tilde{F}_{\beta}(y) := \begin{cases} 0 & \text{if } y < Q(F,\underline{\beta}) \\ b\left[F(y) - \underline{\beta}\right] & \text{if } Q(F,\underline{\beta}) \le y < Q(F,\overline{\beta}) \\ 1 & \text{if } y \ge Q(F,\overline{\beta}) \end{cases}$$

Stat methods

FAC-EF

Introduction

Data

Density

Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Fincipies

Intuitive application

The null hypothesi

Other problems

Incomplete data

Semiparametric

Inference on *full distribution*, known proportions trimmed
 The *trimmed distribution*

$$\tilde{F}_{\beta}(y) := \begin{cases} 0 & \text{if } y < Q(F, \underline{\beta}) \\ b\left[F(y) - \underline{\beta}\right] & \text{if } Q(F, \underline{\beta}) \le y < Q(F, \overline{\beta}) \\ 1 & \text{if } y \ge Q(F, \overline{\beta}) \end{cases}$$

• $b := 1/\left[\bar{\beta} - \underline{\beta}\right]$

- Key statistics:
 - income cumulations $c_{\beta,q} := C(\tilde{F}_{\beta};q) = b \int_{y_{\underline{\beta}}}^{y_q} y dF(y)$ • mean $\mu_{\beta} := \mu(\tilde{F}_{\beta})$ • $s_{\beta,q} := S(\tilde{F}_{\beta};q) := b \int_{y_{\underline{\beta}}}^{y_q} y^2 dF(y)$

nods									
mation									
lels									
ices									
nce									
s									
tion									
sis									
ng									
ems									
					< P	 -≡ >	< 2	 =	4

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

• Drawing GLC is easy because

•
$$C(\tilde{F}_{\beta};q) = b\left[C(F;q) - C(F;\underline{\beta})\right]$$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Drawing GLC is easy because

•
$$C(\tilde{F}_{\beta};q) = b\left[C(F;q) - C(F;\underline{\beta})\right]$$

• For inference on GLC or RLC again use the IF method

• Need to evaluate $\int IF(z; C(\cdot; q), \tilde{F}_{\beta}) IF(z; C(\cdot; q'), \tilde{F}_{\beta}) dF(z)$

イロト イロト イヨト イヨト ニヨー

Dac

Stat methods

FAC-EF

Introduction

Data

Density

Farametric estimato Kernel method Finite-mixture mode

0

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

• Drawing GLC is easy because

•
$$C(\tilde{F}_{\beta};q) = b\left[C(F;q) - C(F;\underline{\beta})\right]$$

For inference on GLC or RLC again use the IF method
 Need to evaluate ∫ IF(z; C(·;q), F̃_β)IF(z; C(·;q'), F̃_β) dF(z)

$$IF(z; C(\cdot; q), \tilde{F}_{\beta}) = -c_{\beta,q} + b \left[qy_q - \underline{\beta}y_{\underline{\beta}} + \iota(y_q \ge z)[z - y_q] - \iota(y_{\underline{\beta}} \ge z)[z - y_{\underline{\beta}}] \right]$$

• = $-c_{\beta,q} + b \left[qy_q - \underline{\beta}y_{\underline{\beta}} - \iota(y_q \ge z)y_q + \iota(y_{\underline{\beta}} \ge z)y_{\underline{\beta}} \right] + b \left[\iota(y_q \ge z) - \iota(y_{\underline{\beta}} \ge z) \right]$

Stat methods

FAC-EF

Introduction

Data

Density Parametric esti

Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

riypomesis testing

Robustness

Incomplete data

Semiparametric

• Drawing GLC is easy because

•
$$C(\tilde{F}_{\beta};q) = b\left[C(F;q) - C(F;\underline{\beta})\right]$$

For inference on GLC or RLC again use the IF method
 Need to evaluate ∫ IF(z; C(·;q), F̃_β)IF(z; C(·;q'), F̃_β)dF(z)

$$IF(z; C(\cdot; q), \tilde{F}_{\beta}) = -c_{\beta,q} + b \left[qy_q - \underline{\beta}y_{\underline{\beta}} + \iota(y_q \ge z)[z - y_q] - \iota(y_{\underline{\beta}} \ge z)[z - y_{\underline{\beta}}] \right]$$

$$\bullet = -c_{\beta,q} + b \left[qy_q - \underline{\beta}y_{\underline{\beta}} - \iota(y_q \ge z)y_q + \iota(y_{\underline{\beta}} \ge z)y_{\underline{\beta}} \right] + b \left[\iota(y_q \ge z) - \iota(y_{\underline{\beta}} \ge z) \right]$$

• So the asymptotic covariance of $\sqrt{n}\hat{c}_{\beta,q}$, $\sqrt{n}\hat{c}_{\beta,q'}$ $(q \le q')$ is • $\varpi_{qq'} = b^2 \left[\omega_{qq'} + \omega_{\underline{\beta}\underline{\beta}} - \omega_{\underline{\beta}q} - \omega_{\underline{\beta}q'} \right]$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

- To implement we need the sample analogues
- Sample estimates of cumulations

•
$$\hat{\mu}_{\beta} := \mu(\tilde{F}_{\beta}^{(n)}) = \frac{b}{n} \sum_{i=1}^{n} y_{(i)} \iota\left(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})\right)$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

- To implement we need the sample analogues
- Sample estimates of cumulations

•
$$\hat{\mu}_{\beta} := \mu(\tilde{F}_{\beta}^{(n)}) = \frac{b}{n} \sum_{i=1}^{n} y_{(i)} \iota\left(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})\right)$$

• Covariance of $\sqrt{n}\hat{c}_{\beta,q}$, $\sqrt{n}\hat{c}_{\beta,q'}$ $(q \le q')$ estimated by • $\widehat{\varpi}_{q_iq_j} = \left[q_iy_{(i)} - \underline{\beta}y_{(1)} - \sum_{k=1}^{i} \frac{y_{(k)}}{bn_{\beta}}\right] \times \left[[1 - q_j]y_{(j)} - \left[1 - \underline{\beta}\right]y_{(1)} + \sum_{k=1}^{j} \frac{y_{(k)}}{bn_{\beta}}\right] - \sum_{k=1}^{i} \frac{y_{(i)}y_{(k)} - y_{(k)}^2}{bn_{\beta}} + y_{(1)}\left[q_iy_{(i)} - \underline{\beta}y_{(i)} - \sum_{k=1}^{i} \frac{y_{(i)}}{bn_{\beta}}\right]$

Trimming: QAD Welfare

Stat methods
Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric
Trimming: QAD Welfare Stat methods • $W_{\text{QAD}}(\tilde{F}_{\beta}) = b \int \varphi(x, \mu(\tilde{F}_{\beta})) dF(x)$ FAC-EF Welfare indices Incomplete data

Semiparametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

$$\begin{split} W_{\text{QAD}}(\tilde{F}_{\beta}) &= b \int \varphi\left(x, \mu(\tilde{F}_{\beta})\right) \, \mathrm{d}F(x) \\ & \circ \ \hat{w}_{\text{QAD},\beta} := W_{\text{QAD}}(\tilde{F}_{\beta}^{(n)}) := \frac{b}{n} \sum_{i=1}^{n} \varphi\left(y_{(i)}, \hat{\mu}_{\beta}\right) \iota(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})) \end{split}$$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive application

Here the site testing

Other problems

Robustness

Incomplete data

Semiparametric

$$\begin{split} W_{\text{QAD}}(\tilde{F}_{\beta}) &= b \int \varphi\left(x, \mu(\tilde{F}_{\beta})\right) \, \mathrm{d}F(x) \\ & \circ \ \hat{w}_{\text{QAD},\beta} := W_{\text{QAD}}(\tilde{F}_{\beta}^{(n)}) := \frac{b}{n} \sum_{i=1}^{n} \varphi\left(y_{(i)}, \hat{\mu}_{\beta}\right) \iota(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})) \\ & \circ \ IF(z; W_{\text{QAD}}, \tilde{F}_{\beta}) = b\varphi\left(\max\left(y_{\underline{\beta}}, \min(z, y_{\overline{\beta}})\right), \mu(\tilde{F}_{\beta})\right) - W_{\text{QAD}}(\tilde{F}_{\beta}) + bIF(z, C(\cdot; \overline{\beta}), \tilde{F}_{\beta}) \int_{Q(F, \overline{\beta})}^{Q(F, \overline{\beta})} \varphi_{\mu}\left(x, \mu(\tilde{F}_{\beta})\right) \, \mathrm{d}F(x) \end{split}$$

Stat methods

FAC-EF

Introduction

Data

Parametric estimat Kernel method

Finite-mixture m

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

$$\begin{split} W_{\text{QAD}}(\tilde{F}_{\beta}) &= b \int \varphi \left(x, \mu(\tilde{F}_{\beta}) \right) dF(x) \\ & \circ \ \hat{w}_{\text{QAD},\beta} := W_{\text{QAD}}(\tilde{F}_{\beta}^{(n)}) := \frac{b}{n} \sum_{i=1}^{n} \varphi \left(y_{(i)}, \hat{\mu}_{\beta} \right) \iota(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})) \\ & \circ \ IF(z; W_{\text{QAD}}, \tilde{F}_{\beta}) = b \varphi \left(\max \left(y_{\underline{\beta}}, \min(z, y_{\overline{\beta}}) \right), \mu(\tilde{F}_{\beta}) \right) - W_{\text{QAD}}(\tilde{F}_{\beta}) + b IF(z, C(\cdot; \overline{\beta}), \tilde{F}_{\beta}) \int_{Q(F, \underline{\beta})}^{Q(F, \overline{\beta})} \varphi_{\mu} \left(x, \mu(\tilde{F}_{\beta}) \right) dF(x) \end{split}$$

• Estimate of AV of $\sqrt{n}W_{QAD}(\tilde{F}_{\beta}^{(n)})$ found by computing the mean of squares of $IF(z; W_{QAD}, \tilde{F}_{\beta}), z = y_i, i = 1, ..., n$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dac

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

$$\begin{split} W_{\text{QAD}}(\tilde{F}_{\beta}) &= b \int \varphi \left(x, \mu(\tilde{F}_{\beta}) \right) dF(x) \\ & \circ \ \hat{w}_{\text{QAD},\beta} := W_{\text{QAD}}(\tilde{F}_{\beta}^{(n)}) := \frac{b}{n} \sum_{i=1}^{n} \varphi \left(y_{(i)}, \hat{\mu}_{\beta} \right) \iota(\kappa(n,\underline{\beta}) + 1 < i < \kappa(n,\overline{\beta})) \\ & \circ \ IF(z; W_{\text{QAD}}, \tilde{F}_{\beta}) = b\varphi \left(\max \left(y_{\underline{\beta}}, \min(z, y_{\overline{\beta}}) \right), \mu(\tilde{F}_{\beta}) \right) - W_{\text{QAD}}(\tilde{F}_{\beta}) + bIF(z, C(\cdot;\overline{\beta}), \tilde{F}_{\beta}) \int_{Q(F,\underline{\beta})}^{Q(F,\overline{\beta})} \varphi_{\mu} \left(x, \mu(\tilde{F}_{\beta}) \right) dF(x) \end{split}$$

Estimate of AV of √nW_{QAD}(F̃⁽ⁿ⁾_β) found by computing the mean of squares of *IF*(*z*; W_{QAD}, F̃_β), *z* = *y_i*, *i* = 1,...,*n*. *F*^{*}_β(*y*) = *F*(*y*), *Q*(*F*, β̃) ≤ *y* < *Q*(*F*, β̃)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

$$\begin{split} \Psi_{\text{QAD}}(\tilde{F}_{\beta}) &= b \int \varphi\left(x, \mu(\tilde{F}_{\beta})\right) \, \mathrm{d}F(x) \\ & \circ \ \hat{w}_{\text{QAD},\beta} := W_{\text{QAD}}(\tilde{F}_{\beta}^{(n)}) := \frac{b}{n} \sum_{i=1}^{n} \varphi\left(y_{(i)}, \hat{\mu}_{\beta}\right) \iota(\kappa(n, \underline{\beta}) + 1 < i < \kappa(n, \overline{\beta})) \\ & \circ \ IF(z; W_{\text{QAD}}, \tilde{F}_{\beta}) = b \varphi\left(\max\left(y_{\underline{\beta}}, \min(z, y_{\overline{\beta}})\right), \mu(\tilde{F}_{\beta})\right) - W_{\text{QAD}}(\tilde{F}_{\beta}) + bIF(z, C(\cdot; \overline{\beta}), \tilde{F}_{\beta}) \int_{Q(F, \underline{\beta})}^{Q(F, \overline{\beta})} \varphi_{\mu}\left(x, \mu(\tilde{F}_{\beta})\right) \, \mathrm{d}F(x) \end{split}$$

Estimate of AV of √nW_{QAD}(F̃⁽ⁿ⁾_β) found by computing the mean of squares of *IF*(*z*; W_{QAD}, F̃_β), *z* = *y_i*, *i* = 1,...,*n*. *F*^{*}_β(*y*) = *F*(*y*), *Q*(*F*, <u>β</u>) ≤ *y* < *Q*(*F*, <u>β</u>)

Trimming: Gini

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

•
$$I_{\text{Gini}}(\tilde{F}_{\beta}) = 1 - 2 \int_{\underline{\beta}}^{\overline{\beta}} \frac{C(\tilde{F}_{\beta},q)}{C(\tilde{F}_{\beta},\overline{\beta})} dq$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Trimming: Gini

Stat methods

FAC-EF

Introduction

Data

Density

- Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

rincipies

Intuitive application

The null hypothesis

Hypothesis testing

Other problems

Incomplete data

Semiparametric

•
$$I_{\text{Gini}}(\tilde{F}_{\beta}) = 1 - 2 \int_{\underline{\beta}}^{\overline{\beta}} \frac{C(\tilde{F}_{\beta},q)}{C(\tilde{F}_{\beta},\overline{\beta})} dq$$

• Asymptotic variance of
$$\sqrt{n}I_{\text{Gini}}(\tilde{F}_{\beta}^{(n)})$$
 is

•
$$4b^2 \vartheta_{\beta}/\mu_{\beta}^4$$

• $\vartheta_{\beta} = \mu_{\beta}^2 \int_{\underline{\beta}}^{\overline{\beta}} \int_{\underline{\beta}}^{q} \boldsymbol{\sigma}_{q'q} \, \mathrm{d}q' \, \mathrm{d}q + \mu_{\beta}^2 \int_{\underline{\beta}}^{\overline{\beta}} \int_{q}^{\overline{\beta}} \boldsymbol{\sigma}_{qq'} \, \mathrm{d}q \, \mathrm{d}q + \boldsymbol{\sigma}_{\overline{\beta}\overline{\beta}} \left[\int_{\underline{\beta}}^{\overline{\beta}} c_{\beta,q} \, \mathrm{d}q \right]^2 - 2\mu_{\beta} \int_{\underline{\beta}}^{\overline{\beta}} c_{\beta,q} \, \mathrm{d}q \int_{\underline{\beta}}^{\overline{\beta}} \boldsymbol{\sigma}_{q\overline{\beta}} \, \mathrm{d}q$

< □ > < @ > < E > < E > E のQ@

Outline

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness

Incomplete data Semiparametric

Kernel method

Semi-parametric modelling

Semi-parametric modelling

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

- Implementation
- Intuitive application
- The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

- An approach to robustness / incomplete information
- Semi -parametric model:
 - apply to proportion $\beta \in \mathbb{Q}$ of upper incomes
 - use EDF for remaining 1β of lower incomes

Semi-parametric modelling

Stat methods

FAC-EF

- Introduction
- Data
- Density Parametric estimation Kernel method Finite-mixture models Finite sample
- Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample
- Comparisons Principles
- Implementatio
- Intuitive application
- The null hypothesis
- Hypothesis testing
- Other problems
- Incomplete data
- Semiparametric

- An approach to robustness / incomplete information
- Semi -parametric model:
 - apply to proportion $\beta \in \mathbb{Q}$ of upper incomes
 - use EDF for remaining 1β of lower incomes
- Main issues
 - What parametric model should be used for the tail?
 - 2 How should the model be estimated?
 - (3) How should the proportion β be chosen?
 - 4 What implications for welfare indices, dominance criteria?

Stat methods
EAC EE
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric

Semiparametric

• Pareto model has two parameters:

• y_0 determined by quantile $Q(F; 1 - \beta)$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Pareto model has two parameters:

- y_0 determined by quantile $Q(F; 1 \beta)$
- dispersion parameter α estimated from the data

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

• Pareto model has two parameters:

- y_0 determined by quantile $Q(F; 1 \beta)$
- dispersion parameter α estimated from the data

• The semi-parametric distribution :

$$\widetilde{F}(y) = \begin{cases} F(y) & y \le Q(F; 1 - \beta) \\ \\ 1 - \beta \left(\frac{y}{Q(F; 1 - \beta)}\right)^{-\alpha} & y > Q(F; 1 - \beta) \end{cases}$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive applicatio The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Pareto model has two parameters:

- y_0 determined by quantile $Q(F; 1 \beta)$
- dispersion parameter α estimated from the data

• The semi-parametric distribution :

$$\widetilde{F}(y) = \begin{cases} F(y) & y \le Q(F; 1 - \beta) \\ \\ 1 - \beta \left(\frac{y}{Q(F; 1 - \beta)}\right)^{-\alpha} & y > Q(F; 1 - \beta) \end{cases}$$

• Density

•
$$\widetilde{f}(y; \alpha) = \beta \alpha Q(F; 1 - \beta)^{\alpha} y^{-\alpha - 1}$$

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive applicatio The null hypothesis Hypothesis testing

Other problems Robustness

Semiparametric

• Pareto model has two parameters:

- y_0 determined by quantile $Q(F; 1 \beta)$
- dispersion parameter α estimated from the data

• The semi-parametric distribution :

$$\widetilde{F}(y) = \begin{cases} F(y) & y \le Q(F; 1 - \beta) \\ \\ 1 - \beta \left(\frac{y}{Q(F; 1 - \beta)}\right)^{-\alpha} & y > Q(F; 1 - \beta) \end{cases}$$

Density

•
$$\widetilde{f}(y; \alpha) = \beta \alpha Q(F; 1 - \beta)^{\alpha} y^{-\alpha - 1}$$

•
$$\widetilde{f}(y_{1-\beta}; \alpha) = \frac{\beta \alpha}{y_{1-\beta}}$$

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive application

The null hypothesis

riypomesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Quantile functional
$$Q(\tilde{F};q) =$$

$$\begin{cases}
Q(F;q) & q \leq 1 - \beta \\
Q(F;1-\beta) \left(\frac{1-q}{\beta}\right)^{-1/\hat{\alpha}(\tilde{F})} & q > 1 - \beta
\end{cases}$$

< □ > < @ > < E > < E > E のQ@

Stat methods

FAC-EF

Introduction

Data

Density Parametric estin

Kernel method Finite-mixture mod

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementatio

Intuitive applicatio

The null hypothesis

Other problems

Robustness

Incomplete data

Semiparametric

Quantile functional
$$Q(\tilde{F};q) =$$

$$\begin{cases}
Q(F;q) & q \leq 1 - \beta \\
Q(F;1-\beta) \left(\frac{1-q}{\beta}\right)^{-1/\hat{\alpha}(\tilde{F})} & q > 1 - \beta
\end{cases}$$

• Cumulative-income functional $C(\widetilde{F};q) =$

$$\begin{array}{l} \int_{\underline{z}}^{Q(F;q)} \mathrm{y} \, \mathrm{d}F(\mathrm{y}) & q \leq 1 - \beta \\ C(\widetilde{F};q1-\beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1-\hat{\alpha}(\widetilde{F})} Q(F;1-\beta) \\ \times \left[\left(\frac{1-q}{\beta}\right)^{\frac{\hat{\alpha}(\widetilde{F})-1}{\hat{\alpha}(F)}} - 1 \right] & q > 1 - \beta \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

.

Stat methods

FAC-EF

Welfare indices

Semiparametric

• Quantile functional
$$Q(\tilde{F};q) =$$

$$\begin{cases}
Q(F;q) & q \le 1 - \beta \\
Q(F;1-\beta) \left(\frac{1-q}{\beta}\right)^{-1/\hat{\alpha}(\tilde{F})} & q > 1 - \beta
\end{cases}$$

• Cumulative-income functional $C(\tilde{F};q) =$

$$\left\{ \begin{array}{ll} \int_{\underline{z}}^{\mathcal{Q}(F;q)} \mathbf{y} \mathrm{d}F(\mathbf{y}) & q \leq 1-\beta \\ C(\widetilde{F};q1-\beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1-\hat{\alpha}(\widetilde{F})} \mathcal{Q}(F;1-\beta) & \\ \times \left[\left(\frac{1-q}{\beta}\right)^{\frac{\hat{\alpha}(\widetilde{F})-1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1-\beta \end{array} \right.$$

• From this we can derive:

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

.

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatio Kernel method Finite-mixture mode

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementatio

munite appricati

Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

• Quantile functional
$$Q(\tilde{F};q) =$$

$$\begin{cases}
Q(F;q) & q \le 1 - \beta \\
Q(F;1-\beta) \left(\frac{1-q}{\beta}\right)^{-1/\hat{\alpha}(\tilde{F})} & q > 1 - \beta
\end{cases}$$

• Cumulative-income functional $C(\widetilde{F};q) =$

$$\left\{ \begin{array}{ll} \int_{\underline{z}}^{\mathcal{Q}(F;q)} \mathbf{y} \mathrm{d}F(\mathbf{y}) & q \leq 1-\beta \\ C(\widetilde{F};q1-\beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1-\hat{\alpha}(\widetilde{F})} \mathcal{Q}(F;1-\beta) & \\ \times \left[\left(\frac{1-q}{\beta}\right)^{\frac{\hat{\alpha}(\widetilde{F})-1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1-\beta \end{array} \right.$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

.

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture mode

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Implementati

Intuitive application

The null hypothesis

Behavioren

T 1. 1

Semiparametric

• Quantile functional $Q(\tilde{F};q) =$ $\begin{cases}
Q(F;q) & q \le 1-\beta \\
Q(F;1-\beta) \left(\frac{1-q}{\beta}\right)^{-1/\hat{\alpha}(\tilde{F})} & q > 1-\beta
\end{cases}$

• Cumulative-income functional $C(\widetilde{F};q) =$

 $\left\{ \begin{array}{ll} \int_{\underline{z}}^{Q(F;q)} \mathbf{y} \mathrm{d}F(\mathbf{y}) & q \leq 1 - \beta \\ C(\widetilde{F};q1 - \beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1 - \hat{\alpha}(\widetilde{F})} Q(F;1 - \beta) \\ & \times \left[\left(\frac{1 - q}{\beta}\right)^{\frac{\hat{\alpha}(\widetilde{F}) - 1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1 - \beta \end{array} \right.$

• From this we can derive: • mean $\mu(\tilde{F}) = C(\tilde{F};q1-\beta) - \beta Q(F;1-\beta) \frac{\hat{\alpha}(\tilde{F})}{1-\hat{\alpha}(\tilde{F})}$

• semi-parametric RLC: graph of $L(\widetilde{F};q) = \frac{C(\widetilde{F};q)}{\sqrt{2}}$ $\exists F = \Im \land \Im$

Lorenz Curves (empirical)

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive applicatio

Hypothesis testing

Other problems

Robustness

Incomplete data

Semiparametric

• Cumulative-income functional $C(F^{(n)};q) =$

$$\left\{ \begin{array}{ll} \frac{1}{n} \sum_{i=1}^{\kappa(n,q)} y_{(i)} & q \leq 1 - \beta \\ C(F^{(n)};q1 - \beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1 - \hat{\alpha}(\widetilde{F})} Q(F;1 - \beta) \\ \times \left[\left(\frac{1 - q}{\beta} \right)^{\frac{\hat{\alpha}(\widetilde{F}) - 1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1 - \beta \end{array} \right.$$

イロト イ理ト イヨト イヨト

Э

Dac

• $\kappa(n,q)$ is largest integer no greater than nq-q+1

Lorenz Curves (empirical)

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application

Hypothesis testing

Other problems Robustness

Incomplete data

Semiparametric

• Cumulative-income functional $C(F^{(n)};q) =$

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{\kappa(n,q)} y_{(i)} & q \leq 1 - \beta \\ C(F^{(n)};q1 - \beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1 - \hat{\alpha}(\widetilde{F})} Q(F;1 - \beta) \\ \times \left[\left(\frac{1-q}{\beta} \right)^{\frac{\hat{\alpha}(\widetilde{F}) - 1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1 - \beta \end{cases}$$

κ(n,q) is largest integer no greater than nq - q + 1
 mean μ(F⁽ⁿ⁾) = C(F⁽ⁿ⁾;q1-β) - βQ(F;1-β) ^{α̂(F)}/_{1-α̂(F)}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lorenz Curves (empirical)

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture model: Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

Semiparametric

• Cumulative-income functional $C(F^{(n)};q) =$

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{\kappa(n,q)} y_{(i)} & q \leq 1 - \beta \\ C(F^{(n)};q1 - \beta) + \beta \frac{\hat{\alpha}(\widetilde{F})}{1 - \hat{\alpha}(\widetilde{F})} Q(F;1 - \beta) \\ \times \left[\left(\frac{1-q}{\beta} \right)^{\frac{\hat{\alpha}(\widetilde{F}) - 1}{\hat{\alpha}(\widetilde{F})}} - 1 \right] & q > 1 - \beta \end{cases}$$

κ(n,q) is largest integer no greater than nq - q + 1
 mean μ(F⁽ⁿ⁾) = C(F⁽ⁿ⁾;q1-β) - βQ(F;1-β) ^{α(˜F)}/_{1-α(˜F)}

• semi-parametric RLC: graph of $L(F^{(n)};q) = \frac{C(F^{(n)};q)}{\mu(F^{(n)})}$

Semi-parametric: estimation method

Stat methods
FAC-EF
Introduction
Data
Density
Parametric actimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Babustana
Robustness
Semiparametric
semparametric

Semi-parametric: estimation method

Semiparametric

Semi-parametric: UK Lorenz curves

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Bahustana
Incomplete data
Seminarametric
Semparametric

Semi-parametric: UK Lorenz curves

Semiparametric

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ = ○ ○ ○ ○

Semi-parametric: Sweden Lorenz curves

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustnass
Incomplete data
Seminarametric
semparametric

Semi-parametric: Sweden Lorenz curves

Semiparametric

beimparametric

< ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semi-parametric: Canada Lorenz curves

Stat methods
FAC-EF
Introduction
_
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Dulei problems
KODUSINGSS
Seminarametric
semparametric

Semi-parametric: Canada Lorenz curves

Semiparametric

Semiparametric

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Density estimation, parametric

Stat methods
FAC-EF
Introduction
Data
Density
Parametric estimation
Kernel method
Finite-mixture models
Finite sample
Welfare indices
Asymptotic inference
Inequality measures
Poverty measures
Finite sample
Comparisons
Principles
Implementation
Intuitive application
The null hypothesis
Hypothesis testing
Other problems
Robustness
Incomplete data
Semiparametric
Density estimation, parametric

Density estimation, parametric

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

Intuitive applicatio

The null hypothesis

Other problems

Robustness

. . .

Semiparametric

• Standard kernel-density methods very sensitive to the choice of the bandwidth

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

munive appreador

Hypothesis testing

Other problems

Robusiness

Semiparametric

- Standard kernel-density methods very sensitive to the choice of the bandwidth
- Standard approach (the Silverman rule-of-thumb) is known to
 - oversmooth in parts of the distribution where the data are dense

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• undersmooth where the data are sparse

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis

Other problems Robustness Incomplete data Semiparametric

- Standard kernel-density methods very sensitive to the choice of the bandwidth
- Standard approach (the Silverman rule-of-thumb) is known to
 - oversmooth in parts of the distribution where the data are dense

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

- undersmooth where the data are sparse
- Standard approach may not be suitable for income distributions
 - typically heavy-tailed

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data

- Standard kernel-density methods very sensitive to the choice of the bandwidth
- Standard approach (the Silverman rule-of-thumb) is known to
 - oversmooth in parts of the distribution where the data are dense

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- undersmooth where the data are sparse
- Standard approach may not be suitable for income distributions
 - typically heavy-tailed
- More appropriate method
 - adaptive kernel
 - mixture model

Welfare measures

Scamparametric

Welfare measures

Stat methods FAC-EF • A global approach to the derivation of variance expressions all inequality measures all poverty measures ۲ ordinates of Lorenz curves etc 0 • Method uses the Influence Function to provide a shortcut to Welfare indices the formulas

Welfare measures

Stat methods FAC-EF • A global approach to the derivation of variance expressions all inequality measures all poverty measures ۲ ordinates of Lorenz curves etc 0 • Method uses the Influence Function to provide a shortcut to Welfare indices the formulas Necessary to analyse the tails plot of Hill estimators • use appropriate methods with heavy-tailed distributions

Distributional comparisons

Distributional comparisons

Distributional comparisons

Stat methods

FAC-EF

Introduction

Data

Density

Parametric estimation Kernel method Finite-mixture models Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

Implementation

intuitive applicatio

Hupothasis tasting

Other problems

Robustness

Incomplete dat

Semiparametric

• Careful modelling is essential to understand what can be done

- in the case of possible data-contamination
- in the case of incomplete data

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Stat methods

FAC-EF

Introduction

Data

Density

Kernel method

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons

Principles

imprementation

The null hypothesis

Hypothesis testing

Other problems

Robustness

Semiparametric

• Careful modelling is essential to understand what can be done

- in the case of possible data-contamination
- in the case of incomplete data

• Again Influence Function is a valuable tool

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimatic Kernel method

Finite sample

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric • Careful modelling is essential to understand what can be done

- in the case of possible data-contamination
- in the case of incomplete data
- Again Influence Function is a valuable tool
- Try to"patch" an empirical distribution with a parametric model?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• useful for the upper tail

Stat methods

FAC-EF

Introduction

Data

Density Parametric estimation Kernel method Finite-mixture model

Welfare indices Asymptotic inference Inequality measures Poverty measures Finite sample

Comparisons Principles Implementation Intuitive application The null hypothesis Hypothesis testing

Other problems Robustness Incomplete data Seminarametric • Careful modelling is essential to understand what can be done

- in the case of possible data-contamination
- in the case of incomplete data
- Again Influence Function is a valuable tool
- Try to"patch" an empirical distribution with a parametric model?
 - useful for the upper tail
- Special attention to the way the parameters of the model are to be estimated