Social Choice with Risk and Time

Antoine Bommier¹ and Thibault Gajdos²

¹ETH, Zurich ²CNRS–Greqam, Marseille

Canazei, 11th January 2012

Outline

- 2 A simple model
 - 3 Main result

Johnsen and Donaldson (1985): "The Structure of Intertemporal Preferences under Uncertainty and Time Consistent Plans", *Econometrica*

Political decisions typically have consequences for both present and future generations (e.g., public investments, tax policy), and the future is uncertain

- How should a benevolent and rational policy maker decide in an intertemporal and uncertain context ?
- What do actually decide policy makers?

Classical (normative) Macro (Barro, Lucas-Stokey ...)

- Intertemporal economy: $\{c_t, x_t\}_{t \ge 0}$
- Objective of a unique and benevolent social planner: max E₀ V₀(c, x)

Alesina and Tabellini, 1990

- two policy makers, with different objectives, alternate in office.
- Political uncertainty
- \Rightarrow stock of public debt larger than it is socially optimal

Framework

- Time: 1, . . . , *T*
- One (representative) individual appears at each period
- Each individual faces a risky future (unknown date of death)

Textbook: Benevolent Social Planner

- Individual *t*'s utility in *t*: $V_t^t(c_t, \ldots, c_T)$
- Social Welfare: $W(V_1^1, \ldots, V_T^T)$

Who decides?

- At time t, a set N_t of individuals alive
- Utilities: $V_t^{\tau}(c_t^{\tau}, \dots, c_T^{\tau})$
- Social Welfare at time t: $W_t((V_t^{\tau})_{\tau \in N_t})$

Key issue

- As time goes, some people die, and some other are born
- Successive decision makers have different objectives, because they care about different populations

Question

- Under what conditions can decisions made by a rational and benevolent social planner be implemented by successive social planners?
- Can we find W, $(W_t)_t$, $(V_t^{\tau})_{t,\tau}$ such that:

$$W(V_1^1,...,V_T^T) = \Phi(W_1((V_1^{\tau})_{\tau \in N_1}),...,W_T((V_T^{\tau})_{\tau \in N_T}))?$$

Outline

2 A simple model

3 Main result

```
Two periods, t \in \{1, 2\}
```

One good: K interval of \mathbb{R}

Two individuals

Individual a:

- born in period 1
- consumes x in period 1
- has a probability p to be alive in period 2
- if alive, consumes y in period 2
- thus faces a prospect $(x, y_a, p) \in \mathscr{L}$ in period 1

Individual b lives in period 2, and consumes y_b

Assumption 1: Ex ante individual preferences

a's preferences \succeq_1 in period 1, complete and continuous on \mathscr{L} .

(*i*)
$$x \ge x', y \ge y'$$
 and $p \ge p' \Rightarrow (x, y, p) \succcurlyeq_1 (x', y', p')$ (resp., >, \succ_1)
(*ii*) $[(x' < x) \& (x', y', p) \sim_1 (x, y, p)]$
 $\Rightarrow (x', y', p') \succ_1 (x, y, p'), \forall p' > p$

Consequence

- continuous function $u_1 : \mathscr{L} \to \mathbb{R}$ represents \succeq_1
- u₁ is strictly increasing in p and x, and strictly increasing in y whenever p > 0

Assumption 2: Individual ex post preferences

• *a* (if alive) and *b*'s preferences \geq_2 in period 2 on *K*

•
$$y \succcurlyeq_2 y' \Leftrightarrow y \ge y'$$

Main assumptions

The social planner

- Only cares about people actually alive
- Is paretian with respect to a's preferences

Assumption 3 (Social Planner 1 preferences)

 \bullet Complete and continuous preferences $\widecheck{\succ}_1$ on $\mathscr L$

•
$$\approx_1 = \approx_1$$

Consequence

• $\widetilde{\succcurlyeq}_1$ can be represented by a continuous function

$$V_1:\mathscr{L}\to\mathbb{R}$$

• There exists *h* cont. and strict. increasing: $V_1 = h \circ u_1$

Main assumption

Only cares about individual who are actually alive: dead do not count

Assumption 4 (Social Planner 2 preferences, one individual)

•
$$\approx_2^1$$
 on K

•
$$y \approx \frac{1}{2} y' \Leftrightarrow y \geq y'$$

Consequence

 $\widetilde{\succcurlyeq}_2^1$ represented by a continuous and strictly increasing function

$$V_2^1: K \to \mathbb{R}$$

Assumption 5 (Social Planner 2 preferences, 2 individuals)

- \geq_2^2 continuous and complete on K^3
- $x \ge x'$, $y_a \ge y'_a$ and $y_b \ge y'_b \Rightarrow (x, y_a, y_b) \widetilde{\succcurlyeq}_2^2(x', y'_a, y'_b)$
- If, moreover, $y_a > y'_a$ or $y_b > y'_b$, then $(x, y_a, y_b) \widetilde{\succ}_2^2(x', y'_a, y'_b)$

Consequence

There exists a continuous function

$$V_2^2: K^3 \to \mathbb{R}$$

non decreasing in its first argument and strictly increasing in its two last arguments, that represents $\widetilde{\succcurlyeq}_2^2$

Outline

2 A simple model

Benevolent Social Planner

Preferences \succeq^* complete and continuous over $\mathscr{L} \times K$

Axiom (Non Paternalism)

For all $((x, y_a, p), y_b), ((x', y'_a, p'), y'_b) \in \mathscr{L} \times K$,

$$\begin{array}{l} (x,y_a,p) \succcurlyeq_1 (x',y'_a,p') \\ y_b \geq y'_b \end{array} \right\} \Rightarrow ((x,y_a,p),y_b) \succcurlyeq^* ((x',y'_a,p'),y'_b).$$

If a LHS inequality strict: $((x, y_a, p), y_b) \succ^* ((x', y'_a, p'), y'_b)$.

Consequence

 \succcurlyeq^* can be represented by a continuous and strictly increasing

 $W(u_1(x,y_a,p),y_b)$

Question

Can we find $(W, u_1, V_1, V_2^1, V_2^2)$ such that decisions made by a rational and benevolent social planner (*W*) can be implemented by successive social planners (V_1, V_2^1, V_2^2) ?

Definition: Aggregated welfare

An aggregated welfare function is a continuous function

$$V(V_1(x, y_a, p), V_2^1(y_b), V_2^2(x, y_a, y_b), p)$$

strictly increasing in V_1 , V_2^1 and p, strictly increasing in V_2^2 if p > 0, and constant in V_2^2 if p = 0.

Proposition

Assume Assumptions 1 to 5 hold. Then \geq^* cannot simultaneously be non-paternalistic and be represented by an aggregated welfare function.