Unambiguous Comparison of Intersecting Distribution Functions

Rolf Aaberge, *Statistics Norway* Tarjei Havnes, *Univ of Oslo, ESOP & Statistics Norway* Magne Mogstad, *Univ College London, Statistics Norway & ESOP*

January 9, 2012

How do we compare intersecting distribution functions?

Important issue in both policy work, descriptive analysis and causal inference:

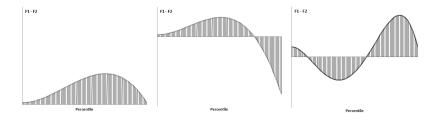
- statistical offices and gov agencies compare distribution functions across countries, subgroups and time
- descriptive research compares distributions of earnings, income, consumption and wealth to evaluate economic welfare
- **3** growing interest in econometrics in how to estimate the counterfactual outcome distribution
 - yet little attention has been devoted to how to compare counterfactual and actual outcome distributions

Example

Suppose we want to rank the actual and counterfactual distributions, F_1 and F_2

- Straightforward with 1st or 2nd-degree dominance
 - but many empirical applications require weaker criteria

Theoretical literature: Offers higher order dominance criteria Empirical literature: Tends to use parametric social welfare function



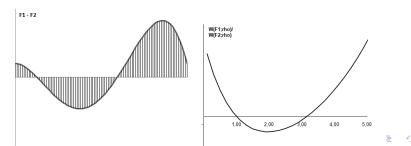
Concerns

General dominance criteria: Hard to interpret and justify

• Rely on assumptions about third and higer order derivatives (see e.g Atkinson, 2003)

Parametric social welfare functions:

- Conclusion rests on more or less arbitrary parameter choice (and functional form)
- Ranking is non-monotonic in inequality aversion
 - An example: $W(F) = \int \frac{y^{1-\rho}}{1-\rho} dF(y), \quad \rho \in [0,\infty)$ $\rho = 0$: ineq. neutral, $\rho = 1$: log, $\rho \to \infty$: mini-max



うして ふゆう ふほう ふほう うらつ

Aim: Proposes a general framework to *unambigously* compare *any set* of distributions functions in an *economically interpretable* way

- 1 Social welfare functions and 2nd-degree dominance
- Social welfare functions and 3rd-degree upward and downward dominance
- Social welfare functions and *i*th-degree upward and downward dominance
- 4 Parametric subfamilies
 - Upward: Gini family
 - Downward: Lorenz family
- 6 Asymptotic theory
- 6 Application

The general family of social welfare function

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

We will rely on the general family of rank-dependent measures of social welfare introduced by Yaari (1987,1988)

$$W_P(F) = \int_0^1 P'(t)F^{-1}(t)dt,$$

The weighting function P' is the derivative of a preference function that is a member of the following the set of preference functions:

$$\mathcal{P} = \{P: P'(t) > 0 \text{ and } P''(t) < 0$$

for all $t \in (0, 1), P(0) = P'(1) = 0, P(1) = 1\}$

The general family of social welfare function

We will rely on the general family of rank-dependent measures of social welfare introduced by Yaari (1987,1988)

$$W_P(F) = \int_0^1 P'(t)F^{-1}(t)dt,$$

The weighting function P' is the derivative of a preference function that is a member of the following the set of preference functions:

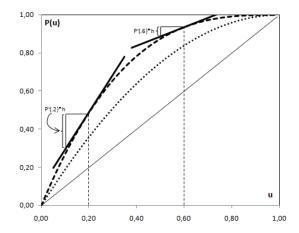
$$\mathcal{P} = \{P: P'(t) > 0 \text{ and } P''(t) < 0$$

for all $t \in (0, 1), P(0) = P'(1) = 0, P(1) = 1\}$

- W_P preserves 1st-degree dom, since P'(t) > 0, and
- W_P preserves 2nd-degree dom (and Pigou-Dalton), since P''(t) < 0
- $W_P \leq \mu_F$, and $W_P = \mu_F$ iff F is the egalitarian distribution

The preference function: Examples

P(t) reveals the inequality aversion profile of the social planner



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Normative justification of the general family

The normative justification of W_P can be made in terms of a

- (a) Theory for ranking distribution functions:
 - With basic ordering and continuity assumptions, the dual independence axiom characterizes W_P (Yaari, 1988)

(b) Value judgement of the trade-off between the mean and (in)equality in the distributions (Ebert, 1987; Aaberge, 2001)

$$W_P = \mu_F [1 - J_P(F)]$$

where μ_F is the mean of F and $J_P(F)$ is the family of rank-dependent measures of inequality aggregating the P'-weighted Lorenz curve of F

The Gini subfamily

If we choose

$$P_{1k}(t) = 1 - (1-t)^{k-1}, \ k > 2$$

then W_P is equal to the extended Gini family of social welfare functions (Donaldson and Weymark, 1980)

$$W_{G_k} = \mu \left[1 - G_k(F)\right] =, \quad k > 2$$

where

- $G_k(F)$ is the extended Gini family of inequality measures
- $G_3(F)$ is the Gini coefficient and $W_{G_2}=\mu$
- Note that {μ, W_{Gi}(F) : i = 3, 4, ...} uniquely determines the distribution function F (Aaberge, 2000)

The Lorenz subfamily

If we instead choose

$$P_{2k}(t) = rac{(k-1)t - t^{k-1}}{k-2}, \ k > 2$$

then W_P is the Lorenz family of social welfare functions (Aaberge, 2000)

$$W_{D_k} = \mu \left[1 - D_k(F)\right], \quad k > 2$$

where

- $D_k(F)$ is the Lorenz family of inequality measures
- D₃(F) is the Gini coefficient
- Note that {μ, W_{Di}(F): i = 3, 4, ...} uniquely determines the distribution function F (Aaberge, 2000)

Third degree upward dominance

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Note that second degree inverse stochastic dominance is defined by

$$\Lambda^2_F(u)\equiv\int_0^uF^{-1}(t)dt,\quad u\in[0,1]$$

To define third degree upward inverse stochastic dominance, we use the notation

$$\Lambda_F^3(u) \equiv \int_0^u \Lambda_F^2(t) dt = \int_0^u (u-t) F^{-1}(t) dt, \quad u \in [0,1]$$

Definition

A distribution F_1 is said to *third* degree *upward inverse stochastic* dominate a distribution F_0 if and only if

$$\Lambda^3_{F_1}(u) \ge \Lambda^3_{F_0}(u)$$
 for all $u \in [0, 1]$

and the inequality holds strictly for some $u \in (0, 1)$.

Proposition

Let F_1 and F_0 be members of F. Then the following statements are equivalent:

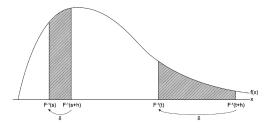
(i) F_1 third degree upward inverse stochastic dominates F_0 (ii) $\mu_{F_1}(u) (1 - G_3(u; F_1)) \ge \mu_{F_0}(u) (1 - G_3(u; F_0))$ for all $u \in [0, 1]$ and the inequality holds strictly for some $u \in (0, 1)$.

where:

- $\mu_F(u)$ is the quantile-specific lower tail mean
- $G_3(u; F)$ is the quantile-specific lower tail Gini coefficient
- $\mu_F(u)(1 G_3(u; F))$ is the quantile-specific lower tail Gini social welfare function

Transfer principle

ション ふゆ く 山 マ チャット しょうくしゃ



$$\begin{split} &\Delta_s W_P(\delta,h): \text{ change in } W_P \text{ of a fixed progressive transfer } \delta \text{ from an individual with rank } s + h \text{ to an individual with rank } s. \\ &\Delta_{st}^1 W_P(\delta,h) \equiv \Delta_s W_P(\delta,h) - \Delta_t W_P(\delta,h). \end{split}$$

Definition

(Zoli, 1999; Aaberge, 2000, 2009) W_P satisfies the principle of first degree downside positional transfer sensitivity (DPTS) if and only if

$$\Delta^1_{st} W_P(\delta, h) > 0, \quad \text{when } s < t.$$

Equivalence result

Let \mathcal{P}_3 be the family of preference functions defined by

$$\mathcal{P}_{3} = \left\{ P \in \mathcal{P} : P^{\prime \prime \prime}(t) > 0, \right\}$$

Theorem

Let F_1 and F_0 be members of F. Then the following statements are equivalent.

(i) F_1 third-degree upward inverse stochastic dominates F_0 (ii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}_3$ (iii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}$ where W_P satisfies first-degree DPTS

- ⇒ (i) and (ii): least-restrictive set of social welfare functions that unambiguously rank in accordance with 3-UID
- $\Rightarrow\,$ (i) and (iii): normative justification for 3-UID

Upward vs. downward dominance

Upward dominance criteria justified through DPTS

- More sensitive to changes in the lower part of the distribution lssues with upward dominance criteria:
 - Prone to measurement error in the lower tail
 - Changes in the upper part may be viewed as more important
 - Long vs. short transfers
 - Upper part is the focus: Test scores, top income, etc.

Upward dominance criteria justified through DPTS

- More sensitive to changes in the lower part of the distribution lssues with upward dominance criteria:
 - Prone to measurement error in the lower tail
 - Changes in the upper part may be viewed as more important
 - Long vs. short transfers
 - Upper part is the focus: Test scores, top income, etc.

We propose a complementary sequence of dominance criteria:

⇒ Downward inverse stochastic dominance

• More sensitive to changes in the upper part of the distribution Sequences coincide at 2nd-degree dom. \Rightarrow both obey Pigou-Dalton

Third-degree downward dominance

The criteria of 3rd-order downward inverse dominance aggregates $\Lambda_F^2(u)$ from above (rather than from below). Let

$$\tilde{\Lambda}_{F}^{3}(u) \equiv \int_{u}^{1} \Lambda_{F}^{2}(t) dt = (1-u)\mu_{F} - \int_{u}^{1} (t-u)F^{-1}(t) dt, \ u \in [0,1]$$

Definition

A distribution F_1 is said to *third* degree *downward inverse* stochastic dominate a distribution F_0 if and only if

$$ilde{\Lambda}^3_{F_1}(u) \geq ilde{\Lambda}^3_{F_0}(u) ext{ for all } u \in [0,1]$$

and the inequality holds strictly for some $u \in (0, 1)$.

Proposition

Let F_1 and F_2 be members of F. Then the following statements are equivalent:

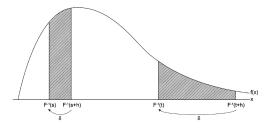
(i) F_1 third degree downward inverse stochastic dominates F_2 (ii) $\tilde{\mu}_{F_1}(u) (1 - D_3(u; F_1)) \ge \tilde{\mu}_{F_2}(u) (1 - D_3(u; F_2))$ for all $u \in [0, 1]$ and the inequality holds strictly for some $u \in (0, 1)$

where:

- $ilde{\mu}_F(u)$ is the quantile-specific upper tail mean
- $D_3(u; F)$ is the quantile-specific upper tail Gini coefficient
- $\tilde{\mu}_F(u) (1 D_3(u; F))$ is the quantile-specific upper tail Gini social welfare function

Transfer principle

ション ふゆ く 山 マ チャット しょうくしゃ



$$\begin{split} &\Delta_s W_P(\delta,h): \text{ change in } W_P \text{ of a fixed progressive transfer } \delta \text{ from an individual with rank } s + h \text{ to an individual with rank } s. \\ &\Delta_{st}^1 W_P(\delta,h) \equiv \Delta_s W_P(\delta,h) - \Delta_t W_P(\delta,h). \end{split}$$

Definition

(Aaberge, 2009) W_P satisfies the principle of first degree upside positional transfer sensitivity (UPTS) if and only if

$$\Delta^1_{st} W_P(\delta, h) < 0, \quad \text{when } s < t.$$

Equivalence result

Let $\widetilde{\mathcal{P}}_3$ be the family of preference functions defined by

$$\widetilde{\mathcal{P}}_3 = \left\{ P \in \mathcal{P} : P^{'''}(t) < 0 \right\}.$$

Theorem

Let F_1 and F_0 be members of F. Then the following statements are equivalent.

(i) F_1 third-degree downward inverse stochastic dominates F_0 (ii) $W_P(F_1) > W_P(F_0)$ for all $P \in \tilde{\mathcal{P}}_3$ (iii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}$ where W_P satisfies first-degree UPTS

- ⇒ (i) and (ii): least-restrictive set of social welfare functions that unambiguously rank in accordance with 3-DID
- $\Rightarrow\,$ (i) and (iii): normative justification for 3-DID

Upward dominance of ithdegree

To define upward inverse stochastic dominance of degree i, we use the notation

$$\begin{split} \Lambda_F^i(u) &= \int_0^u \Lambda_F^{i-1}(t) dt = \frac{1}{(i-3)!} \int_0^u (u-t)^{i-3} \Lambda_F^2(t) dt \\ &= \frac{1}{(i-2)!} \int_0^u (u-t)^{i-2} F^{-1}(t) dt, \ i > 2 \end{split}$$

Definition

A distribution F_1 is said to *i*th degree upward inverse stochastic dominate F_0 for i > 2 if and only if

$$\Lambda_{F_1}^i(u) \ge \Lambda_{F_0}^i(u)$$
 for all $u \in [0, 1]$

and the inequality holds strictly for some $u \in (0, 1)$.

Proposition

Let F_0 and F_1 be members of \mathcal{F} . Then for i = 3, 4, ... the following statements are equivalent:

(i) $F_1 i^{th}$ degree upward inverse stochastic dominates F_0 (ii) $\mu_{F_1}(u) (1 - G_i(u; F_1)) \ge \mu_{F_0}(u) (1 - G_i(u; F_0)).$ for all $u \in [0, 1]$ and the inequality holds strictly for some $u \in (0, 1).$

where:

- G_i(u; F) is the quantile-specific lower tail ith member of the Gini family of inequality measures
- μ_F(u) (1 G_i(u; F)) is the quantile-specific lower tail ith member of the Gini family of social welfare functions

Equivalence result

The family of preference functions \mathcal{P}_i is defined by

$$\begin{array}{lll} \mathcal{P}_i & = & \left\{ P \in \mathcal{P} : \, (-1)^{i-1} P^{(i)}(t) > 0 \, \, \text{with} \, \, P^{(j)} \, \, \text{continuous on} \, \, (0,1) \\ & & \text{and} \, \, (-1)^{i-1} P^{(j)}(1) \geq 0 \, \, \text{for all} \, \, j = 3,4,\ldots,i-1 \right\} \end{array}$$

where $P^{(i)}$ denote the *i*th degree derivative of *P*.

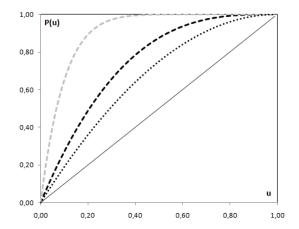
Theorem

Let F_1 and F_0 be members of \mathcal{F} . Then for i = 3, 4, ... the following statements are equivalent,

(i) F_1 ith degree upward inverse stochastic dominates F_0 (ii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}_i$ (iii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}$ where W_P satisfies DPTS of degree i - 2

⇒ (i) and (ii): least-restrictive set of social welfare functions that unambiguously rank in accordance with ith-degree UID
 ⇒ (i) and (iii): normative justification for ith-degree UID

Upward dominance: The weighting function



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Downward dominance of ithdegree

To define downward inverse stochastic dominance of degree i, we use the notation

$$\tilde{\Lambda}_{F}^{i}(u) = \int_{u}^{1} \tilde{\Lambda}_{F}^{i-1}(u) = \frac{1}{(i-3)!} \int_{u}^{1} (t-u)^{i-3} \Lambda_{F}^{2}(t) dt = \frac{1}{(i-2)!} \left[(1-u)^{i-2} \mu_{F} - \int_{u}^{1} (t-u)^{i-2} F^{-1}(t) dt \right]$$
$$i = 3, 4, \dots$$

Definition

A distribution F_1 is said to *i*th degree downward inverse stochastic dominate F_0 for i > 2 if and only if

$$\tilde{\Lambda}^{i}_{F_{1}}(u) \geq \tilde{\Lambda}^{i}_{F_{0}}(u) \text{ for all } u \in [0,1]$$

and the inequality holds strictly for some $u \in (0, 1)$, is a set of $u \in (0, 1)$.

Proposition

Let F_0 and F_1 be members of \mathcal{F} . Then for i = 3, 4, ... the following statements are equivalent:

(i) $F_1 i^{th}$ degree downward inverse stochastic dominates F_0 (ii) $\tilde{\mu}_{F_1}(u) (1 - D_i(u; F_1)) \ge \tilde{\mu}_{F_0}(u) (1 - D_i(u; F_0)).$ for all $u \in [0, 1]$ and the inequality holds strictly for some $u \in (0, 1)$.

where:

- D_i(u; F) is the quantile-specific upper tail ith member of the Lorenz family of inequality measures
- μ̃_F(u) (1 D_i(u; F)) is the quantile-specific upper tail ith member of the Lorenz family of social welfare functions

Equivalence result

The family of preference functions $\widetilde{\mathcal{P}}_i$ is defined by

$$\begin{split} \widetilde{\mathcal{P}}_i &= \left\{ P \in \mathcal{P} : \ P^{(i)}(t) < 0 \ \text{with} \ P^{(j)} \ \text{continuous on} \ (0,1) \quad (1) \\ & \text{and} \ P^{(j)}(0) \leq 0 \ \text{for all} \ j = 3, 4, \dots, i-1 \right\} \end{split}$$

where $P^{(i)}$ denote the *i*th degree derivative of *P*.

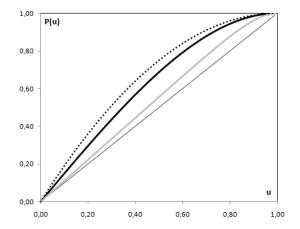
Theorem

Let F_1 and F_0 be members of \mathcal{F} . Then for i = 3, 4... the following statements are equivalent

(i) F_1 ith degree downward inverse stochastic dominates F_0 (ii) $W_P(F_1) > W_P(F_0)$ for all $P \in \tilde{\mathcal{P}}_i$ (iii) $W_P(F_1) > W_P(F_0)$ for all $P \in \mathcal{P}$ where W_P satisfies UPTS of degree i - 2

⇒ (i) and (ii): least-restrictive set of social welfare functions that unambiguously rank in accordance with ith-degree DID
 ⇒ (i) and (iii): normative justification for ith-degree DID

Downward dominance: The weighting function



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Limit of the sequences of dominance

As *i* goes to infinity, we get from the definitions of upward and downward dominance:

where $F^{-1}(0+)$ and $F^{-1}(1-)$ denote the lowest and highest income in F

- Limit upward dominance: Social welfare function corresponding to the (Rawlsian) maximin criterion
- Limit downward dominance: Social welfare function approaches the utilitarian criterion

Parametric subfamily: Upward dominance

Proposition

Let F_1 and F_0 be members of F. Then for i = 3, 4..

(i) F_1 ith degree upward inverse stochastic dominates F_0 implies

(ii) $W_{G_k}(F_1) > W_{G_k}(F_0)$ for k > i

Remark. The extended Gini family of social welfare functions has the following properties.

(i) W_{G_i} preserves upward inverse stochastic dominance of degree $\langle i \rangle$ (ii) W_{G_i} obeys the Pigou-Dalton principle of transfers (iii) W_{G_i} obeys the principles of DPTS up to and including (i - 2)th-degree for i = 3, 4, ...(iv) The sequence $\{W_{G_i}\}$ approaches μ_F as $i \to 2$ (v) The sequence $\{W_{G_i}\}$ approaches the Rawlsian maximin criterion as $i \to \infty$.

Proposition

Let F_1 and F_0 be members of F. Then i = 3, 4..

(i) F_1 ith degree downward inverse stochastic dominates F_0 implies

(ii) $W_{D_k}(F_1) > W_{D_k}(F_0)$ for k > i

Remark. The extended Lorenz family of social welfare functions has the following properties,

(i) W_{D_i} preserves downward inverse stochastic dominance of degree < i

(ii) W_{D_i} obeys the Pigou-Dalton principle of transfers.

(iii) W_{D_i} obeys the principles of UPTS up to and including (i-2)th-degree.

(iv) The sequence $\{W_{D_i}\}$ approaches μ_F as $i \to \infty$

(v) The sequence $\{i(W_{D_i} - \mu_F\}$ approaches $\mu_F - F^{-1}(1)dt$ as $i \to \infty$

Weights at quantiles relative to median

Quantile:	0+	.05	.30	.70	.95	1-	
Panel (a): Gini social welfare function (upward)							
$i \rightarrow 2$	1.00	1.00	1.00	1.00	1.00	1.00	
<i>i</i> = 3	2.00	1.90	1.40	0.60	0.10	0+	
i = 4	4.00	3.61	1.96	0.36	0.01	0+	
i = 5	8.00	6.86	2.74	0.22	0.00	0+	
<i>i</i> = 6	16.00	13.03	3.84	0.13	0.00	0+	
$i \to \infty$	∞	0	0	0	0	0	

Panel (b): Lorenz social welfare function (downward)

i = 3	2.00	1.90	1.40	0.60	0.10	0+
<i>i</i> = 4	1.33	1.33	1.21	0.68	0.13	0+
<i>i</i> = 5	1.14	1.14	1.11	0.75	0.16	0+
<i>i</i> = 6	1.07	1.07	1.06	0.81	0.20	0+
$i ightarrow \infty$	1	1	1	1	1	0+

Asymptotics

1) Since F_n is a consistent estimator of F

- $\Lambda^i_{F_n}(u)$ and $\tilde{\Lambda}^i_{F_n}(u)$ are consistent estimators of $\Lambda^i_F(u)$ and $\tilde{\Lambda}^i_F(u)$
- 2) The asymptotic properties of $\Lambda^i_{F_n}(u)$ and $\tilde{\Lambda}^i_{F_n}(u)$ can be obtained by
 - considering the limiting distribution of the empirical processes

$$Y_{n}^{i}(u) = \sqrt{n} \left[\Lambda_{F_{n}}^{i}(u) - \Lambda_{F}^{i}(u) \right]$$
$$\tilde{Y}_{n}^{i}(u) = \sqrt{n} \left[\tilde{\Lambda}_{F_{n}}^{i}(u) - \tilde{\Lambda}_{F}^{i}(u) \right]$$

We can then show that $\tilde{Y}_{n}^{i}(u)$ and $Y_{n}^{i}(u)$

 converge to a Gaussian process and thus are asymptotically normally distributed

Upward dominance

Theorem

Let $W_0(t)$ denote a Brownian bridge on [0, 1]. Suppose that F has a continuous nonzero derivative f on [a, b]. Then $Y_n^i(u)$

converges in distribution to the processes

$$Y^{i}(u) = \frac{1}{(i-2)!} \int_{0}^{u} (u-t)^{i-2} \frac{W_{0}(t)}{f(F^{-1}(t))} dt$$

which has the same probability distribution as the Gaussian process $\sum_{j=1}^{\infty} h_j(u) Z_j$, where $h_j(u)$ is given by

$$h_{j}(u) = \frac{1}{(i-2)!} \left[\frac{\sqrt{2}}{j\pi} \int_{0}^{u} (u-t)^{i-2} \frac{\sin(j\pi t)}{f(F^{-1}(t))} dt \right]$$

and Z_1, Z_2, \ldots are independent N(0, 1)-variables.

Downward dominance

Theorem

Let $W_0(t)$ denote a Brownian bridge on [0,1]. Suppose that F has a continuous nonzero derivative f on [a,b]. Then $\tilde{Y}_n^i(u)$ converges in distribution to the processes

$$\tilde{Y}^{i}(u) = \frac{1}{(i-2)!} \left[(1-u)^{i-2} \int_{0}^{1} \frac{W_{0}(t)}{f(F^{-1}(t))} dt - \int_{u}^{1} (t-u)^{i-2} \frac{W_{0}(t)}{f(F^{-1}(t))} dt \right]$$

which has the same probability distribution as the Gaussian process $\sum_{j=1}^{\infty} \tilde{h}_j(u) Z_j$, where $\tilde{h}_j(u)$ is given by

$$\tilde{h}_{j}(u) = \frac{1}{(i-2)!} \frac{\sqrt{2}}{j\pi} \left[(1-u)^{i-2} \int_{0}^{1} \frac{\sin(j\pi t)}{f(F^{-1}(t))} dt - \int_{u}^{1} (t-u)^{i-2} \frac{\sin(j\pi t)}{f(F^{-1}(t))} dt \right]$$

and Z_1, Z_2, \ldots are independent N(0, 1)-variables.

ション ふゆ く 山 マ チャット しょうくしゃ

We apply our framework to the Jobs First program Apr 96–Dec 00, analyzed in Bitler et al. (2005, AER)

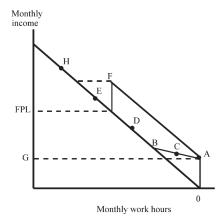
- Random assignment to Jobs First or AFDC
- Two counties in Connecticut: New Haven and Manchester
- Sample of about 4803 welfare recipients

Key features of Job First program:

- Expanded earnings disregard
- Introduced 21 month time limit

Application: Jobs First – Budget constraint

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?



AB = AFDC AF = Jobs First

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

We use QTE-estimates from Bitler et al. (2008).

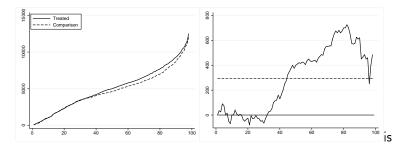
• Compares the quantiles of the treatment and control distribution: $\Delta_q = F_1^{-1}(q) - F_0^{-1}(q)$

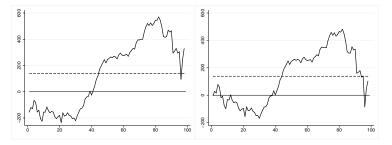
Outcomes: Total income

Financial costs:

- Job First: Higher cash transfers, admin costs, and operating costs
 - Assess gains and losses with \without balanced budget

QTE: Averaged income q1-q16





(ロト 《聞 と 《臣 と 《臣 と 三臣 … のので

Dom. and soc welfare: Averaged income q1-q16

Upward dominance			Downward dominance					
	$No \ tax$	$Lump \ sum$	Prop. Tax	No tax	$Lump \ sum$	Prop. Tax		
Inverse stochastic dominance								
Dom.	4	4	231	3	3	3		
Distr.	1	0	0	1	1	1		
ΔW_p	8.8%	-6.2%	N/A	10.9%	0.6%	3.9%		
$W(F_0)$	\$341	\$341	N/A	\$742	\$742	\$742		
Social welfare weights relative to median								
p(.05)	3.61	3.61	$7\mathrm{E}{+}63$	1.90	1.90	1.90		
p(.30)	1.96	1.96	$_{3\mathrm{E}+33}$	1.40	1.40	1.40		
p(.70)	0.36	0.36	2E-51	0.60	0.60	0.60		
p(.95)	0.01	0.01	1E-229	0.10	0.10	0.10		

Conclusion

ション ふゆ く 山 マ チャット しょうくしゃ

We characterize the relationship between dominance criteria and two nested subfamilies of least restrictive social welfare functions

- higher-order UID = stronger downside inequality aversion
- higher-order DID = stronger upside inequality aversion
 - Useful to unambiguously say whether F_1 is better than F_0

Conclusion

We characterize the relationship between dominance criteria and two nested subfamilies of least restrictive social welfare functions

- higher-order UID = stronger downside inequality aversion
- higher-order DID = stronger upside inequality aversion
 - Useful to unambiguously say whether F_1 is better than F_0

We then derive parametric subfamilies of these social welfare functions that are easily implementable

- UID \Rightarrow Gini family, W_{G_i}
- DID \Rightarrow Lorenz family, W_{D_i}
 - Can inform on how much better F_1 is than F_0
 - Clarifies the dominance criterion in terms of observable soc welfare weights

Conclusion

We characterize the relationship between dominance criteria and two nested subfamilies of least restrictive social welfare functions

- higher-order UID = stronger downside inequality aversion
- higher-order DID = stronger upside inequality aversion
 - Useful to unambiguously say whether F_1 is better than F_0

We then derive parametric subfamilies of these social welfare functions that are easily implementable

- UID \Rightarrow Gini family, W_{G_i}
- DID \Rightarrow Lorenz family, W_{D_i}
 - Can inform on how much better F_1 is than F_0
 - Clarifies the dominance criterion in terms of observable soc welfare weights

We illustrate the usefulness of the framework by applying to an experimental policy intervention