Demographic Change, Household Structure and Income Inequality

Andreas Peichl

Institute for the Study of Labor (IZA)

Sixth Winter School on Inequality and Collective Welfare Theory (IT6)
Canazei, January 11, 2011
OECD (2008): "Growing unequal": increasing inequality

Question: what are the causes?

OECD: high correlation between changing household composition and increasing inequality in West Germany (1985-2005): 88%

this has lead to a fierce policy debate in Germany

however: result was a mistake! (Correct figure is 12%!)
How can we assess the question "What drives rising inequality?"

Different methods:

- Subgroup decomposition of inequality measures
- Counterfactual reweighting techniques
 - OECD: special case: shift-share analysis without control variables

Examples for Germany:

Outline

1. Why Germany?
2. Equivalence-weighting
3. Methodology
 - Subgroup Decomposition
 - Re-weighting procedure
4. Empirical Strategy
5. Results
6. BJ-Results
7. Conclusions
8. Appendix
1. Why Germany?
Why Germany?

Widening income gap, declining household size

- since reunification: inequality of disposable income distribution increased considerably (Bach et al., 2009; Peichl et al., 2010)
 - widening of market incomes / weakening bargaining power of unions?
 - structural change in household formation?
- observe sharp fall in average household size in Germany since early 1990s
 - second-lowest among OECD countries after Sweden
 - especially number of one- and two-person households increased
- link between trends: analysis of income distribution based on equivalent incomes
 - equivalence scales account for household structure (size and age)
 - i.e. changes in household structure c.p. influence income distribution
Widening income gap, declining household size II

- Gini coefficient (I^{Gini})
- Poverty headcount (P^0)
- Richness headcount (R^0)
- Household size (GSOEP)
- Household size (Micro Census)
- only West (without Berlin)
- only East (with Berlin)

Source: German Micro Census and GSOEP, own calculations.
Confidence intervals (95 per cent) based on 500 bootstrap replications.
2. Equivalence-weighting
economic well-being considered as *individual* experience

however: individually received incomes *not* used for analysis of income distribution

reasons:
- dependent persons without resources for consumption
- economies of scale in household consumption unconsidered
- comparison of individuals irrespective of household size

equivalent incomes serve as proxies for economic well-being
Household Structure and Income Inequality

Income: - - - X - - - X
Equivalence scale: .5 .3 .3 1 .5 .3 .3 1

Equivalence weighted income distribution
Household Structure and Income Inequality

Income: - - - X - X
Equivalence scale: 0.5 0.3 0.3 1 0.5 1

Equivalence weighted income distribution
Household Structure and Income Inequality

Income:
- $X/2$
- $-\$-

Equivalence scale:
- 1
- 0.3
- 0.3

Equivalent weight:
- 1
- X

Equivalence weighted income distribution
Use of per capita incomes can increase the effect

Income:
- X/2
- 1
- 1
- 1

Equivalence scale:
- X/2
- 1
- 1
- 1

Equivalence weighted income distribution
3. Methodology
3.1 Subgroup Inequality Decomposition

- Shorrocks (1980, 1984); **Mookherjee/Shorrocks (1982)**
Methodology
Subgroup Decomposition

Mean logarithmic deviation

- most suitable: Generalized Entropy (GE) inequality measures
- decomposable for population subgroups $k \in \{1, \ldots, K\}$

\[
l_0 = \frac{1}{n} \cdot \sum_{i=1}^{n} \ln \left(\frac{\bar{y}}{y_i} \right) \\
= \sum_{k=1}^{K} v_k \cdot l_{0k} + \sum_{k=1}^{K} v_k \cdot \ln \left(\frac{\bar{y}}{\bar{y}_k} \right)
\]

- y_i: equivalent individual income
- \bar{y}: population mean income
- v_k: proportion of population subgroup k
- l_{0k}/\bar{y}_k: inequality/mean income of subgroup k
decomposition of inequality change between periods t and $t+1$ (see Mookherjee/Shorrocks, 1982)

$$
\Delta l_0 \approx \sum_{k=1}^{K} \bar{v}_k \cdot \Delta l_{0k} + \sum_{k=1}^{K} \bar{l}_{0k} \cdot \Delta v_k
$$

$$
+ \sum_{k=1}^{K} \left[\bar{\lambda}_k - \ln(\lambda_k) \right] \cdot \Delta v_k + \sum_{k=1}^{K} (\bar{\theta}_k - \bar{v}_k) \cdot \Delta \ln(\bar{y}_k) \quad (2)
$$

- $\lambda_k = \bar{y}_k / \bar{y}$: ratio of subgroup k’s mean income to total mean income
- $\theta_k = v_k \cdot \lambda_k$: income ratio of group k
- symbol with bar denotes average over periods t and $t+1$
Methodology

Subgroup Decomposition

Decomposition II

\[
\Delta I_0 \approx \sum_{k=1}^{K} \bar{v}_k \cdot \Delta I_{0k} + \sum_{k=1}^{K} \bar{t}_{0k} \cdot \Delta v_k + \sum_{k=1}^{K} \left[\bar{\lambda}_k - \ln(\bar{\lambda}_k) \right] \cdot \Delta v_k + \sum_{k=1}^{K} \left(\bar{\theta}_k - \bar{v}_k \right) \cdot \Delta \ln(\bar{y}_k)
\]

- **A**: change within population subgroups
- **B**: change in population composition on within inequality
- **C**: change in population composition on between inequality
- **D**: changes in population subgroup mean incomes

prior interest: relative importance of **B** and **C** compared to \(\Delta I_0 \)
3.2 Re-weighting

- Di Nardo/Fortin/Lemieux, 1996; Firpo/Fortin/Lemieux (2010)
- Hyslop/Maré, 2005; Biewen/Juhasz (2010)
Re-weighting procedure

- each individual described by vector \((y, x, t)\)
 - income \(y\), household characteristics \(x\), and time \(t\) vector
 - joint distribution \(F(y, x, t)\)
- joint distribution of income and characteristics: \(F(y, x|t)\)
- density of income at certain point in time:

\[
f_t(y) = \int dF(y, x|t_y, x = t) = \int f(y|x, t_y = t)dF(x|t_x = t) \quad (4a)
\]

\[
\equiv f(y, t_y = t, t_x = t) \quad (4b)
\]

- see Di Nardo/Fortin/Lemieux, 1996; Hyslop/Maré, 2005
Re-weighting procedure II

- hypothetical counterfactual distribution:

\[
f(y, t_y = 2007, t_x = 1991) = \int f(y|x, t_y = 2007) dF(x|t_x = 1991) = \int f(y|x, t_y = 2007) \psi_x(x) dF(x|t_x = 2007)
\]

(5a) \hspace{1cm} (5b)

- re-weighting function:

\[
\psi_x(x) \equiv \frac{dF(x|t_x = 1991)}{dF(x|t_x = 2007)}
\]

(6)

- counterfactual density can be estimated by weighted kernel methods
4. Empirical Strategy
Empirical Strategy

Data and income concept

- German Socio-Economic Panel Study (GSOEP)
 - panel survey of households and individuals in Germany conducted annually since 1984
 - weights allow representativeness for German population
- income concept:
 - pre and post fisc incomes
 - modified OECD equivalence scale
- 16 population groups:
 (No. of adults) X (No. of children) X (No. of earners)
| k | adults | children | employed | $v_{k,1991}$ | Δv_k | $y_{k,1991}$ | $\Delta y_{k,1991}^{\text{post}}$ | $\Delta y_{k,1991}^{\text{pre}}$ | $p_{k,1991}^{\text{pre}}$ | $p_{k,1991}^{\text{post}}$ | $R_{k,1991}^{\text{pre}}$ | $R_{k,1991}^{\text{post}}$ | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | no | 0 | 0.090 | 0.011 | 14,102.35 | 1,718.73 | 0.125 | 0.029 | 1.216 | -0.096 | 0.356 | -0.032 | 0.019 | 0.018 |
| 1 | 1 | no | 0 | 0.067 | 0.031 | 21,660.89 | 48.648 | 0.135 | 0.031 | 0.212 | 0.142 | 0.084 | 0.047 | 0.095 | -0.012 |
| 1 | 1 | yes | 0 | 0.007 | 0.006 | 8,218.39 | 834.19 | 0.132 | -0.077 | 0.437 | 0.635 | 0.732 | -0.014 | 0.000 | 0.000 |
| 1 | 1 | yes | 1 | 0.01 | 0.004 | 13,726.20 | -1,003.54 | 0.112 | -0.032 | 0.218 | 0.191 | 0.323 | 0.046 | 0.035 | -0.03 |
| 2 | 2 | no | 0 | 0.093 | 0.04 | 16,110.03 | 3,103.29 | 0.102 | 0.034 | 0.912 | 0.133 | 0.174 | -0.030 | 0.039 | 0.03 |
| 2 | 2 | no | 1 | 0.072 | 0.014 | 20,820.02 | 3,177.36 | 0.104 | 0.072 | 0.228 | 0.191 | 0.069 | 0.011 | 0.079 | 0.042 |
| 2 | 2 | no | 2 | 0.094 | 0.00 | 25,701.18 | 3,201.73 | 0.087 | 0.029 | 0.128 | 0.056 | 0.021 | -0.001 | 0.157 | 0.065 |
| 2 | 2 | yes | 0 | 0.005 | 0.012 | 12,826.74 | 187.29 | 0.063 | 0.065 | 0.813 | 0.119 | 0.372 | 0.137 | 0.000 | 0.21 |
| 2 | 2 | yes | 1 | 0.137 | 0.041 | 15,573.69 | 2,257.36 | 0.070 | 0.023 | 0.157 | 0.096 | 0.139 | 0.004 | 0.012 | 0.032 |
| 2 | 2 | yes | 2 | 0.185 | 0.039 | 18,723.81 | 3,474.51 | 0.070 | 0.034 | 0.111 | 0.068 | 0.046 | -0.001 | 0.045 | 0.045 |
| 3 | ≥3 | no | 0 | 0.006 | 0.002 | 18,816.32 | 1,782.19 | 0.105 | 0.040 | 0.500 | 0.125 | 0.115 | 0.026 | 0.056 | 0.026 |
| 3 | ≥3 | no | 1 | 0.015 | 0.004 | 16,383.19 | -544.04 | 0.110 | 0.007 | 0.271 | 0.072 | 0.184 | 0.173 | 0.067 | -0.052 |
| 3 | ≥3 | yes | 0 | 0.056 | 0.012 | 18,302.44 | 811.29 | 0.066 | 0.003 | 0.102 | 0.031 | 0.063 | -0.006 | 0.044 | -0.011 |
| 3 | ≥3 | yes | 1 | 0.005 | 0.000 | 106.66 | 162.88 | 0.002 | 0.004 | 0.016 | 0.003 | 0.005 | 0.002 | 0.002 | 0.003 |
5. Results
Results

Inequality decomposition 1991–2007

<table>
<thead>
<tr>
<th>income region</th>
<th>l_0^{1991}</th>
<th>l_0^{2007}</th>
<th>Δl_0</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>$B+C \over \Delta l_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>household structure and employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre fisc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.500</td>
<td>0.625</td>
<td>25.027</td>
<td>15.973</td>
<td>11.800</td>
<td>7.596</td>
<td>-10.148</td>
<td>77.500</td>
</tr>
<tr>
<td>West</td>
<td>0.480</td>
<td>0.558</td>
<td>16.284</td>
<td>15.892</td>
<td>7.982</td>
<td>5.542</td>
<td>-12.870</td>
<td>83.052</td>
</tr>
<tr>
<td>East</td>
<td>0.514</td>
<td>0.872</td>
<td>69.567</td>
<td>15.711</td>
<td>28.931</td>
<td>23.860</td>
<td>-0.584</td>
<td>75.885</td>
</tr>
<tr>
<td>post fisc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.105</td>
<td>0.144</td>
<td>37.755</td>
<td>28.917</td>
<td>5.354</td>
<td>3.024</td>
<td>0.560</td>
<td>22.189</td>
</tr>
<tr>
<td>West</td>
<td>0.104</td>
<td>0.149</td>
<td>42.990</td>
<td>35.679</td>
<td>4.689</td>
<td>2.145</td>
<td>0.564</td>
<td>15.896</td>
</tr>
<tr>
<td>East</td>
<td>0.070</td>
<td>0.097</td>
<td>38.801</td>
<td>44.055</td>
<td>-0.731</td>
<td>7.239</td>
<td>-16.178</td>
<td>16.773</td>
</tr>
</tbody>
</table>

Andreas Peichl (IZA)
Household Structure and Income Inequality
January 11, 2011
26 / 39
Inequality decomposition 1991–2007

\[
\frac{B + C}{\Delta I_0} \text{ for different equivalence scales } ES = (\theta_1 + \theta_2 \cdot N_A + \theta_3 \cdot N_C)^\gamma :
\]

<table>
<thead>
<tr>
<th></th>
<th>(\theta_1 = \theta_2 = 0.5)</th>
<th>(\theta_1 = 0; \theta_2 = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\theta_3 = 0.3)</td>
<td>(\theta_3 = 0.5)</td>
</tr>
<tr>
<td>income</td>
<td>(\gamma = 0.5)</td>
<td>(\gamma = 1)</td>
</tr>
<tr>
<td>pre fisc</td>
<td>79.143 (6.336)</td>
<td>77.500 (5.798)</td>
</tr>
</tbody>
</table>
Results

Re-weighting results 1991-2007

<table>
<thead>
<tr>
<th>Measure</th>
<th>(\Delta^{act})</th>
<th>(\Delta^{rew})</th>
<th>(\frac{\Delta^{act} - \Delta^{rew}}{\Delta^{act}})</th>
<th>(\Delta^{act})</th>
<th>(\Delta^{rew})</th>
<th>(\frac{\Delta^{act} - \Delta^{rew}}{\Delta^{act}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_{Gini})</td>
<td>18.39</td>
<td>9.16</td>
<td>50.21</td>
<td>16.14</td>
<td>12.45</td>
<td>22.85</td>
</tr>
<tr>
<td></td>
<td>(1.44)</td>
<td>(1.26)</td>
<td>(3.21)</td>
<td>(1.65)</td>
<td>(1.53)</td>
<td>(2.54)</td>
</tr>
<tr>
<td>(l_0)</td>
<td>25.03</td>
<td>4.97</td>
<td>80.14</td>
<td>37.76</td>
<td>28.82</td>
<td>23.67</td>
</tr>
<tr>
<td></td>
<td>(3.59)</td>
<td>(2.92)</td>
<td>(9.42)</td>
<td>(4.46)</td>
<td>(3.91)</td>
<td>(2.54)</td>
</tr>
<tr>
<td>(l_1)</td>
<td>39.97</td>
<td>20.69</td>
<td>48.24</td>
<td>54.24</td>
<td>43.11</td>
<td>20.51</td>
</tr>
<tr>
<td></td>
<td>(5.45)</td>
<td>(4.24)</td>
<td>(3.90)</td>
<td>(10.34)</td>
<td>(8.47)</td>
<td>(2.75)</td>
</tr>
<tr>
<td>(l_2)</td>
<td>107.12</td>
<td>66.74</td>
<td>37.70</td>
<td>187.16</td>
<td>148.65</td>
<td>20.58</td>
</tr>
<tr>
<td></td>
<td>(37.28)</td>
<td>(26.45)</td>
<td>(4.11)</td>
<td>(81.27)</td>
<td>(65.29)</td>
<td>(3.14)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poverty</th>
<th>Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0 / R_0)</td>
<td>22.60</td>
</tr>
<tr>
<td></td>
<td>(5.11)</td>
</tr>
<tr>
<td>(P_1 / R_3)</td>
<td>36.36</td>
</tr>
<tr>
<td></td>
<td>(7.74)</td>
</tr>
<tr>
<td>(P_2 / R_1)</td>
<td>47.24</td>
</tr>
<tr>
<td></td>
<td>(11.48)</td>
</tr>
</tbody>
</table>
Summary and discussion

- proportion of “demographic effect” much larger for pre fisc incomes
- tax-benefit system seems to compensate for changing household structure at bottom of distribution
- however, no causal relationship: tax-benefit system itself might have enforced demographic trends
- results of subgroup decomposition in line with those of a counterfactual re-weighting analysis (without further controls!)
6. Biewen / Juhasz
Approach

- Re-weighting à la Hyslop/Maré controlling for various characteristics
 - advantage: several distributional statistics can be computed
 - advantage: can control for other characteristics
 - disadvantage: path-dependence
- GSOEP 1999+2000 vs. 2005+2006 (pooled data!)
- only look at post fisc (disposable) income
Results

- Increase in inequality can be explained by
 - changes in employment outcomes and market returns
 - and changes in the tax system.

- Changes in household structures and other household characteristics seem to have played a much smaller role.

- However: several issues with the analysis! (data, method, weights, policy modelling ...)
Overall change in density from 1999/2000 ('period 0') to 2005/2006 ('period 1')

Counterfactual income distribution if only market returns are changed (dashed line) vs. factual distribution (bold line).
Table 4 – Exact decomposition of inequality increase

<table>
<thead>
<tr>
<th></th>
<th>Household Structure</th>
<th>Socio-economic attributes</th>
<th>Employment outcomes</th>
<th>Return on attributes</th>
<th>Tax system</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>p5010</td>
<td>7.39 (2.82)</td>
<td>5.96 (3.26)</td>
<td>30.48 (8.76)</td>
<td>23.62 (16.49)</td>
<td>24.30 (5.54)</td>
<td>8.25</td>
</tr>
<tr>
<td>p7525</td>
<td>6.80 (2.29)</td>
<td>3.42 (2.79)</td>
<td>22.54 (5.33)</td>
<td>14.15 (10.66)</td>
<td>19.08 (3.22)</td>
<td>33.30</td>
</tr>
<tr>
<td>p9010</td>
<td>8.93 (2.45)</td>
<td>6.04 (2.96)</td>
<td>30.16 (7.11)</td>
<td>29.61 (13.03)</td>
<td>20.59 (3.77)</td>
<td>4.67</td>
</tr>
<tr>
<td>p9050</td>
<td>13.47 (4.92)</td>
<td>6.77 (7.24)</td>
<td>30.80 (12.70)</td>
<td>41.89 (24.98)</td>
<td>10.62 (8.59)</td>
<td>-3.55</td>
</tr>
<tr>
<td>Cv</td>
<td>8.20 (2.21)</td>
<td>4.66 (3.04)</td>
<td>16.96 (4.19)</td>
<td>22.76 (7.80)</td>
<td>20.92 (5.24)</td>
<td>26.50</td>
</tr>
<tr>
<td>Theil</td>
<td>8.33 (2.24)</td>
<td>5.07 (2.70)</td>
<td>19.92 (4.54)</td>
<td>31.41 (9.80)</td>
<td>19.88 (4.56)</td>
<td>15.36</td>
</tr>
<tr>
<td>MId</td>
<td>3.90 (2.23)</td>
<td>5.81 (2.70)</td>
<td>23.30 (5.43)</td>
<td>28.85 (12.1)</td>
<td>19.64 (4.55)</td>
<td>18.47</td>
</tr>
<tr>
<td>Gini</td>
<td>5.31 (2.44)</td>
<td>5.54 (2.79)</td>
<td>23.17 (4.99)</td>
<td>17.71 (10.91)</td>
<td>17.77 (4.71)</td>
<td>30.48</td>
</tr>
<tr>
<td>Fgt0</td>
<td>7.72 (2.58)</td>
<td>5.34 (2.73)</td>
<td>26.67 (6.64)</td>
<td>20.23 (12.34)</td>
<td>19.81 (3.97)</td>
<td>20.24</td>
</tr>
<tr>
<td>Fgt1</td>
<td>4.03 (2.54)</td>
<td>8.21 (3.79)</td>
<td>30.40 (9.07)</td>
<td>39.38 (17.19)</td>
<td>23.09 (5.01)</td>
<td>-5.11</td>
</tr>
</tbody>
</table>

Source: GSOEP, own calculations. The numbers in parentheses are bootstrap standard errors which correctly take into account the longitudinal sample design and the clustering of individuals in households.
7. Conclusion
Conclusions

- changing household composition associated with widening income gap
- **but**: share of 15% for post fisc incomes only (*for inequality*)
 - much lower than reported by OECD
 - other more important driving forces
 - human capital? bargaining power of unions? → future research
- statements on income distribution must be differentiated
 - important to analyze different reasons for a growing income gap
 - complex interactions between income distribution, demographic trends (household formation), and tax-benefit system

- Detailed policy decomposition: see Bargain et al. (2011)
Thank you for your attention!

peichl@iza.org
Appendix

Poverty and Richness

FGT measures

- well-known poverty measure P_α (Foster et al., 1984)
- richness measure R_β (Peichl et al., 2008)
- decomposable for population subgroups

$$P_\alpha(y; z) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{z - y_i}{z} \right)^\alpha \cdot 1_{y_i < z} \quad (7)$$

$$R_\beta(y; \rho) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left[1 - \left(\frac{\rho}{y_i} \right)^\beta \right] \cdot 1_{y_i > \rho} \quad (8)$$

- z: poverty line, ρ: richness line
- α: parameter for poverty aversion, β: parameter for sensitiveness to (intense) richness
Decomposition

\[
\Delta P_\alpha = \sum_{k=1}^{K} \bar{v}_k \cdot \Delta P_{\alpha,k} + \sum_{k=1}^{K} \bar{P}_{\alpha,k} \cdot \Delta v_k
\]

A

\[
\Delta R_\beta = \sum_{k=1}^{K} \bar{v}_k \cdot \Delta R_{\beta,k} + \sum_{k=1}^{K} \bar{R}_{\beta,k} \cdot \Delta v_k
\]

B

- **A**: change in level of group poverty/richness
- **B**: changes in composition of population
- **prior interest**: relative importance of **B** relative to \(\Delta P_\alpha \) and \(\Delta R_\beta \)