Optimal taxation, social contract and the four worlds of welfare capitalism

Olivier Bargain*, Amedeo Spadaro•

* University College of Dublin, IZA Bonn and CHILD
• Paris School of Economics and Universitat de les Illes Balears, Palma de Mallorca

November 2007
VERY PRELIMINARY - PLEASE DO NOT QUOTE

Abstract
This paper contributes to the debate regarding Esping-Andersen’s (EA) typology of welfare states (Esping-Andersen, 1990) by offering a formal theorizing drawing from the optimal taxation literature (Mirrlees 1971) and allowing for comparative research on the structure of the Welfare State. In particular we consider the optimal taxation model that combines both intensive (Mirrlees) and extensive (Diamond) margins of labor supply, as suggested by Saez (2002) in order to assess the degree of decommodification of seven European welfare systems. We recover the shape of the social welfare function implicit in tax-benefit systems by inverting the model on actual effective tax rates, as if existing systems were optimal according to some Mirrleesian social planner. Actual distributions of incomes before and after redistribution are obtained using a pan-European tax-benefit microsimulation model. Results are discussed in the light of standard classifications of welfare regimes in Europe. There appears to be a clear coincidence of high decommodification and high Rawlsianism in the Scandinavian, social-democratically influenced welfare states (Denmark). There is an equally clear coincidence of low decommodification and utilitarianism in the Anglo–Saxon liberal model (UK) and in the Southern European welfare states (Italy and Spain). Finally, the Continental European countries (Finland, Germany and France) group closely together in the middle of the scale, as corporatist and etatist.

Key Words: Optimal income taxation, tax-benefit policy, microsimulation, comparative social policy analysis, welfare state regimes, worlds of welfare capitalism

JEL Classification: H11, H21, D63, C63

1 We are grateful to Luc Arrondel, François Bourguignon, Andrea Brandolini, Janet Gornick, André Masson and seminar participants in Madrid (IEF). We are also grateful to all past and current members of the EUROMOD consortium as well as to those involved in the development of the model. Amedeo Spadaro acknowledges financial support of Spanish Government (SEJ2005-08783-C04-03/ECON) and of French Government (ANR BLAN06-2_139446). Any remaining errors, results produced, interpretations or views presented are the authors' responsibility. Simulations performed in this study rely on national micro-data sets and on the European Community Household Panel (ECHP) for Denmark and Spain; the Income Distribution Survey is made available by Statistics Finland; the public use version of the German Socio Economic Panel Study is made available by the DIW, Berlin; the French Household Budget Survey is made available by INSEE, Paris; the Survey of Household Income and Wealth is made available by the Bank of Italy; the Family Expenditure Survey (FES) is made available by the UK Office for National Statistics (ONS) through the Data Archive. Material from the FES is Crown Copyright and is used by permission. Neither the ONS nor the Data Archive bear any responsibility for the analysis or interpretation of the data reported here. An equivalent disclaimer applies for all other data sources and their respective providers cited in this acknowledgement. Corresponding author: Amedeo Spadaro, Universitat de les Illes Balears, Department of Economics, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain. Email: amedeo.spadaro@uib.es
1 Introduction

This paper contributes to the debate regarding Esping-Andersen’s (EA) typology of welfare states by offering a formal theorizing drawing from the optimal taxation literature (Mirrlees 1971) and allowing for comparative research of the Welfare State.

Some years after his publication, the book of EA (1990) “Three Worlds of Welfare Capitalism” became a modern classic and a reference for any researcher interested in the study of the welfare state (Offe, 1991; Cnaan, 1992; Hicks, 1991; Kohl, 1993). Nevertheless, EA (1993; 1994; 1996; 1997; 1999) has been forced time after time by both his critics and his adherents to elaborate on his original arguments. The tenet of EA’s treatise of the welfare state was that, for a long time in both the theoretical and empirical literature, too little attention had been given to cross-national differences in welfare state structures. Theoretically, the work of Polany (1944), Marshall (1950; 1963; 1965; 1981) and Titmuss (1958; 1974) laid the foundations for Esping-Andersen’s typology (Boje, 1996). Empirically, some comparative research has been conducted, among others, by Wilensky (1975), Flora and Heidenheimer (1981), Mommsen (1981) and Flora (1983; 1986).

In one of his articles (Esping-Andersen, 1994: 715), EA argued that we are entering better times because ‘the most intensive activity of welfare state theorizing at the moment has become identifying diversity, specifying welfare state typologies’. We agree with the previous statement: research has to follow theory’s lead because ‘only comparative empirical research will adequately disclose the fundamental properties that unite or divide modern welfare states’ (Esping-Andersen, 1990).

In his ‘seminal’ book EA suited the action to the word by constructing today’s best-known and most frequently used typology of welfare states, and by empirically testing whether distinct welfare states that resemble his ideal-types can be observed. In his view, welfare regimes are seen as a complex set of legal and organizational features that are systematically interwoven. This implies that when we focus on the principles embedded in welfare states, variations are not linearly distributed around a common denominator. They are clustered around highly diverse regime-types, each organized according to its own discrete logic of organization, stratification, and societal integration. To determine the characteristics of these subclasses two indicators are crucial:

1. The degree of decommodification, i.e. the degree to which a (social) service is rendered as a matter of right, and the degree to which a person can maintain a livelihood without reliance on the (labor) market.

2. The kind of social stratification and solidarities, i.e. which social stratification system is promoted by social policy and does the welfare state build narrow or broad solidarities?

In accordance with this theoretical expectation, EA succeeds in empirically identifying three closely paralleled models – ideal-types – of regime-types on both the stratification and the decommodification dimension.

First, there is the liberal type of welfare capitalism, which embodies individualism and the primacy of the market. The operation of the market is encouraged by the state, either actively – subsidizing private welfare schemes – or passively by keeping (often means tested) social benefits to a modest level for the demonstrably needy. This welfare regime is characterized by a low level of decommodification. The operation of the liberal principle of stratification leads to division in the population: on the one hand, a minority of low-income state dependants and, on the other hand, a majority of people able to afford private social insurance plans. In this type of welfare state, women are encouraged to participate in the labor force, particularly in the service sector.

2 This definition of decommodification has been elaborated by EA on a previous similar concept of Karl Polany (1944).
Second, there is a world of conservative corporatist welfare states, which is typified by a moderate level of decommodification. This regime type is shaped by the twin historical legacy of Catholic social policy, on the one side, and corporatism and etatism on the other side. This blend had some important consequence in terms of stratification. Labor market participation by married women is strongly discouraged, because corporatist regimes – influenced by the Church – are committed to the preservation of traditional family structures. Another important characteristic of the conservative regime type is the principle of subsidiarity: the state will only interfere when the family’s capacity to service its members is exhausted (Esping-Andersen, 1990: 27).

Finally, EA recognizes a social-democratic world of welfare capitalism. Here, the level of decommodification is high, and the social-democratic principle of stratification is directed towards achieving a system of generous universal and highly distributive benefits not dependent on any individual contributions. In contrast to the liberal type of welfare states, ‘this model crowds out the market and, consequently, constructs an essentially universal solidarity in favor of the welfare state’ (Esping-Andersen, 1990: 28). Social policy within this type of welfare state is aimed at a maximization of capacities for individual independence. Women in particular – regardless of whether they have children or not – are encouraged to participate in the labor market, especially in the public sector.

In following works, several authors (Katrougalos, 1996, Leibfried, 1992; Ferrera, 1996; Bonoli, 1997; Trifletti, 1999) have developed classifications of European welfare states which try to show the necessity of a four type: the Southern European model of social policy. The social protection systems of Southern European countries are highly fragmented and, although there is no articulated net of minimum social protection, some benefits levels are very generous (such as old age pensions). Moreover, in these countries health care is institutionalized as a right of citizenship. However, in general, there is relatively little state intervention in the welfare sphere (a low level of decommodification). Another important feature is the high level of particularism with regard to cash benefits and financing, expressed in high levels of clientelism (Ferrera 1996).

The classification proposed – referred to as “EA and others classification” in the sequel3 – received various types of responses and constructive critiques. Amicable critics argue that his typology has merits but is neither exhaustive nor exclusive and therefore needs revising. Others refer to theoretical and methodological shortcomings (Lessenich and Ostner, 1998). The more hostile critics feel that typologies as such have no explanatory power and, therefore, that his scheme does not contribute to proper theorizing about what is happening across and within welfare states (Baldwin, 1996).

In their excellent survey about the debate regarding Esping-Andersen’s typology of welfare states, Arts and Gelissen (2002) reconstruct several typologies of welfare states in order to establish, first, whether real welfare states are quite similar to others or whether they are rather unique specimens, and, second, whether there are three ideal-typical worlds of welfare capitalism or more. They conclude that “real welfare states are hardly ever pure types and are usually hybrid cases; and that the issue of ideal-typical welfare states cannot be satisfactorily answered given the lack of formal theorizing and the still inconclusive outcomes of comparative research. In spite of this conclusion there is plenty of reason to continue to work on and with the original or modified typologies”.

This is the fundamental motivation of the work we report in this paper. In what follow we try to contribute to this debate by drawing from the last empirical developments of the theory of optimal taxation.

3 For a complete list see the survey about the debate regarding Esping-Andersen’s typology of welfare states of Arts and Gelissen (2002).
Optimal taxation has been developed in economics in order to analyze the equity/efficiency trade off that a social planner faces when designing one of the pillars of the welfare state: the direct redistribution system (i.e. the function that transform individual gross income in disposable income). This pillar is, in our view, particularly related to the degree of decommodification achieved by a welfare regime.

We claim that a redistribution system allowing for a high level of subsidies directed to non working people implies a high level of decommodification. This claim has an immediate consequence: it implies that there is a strong analogy between a social planner that want to “decommodify” individuals and the Rawlsian social planner in an optimal tax model. In his task of determining the best redistribution policy, this Rawlsian social planner will guarantee a high level of subsidy directed to the poorest (normally non working agent) by charging the financial cost to the richest. Of course, this social planner will account for the negative efficiency effects of taxation and also for the initial distribution of the economic and socio-demographic characteristics in the population. Assessing the degree of Rawlsianism of a redistribution system implies assessing his degree of decommodification and vice versa.

What we propose here is to use the formal setting of the optimal tax theory to try to identify the level of Rawlsianism of some European social planner starting from the observation of the real data and redistribution systems and to use it as a test of the EA’s (and others) classification.

To our knowledge, this is the first attempt in that direction both in the sociological and economic literature. The literature on optimal taxation has remained mostly theoretical for a long time following the seminal contributions of Mirrlees (1971). The main reason was the absence of reliable information on the 'true' distribution of individual abilities. In recent years, the use of micro data has allowed implementing optimal tax models, under some assumptions about social preferences, in order to question the optimality of actual tax-benefit systems. Notably, the U-shaped distribution of effective marginal tax rates, often encountered in industrialized countries, has been investigated by several authors (Diamond, 1998, Saez, 2001, for the US, Piketty, 1997, Bourguignon and Spadaro, 2000, Choné and Laroque, 2005, for France, among others). Of particular interest were the conditions under which confiscatory levels of implicit taxation could be justified at the bottom of the distribution, or, inversely, how new programs of income maintenance could be grounded on the basis of optimal tax formulas.

A key element in such empirical applications of optimal tax models is the shape of social preferences. The curvature of the social welfare function in a continuous model à la Mirrless translates the social aversion to inequality. When the population is discretized, as in Saez (2002), it simply corresponds to the pattern of relative weights on different income groups. Given a country's characteristics (labor supply elasticity, distribution of household income, etc.), it is possible, in principle, to derive optimal tax schedules for different assumptions about social aversion to inequality and to identify the level for which optimal and actual tax rates coincide. This way, Laroque (2005) shows that an optimal schedule derived from rawlsian preferences is close to the actual schedule in France and concludes about the relatively rawlsian nature of social preferences in this country. Interestingly, it is possible to follow a somewhat dual approach and to focus on social preferences as the subject of investigation. Instead of producing optimal tax schedules under certain assumptions on social

4 Similar conclusions are obtained by Spadaro (2005). Simulating the French and British tax-benefit systems on French data, he shows that the former system generates a higher level of social welfare for non-utilitarian values of the inequality aversion parameter, which conveys the idea that the concern for redistribution may be larger in France, or, alternatively, that labor supply elasticities are lower in this country.

5 The term "social preference" covers different concepts, often related but studied by different branches of the economic literature. In political economy, some surveys attempt to directly measure people's attitude toward inequality, as in e.g. the International Social Survey Program, used for instance in Corneo and Grüner (2002) and
preferences, the optimal tax model can be inverted on actual effective tax rates to recover the implicit social welfare function that makes the observed system optimal. This approach was suggested by Bourguignon and Spadaro (2000, 2005, and 2007) using Mirrlees (1971) and Saez (2002) optimal tax model and applied on UK, Spanish and French data.

In the present paper we retrieve the implicit social welfare functions by inverting Saez' model on national micro data of seven European countries (Table 0 informs about the countries analyzed as well as their position in the “EA and others” classification). For each country, the population is partitioned in several income groups and the inverse optimal tax model is implemented using actual effective average tax rates in order to retrieve social weights placed on the different groups. This approach provides an original way of comparing social preferences across countries. Indeed, comparing social assistance expenditures or tax levels across countries does not provide a correct rendition of the tastes for redistribution, since the overall redistributive effect is not assessed jointly with the efficiency constraint (potential labor supply responses). The present approach precisely accounts for incentive-compatibility constraints and allows reading standard information about redistributive systems directly in terms of social weights.

Looking at the results, there appears to be a clear coincidence of high decommodification and high Rawlsianism in the Scandinavian, social-democratically influenced welfare states (Denmark). There is an equally clear coincidence of low decommodification and utilitarianism in the Anglo-Saxon liberal model (UK) and in the Southern European welfare states (Italy and Spain). Finally, the Continental European countries (Finland, Germany and France) group closely together in the middle of the scale, as corporatist andetatist.

Of course, from the beginning of the exposition we want to make clear to the reader that the ambition of our analysis is very limited: first, we do not pretend to assess the social preferences embedded in the design of the whole social protection system and even less in the welfare state. Income taxes and benefits are only a very small part of it.

Second, in what follows we will focus on the dichotomy state vs market. In our analysis, the family dimension is completely missing. This is an important shortcoming given that the role of the family, and in particular, the substitutability between state and families in providing protection against decommodification risks, is one of the pillars of the EA analysis.

The layout of the paper is as follows. Section 2 presents the national tax-benefit systems and a first look at their effects on redistribution and incentives. Section 3 describes the model and the inversion procedure. Section 4 presents the data and discusses the implementation of the model, drawing on previous results on labor supply elasticities. Empirical results are reported.

Osberg and Smeeding (2005). In behavioral economics, experiments are often used to assess preferences of a group (see for instance Fehr and Schmidt, 1999). With the well-known 'leaky bucket' experiment, respondents are able to transfer money from a rich individual to a poor one but incur a loss of money in the process, so that the equity-efficiency trade-off is taken into account in measuring tastes for redistribution (see for instance Amiel et al., 1999); in recent experiments, participants vote for alternative tax structures (e.g. Ackert et al., 2007). In the public economic literature, implicit value judgments may be drawn from inequality measures, assuming a natural rate of subjective inequality as suggested by Lambert et al. (2003); see also Duclos (2000).

6 The effective marginal tax rate corresponds to the implicit tax on a marginal increment of income, which accounts for the payment of income taxes and social contribution but also for the withdrawal of means-tested benefits as earnings increase. The inversion procedure has been suggested in earlier papers concerning commodity taxation (Christiansen and Jansen, 1978, Stern, 1977, Ahmad and Stern, 1984) and regulation of utilities (Ross, 1984).

7 A well-known limitation of Mirrlees' model is the difficulty to consider non marginal changes in labor supply characterizing potential workers switching from non activity to activity or vice versa (the so called participation effects) and it may be preferable to adopt the optimal tax model suggested by Saez (2002), which allows incorporating labor supply responses at both the intensive and the extensive margin. See Bourguignon and Spadaro (2007) for technical details.

8 A similar exercise, focusing on single mothers, is conducted by Blundell et al. (2006) for a comparison between Germany and the UK.
in Section 5: we derive the social weights that make European tax-benefit systems optimal, and we compare results to qualitative analyses of European welfare regime. Section 6 concludes.

2 National Tax-Benefit Systems: Structure, Equity and Efficiency

2.1 Brief Overview of National Systems

We focus here on direct taxes, contributions and transfers affecting the disposable income of households in Europe\(^9\). An overview of the 1998 systems for countries under investigation in this paper is provided in Table 1. It is accompanied by Figure 1 which reports the share of market income, taxes, benefits and replacement incomes, as a proportion of disposable income, on average and for bottom and top quintiles.

Benefits provide financial support to various groups and have different underlying policy objectives. Means-tested benefits correspond primarily to social transfers, i.e. social assistance and housing benefits, and clearly aim to alleviate poverty. Figure 1 show that those are indeed well targeted to the poorest. However, minimum income schemes are often held responsible for work disincentives as withdrawal are high, most often imposing a 100% tapering which discourages participation of low-wage workers. This is especially the case in countries with generous income support levels (e.g. Nordic countries, France, Germany), characterized by high marginal effective tax rates for lower income groups\(^10\).

Southern countries are characterized by the absence of minimum income schemes, and families are regular substitutes to the state in supporting unemployed or low-income workers. Housing benefits sometimes play an important role in complementing social assistance to support low-income families (e.g. in France and, to a lesser extent, in Finland), but are less subject to high withdrawal rates.

Non means-tested benefits have other objectives than pure redistribution, related for instance to demographic or employment motives (e.g. child benefits, childcare subsidies). They are consequently less targeted to the poor, as illustrated in Figure 1. They rather target specific groups such as family with children, disabled individuals (invalidity pensions), and people temporary out of work (maternity and family pension) or involuntarily out of work (unemployment benefits). Child benefit is often universal, even though some components may be means-tested (e.g. in France, Germany or Spain). Non means-tested benefits include contributory benefits, such as unemployment benefits, which, by definition, can be treated more as an insurance than a redistributive device, a point further discussed in following sections. The importance of unemployment benefits in total expenditures explains the prevailing role of the non means-tested benefit category in Figure 1. This is especially true in countries where means-tested benefits are limited (e.g. Spain). The inverse is true in the UK, where income support and in-work transfer play an important role compared to unemployment insurance; social expenditures then appear much more targeted in this country.

Taxes display a progressive tax rate structure, with tax allowance (e.g. in Germany and Finland) or tax free brackets (e.g. in France) to exempt lowest incomes from tax. These exemptions may be important. For instance, in France in 1998, all households are subject to the 8% social security flat-rate tax but only half of the population is subject to the progressive income taxation. The redistributive effect of the income tax scheme is function of the tax level and the progressivity of the tax schedule. Income taxation of couples is joint in France and Germany, causing high marginal tax rates on secondary earners.

Social security contributions (SSC) (not reported in table 1) are levied on earnings and sometimes on benefits. Often shared between employers and employees, they are generally

\(^9\) For comments on indirect taxes, notably VAT and excise taxes on specific goods, see Immervoll et al. (2006)

\(^10\) Social assistance (minimum income or minimum pension) is often more generous for certain groups such as single parent families (e.g. in France) or pensioners (e.g. in Finland).
designed as a flat-rate structure aimed to finance pensions, health and unemployment insurance. They are not neutral, however, as zero payments below a threshold and a cap on the contribution base above an upper limit generate some discontinuities and necessarily have distributive effects. This is all the more so as SSC are substantial -- sometimes exceeding income tax rates -- especially in countries with large public pension and health insurance systems. This is for instance the case in Germany and France, as shown in Figure 1.

2.2 Redistributive and Incentive Effects

In the case of the US, Saez (2002) shows that the optimal tax framework with reasonable social preferences may well explain the existing redistributive transfers (EITC, TANF, food stamp) to single mothers. However, the model is not so relevant to explain the case of single individuals, who receive hardly any transfer in case of low earnings. In contrast, European systems provide a rich ground to implement the optimal tax framework and the inverse approach used in this paper. Firstly, a substantial redistributive system exists even for single individuals in several European systems, which we can exploit for vertical equity analysis. The variety of transfers is larger when looking at families (or, more generally, to other demographic groups than working age single individuals), and potentially allows interpreting social preferences for both vertical and horizontal equity. Secondly, we can exploit differences across countries to analyze significant divergences in social preferences, from a system without social assistance (Spain) to one with highly generous income support (Denmark). Budget constraints for hypothetical single individuals, as represented in Figure 2, provide early intuitions and show nuances across countries. Within the Nordic group, both Denmark and Finland are characterized by generous social assistance but the marginal tax rates are higher in the former country and Denmark seems more similar to Germany on both accounts. All countries with minimum income schemes (all except southern countries) are characterized by a relatively flat budget constraint at low income level, due to the high taper rates responsible for very high effective marginal tax rates, as previously noticed. Despite very different systems, the combination of the different tax-benefit instruments in France and the UK lead to very similar budget constraints in the two countries, a fact already noticed by Atkinson, Chiappori and Bourguignon (1988).

Naturally, the effect of national systems can only be partially rendered by use of a representative agent. A more comprehensive characterization of the redistributive and incentive effects requires applying national systems to representative dataset, as done here using the EUROMOD pan-European tax-benefit simulator and national micro data (see description in the following sections). On the redistributive side, the redistributive effect of the different instruments could be analyzed and decomposed11. By lack of space, we simply assess the overall redistributive effect of benefits and taxes, using Gini coefficient as a summary of total inequality. Figure 3 reports the decrease in the Gini coefficient on market income due to benefits, public pensions and unemployment benefits12. There is a clear contrast between Nordic and Corporatist regimes on the one hand, with large redistributive effects due to both contributory and non-contributory benefits, and Southern countries plus the UK on the other hand13. Smaller effects in this second group are due to small social benefits in Spain and Italy and small replacement income in the UK. Figure 3 also reports the decrease in the Gini coefficient

11 For instance, Wagstaff et al. (1999) carefully decompose the redistributive effect of income taxation into tax levels and progressivity effects for several OECD countries. Important differences across countries emerge, showing for instance high (low) average tax but lower (higher) progressivity in Nordic countries (France).
12 Market income corresponds to wage salary, self employment income, capital income, alimony and other private transfers.
13 In the first group of countries, benefits achieve the most inequality reduction mainly due to contributory benefits and public pensions; means-testing plays a small role (see Immervoll et al., 2007).
on market income due to the whole set of tax-benefit instruments, i.e. previously mentioned benefits plus taxes and social security contributions. This corresponds simply to the move from the Gini on market incomes to the Gini on disposable incomes. The same contrast between the two groups of countries remains after inclusion of income tax and social contributions. As expected, there are cross-country differences in the relative role of the two groups of instruments. In particular, benefits and replacement incomes achieve more redistribution in France (reduction in the market income Gini of 37%, versus 35% in Denmark) while the overall redistributive effect is largest in Denmark (49% versus 46% in France) because of the relatively larger effect of taxes in this country.

We now turn to the effects of tax-benefit systems on work incentives. We characterize these effects using effective marginal tax rates (EMTR), i.e. the implicit taxation (reduction in disposable income) of an additional Euro of market income. Thus the distribution of average EMTR per deciles, reported in Figure 4, gives some insight on the (dis)incentive potential of tax-benefit systems. The shape of these patterns has been discussed in several studies (see Bourguignon, 1997, and Immervoll et al., 2006, among others). Since we follow the classification suggested by Esping-Andersen (1990, 1999) we group EMTR distributions according to the following classification: Social Democratic (Denmark), Corporativist (Finland, France and Germany), Liberal (UK) and Southern European (Italy and Spain). As expected, the overall tax level if highest in Nordic countries. EMTR are high for lower deciles in all countries with means-tested social assistance, due to aforementioned phasing out at high taper rate. Institutional disincentives to work must be combined with participation elasticities, which capture other country-specific aspects (e.g. costs of work), to explain outcomes in terms of participation. Figure 5 reports employment rates for the selected countries. It appears that male participation is high in all countries and relatively less sensitive to tax-benefit incentives than female labor supply. For the latter, participation is very high in Nordic countries despite large EMTRs, which is partly explained by other institutional features, in particular a set of family-friendly policies which decrease cost of work for women and encourage female activity. Participation is lower in France and Germany, a fact often explained by the combination of less family friendly policies, social norms (in Germany) and high taxation on secondary earners due to joint taxation. Female employment is even lower in Southern countries, despite lower tax rates, and explanations are to be found in different family arrangements and lower female wages. While average tax rates are smaller than EMTRs for low incomes, they are getting closer as income increases. For high incomes, then, both EMTR and EATR are high in Nordic countries and could generate disincentives at the intensive margin; the same is true in France or Germany for the very top of the distribution (not visible in the average for the last decile).

3 The Inverse Optimal Tax Approach

3.1 The Model of Saez (2002)

The starting point of Saez (2002) is the standard optimal income tax model. The government is assumed to maximize a social welfare function subject to an efficient constraint (or incentive-compatibility constraint) and to a national budget constraint. The social welfare function aggregates individual utility levels, which themselves depend on disposable household income (equivalent to consumption in a static framework) and leisure. The form of the social welfare function characterizes the government's taste for redistribution, ranging

14 EMTR are computed numerically by incrementing marginally the labor income of the main earner in the household. Clearly, more accurate characterization of the participation incentives should rely on replacement rate, or financial gains to work, or participation tax (Immervoll et al., 2002). These three concepts are somewhat equivalent and reflect the differential between standards of living when inactive (on welfare) and in work. EMTR give some indications but do not give the full picture of such (non-marginal) transitions.

8
from rawlsian preferences (maximization of the welfare of the poorest person) to utilitarian preferences (equal weights on all individuals). Actual productivities are not observed so that governments can only rely on second-best taxation based on incomes. Consequently, they must account for the efficiency constraint: agents modify their taxable income in function of effective taxation. Responses operate both at the extensive margin (participation decisions) and the intensive margin (effort or hours of work). In particular, high implicit taxes on the most (least) productive ones may reduce their effort (participation), thereby reducing the tax base.15

Only the intensive margin is considered in the original model of Mirrlees (1971), while empirical evidence points toward an important effect of participation decisions (see Heckman, 1993).

Saez (2002) sets up an optimal tax problem where there are \(I+1\) discrete groups in the labor market: \(I\) groups of individuals who do work, ranked by increasing gross income levels \(Y_i\) indexed \(i=1,...,I\), and a group consisting of those who do not work (group \(i=0\)).16 Individuals choose whether or not to participate (extensive margin) and which group to choose (intensive margin). In this framework, optimal taxation has the following form (see Saez, 2002, for a formal derivation):

\[
\frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\xi_i h_i} \sum_{j=1}^{I} h_j \left[1 - g_j - \eta_j \frac{T_j - T_0}{C_j - C_0} \right] \text{ for } i=1,...,I, \quad (1)
\]

In this expression, \(T_i\) is net tax paid by group \(i\) and \(C_i\) is the net household income of this group, so the term on the left-hand side is the extra tax paid when moving from group \(i-1\) to \(i\) divided by the gain in net income. Non-workers receive benefits \(-T_0\), by definition identical to \(C_0\). The gross earnings of group \(i\), \(Y_i\), equal to \(C_i + T_i\), are exogenously fixed. \(h_i\) measures the share of group \(i\) in the population. The social welfare function is summarized by \(g_i\), the marginal weight the government assigns to group \(i\). This weight represents the value (expressed in terms of public funds) of giving an additional dollar to an individual in group \(i\).

The intensive elasticity, \(\zeta_i\), is defined as:

\[
\zeta_i = \frac{C_i - C_{i-1}}{h_i} \frac{dh_i}{d(C_i - C_{i-1})} \quad (2)
\]

This mobility elasticity captures the percentage increase in supply of group \(i\) when \(C_i - C_{i-1}\) is increased by 1%, and is defined under the assumption that individuals are restricted to adjust their labor supply to the neighboring choice.17

Finally, \(\eta_i\) is a measure of the extensive elasticity, and is defined as the percentage of individuals in group \(i\) who stops working when the difference between the net household income out of work and at earnings point \(i\) is reduced by 1%:

\[
\eta_i = \frac{h_i}{C_i - C_0} \frac{dh_i}{d(C_i - C_0)} \quad (3)
\]

The main implication of the optimal tax rule above is that the optimal tax system depends heavily on whether labor supply responses are concentrated at the intensive or extensive margin. When the extensive elasticity is assumed to be zero, the model of Saez is a discrete

\[15\] At the top of the skill distribution, high implicit tax rates are due to high marginal income tax rates. At the bottom, they are caused by high withdrawal (phase-out) rates of means-tested social assistance schemes.

\[16\] Note that optimal income schedules must verify the property of agent monotonicity, according to which gross income increases with productivity (which is not necessarily the case of labor supply, as the labor supply curve may be backward bending). This is sometimes expressed as the Spence-Mirrlees (or single crossing) condition that a more productive agent will choose a higher consumption-income allocation, so that second best taxation manages to separate types and guarantees incentive-compatibility. Here, the implicit assumption is that types 0 to \(I\) are ranked according to productivity levels so that \(Y_i\) increases with \(i\).

\[17\] As discussed later, this elasticity is different from the traditional elasticity of labor force participation, defined as the increase in the proportion of workers when wages increase by 1%.
version of that of Mirrlees and gives identical results. In particular, negative marginal tax rates resulting from EITC-type of transfer are never optimal since they discourage productive workers at the intensive margin. However, the larger the extensive elasticity, the more likely are optimal schedule featuring smaller guaranteed income for non-workers and larger in-work support (and possibly negative marginal taxes at low income levels).

In the case where income effects are ruled out, an additional constraint normalizes weights as follows:

\[
\sum_{i=0}^{I} h_i g_i = 1 \tag{4}
\]

3.2 Inversion of the Model

It is possible to invert the model to recover the social weights \(g_i\) and, therefore, some information on the shape of the social welfare function. Using expression (1), it is straightforward to obtain:

\[
g_I = 1 - \eta_i \frac{T_i - T_0}{C_i - C_0} - \mathcal{S}_i \frac{T_i - T_{i-1}}{C_i - C_{i-1}} \quad \text{for the last group and}
\]

\[
g_i = 1 - \eta_i \frac{T_i - T_0}{C_i - C_0} - \mathcal{S}_i \frac{T_i - T_{i-1}}{C_i - C_{i-1}} + \frac{1}{h_i} \sum_{j=1}^{I} h_j \left[1 - \eta_j \frac{T_j - T_0}{C_j - C_0} \right] \tag{5}
\]

for \(i=I,\ldots,1\), which allows us to derive recursively the weights \(g_I\) to \(g_1\) using observed incomes \(Y_i\), simulated net taxes \(T_i\) and disposable incomes \(C_i\). Finally, the weight \(g_0\) for the inactive group is obtained using normalization (4).

Weights \(g_i\) correspond to the marginal social welfare function in the continuous model à la Mirrlees.

4 Data and Implementation

4.1 Data

Simulations for all countries are performed using the tax-benefit calculator EUROMOD. This model has been designed to simulate the tax-benefit systems of the EU-15 countries. For each country, it computes all direct taxes and monetary transfers, and hence disposable income, for all the households of a representative dataset (see Sutherland, 2001 and Immervoll et al. 2005). The choice of the initial system (1998) is made available for all 15 countries and updates for years 2001 and 2003 become available. However, we have opted for the year 1998 as it has been proof-checked through a variety of exercises and it is the most reliable (see Bargain, 2006). Table 2 reports the different national household data used to simulate tax-benefit systems. These datasets are all representative of each population.

The treatment of the family composition in the optimal tax framework is a difficult task. We therefore focus on a sample of single men and women
designed to simulate the tax-benefit systems of the EU-15 countries. For each country, it computes all direct taxes and monetary transfers, and hence disposable income, for all the households of a representative dataset (see Sutherland, 2001 and Immervoll et al. 2005). The choice of the initial system (1998) is made available for all 15 countries and updates for years 2001 and 2003 become available. However, we have opted for the year 1998 as it has been proof-checked through a variety of exercises and it is the most reliable (see Bargain, 2006). Table 2 reports the different national household data used to simulate tax-benefit systems. These datasets are all representative of each population.

The treatment of the family composition in the optimal tax framework is a difficult task. We therefore focus on a sample of single men and women
designed to simulate the tax-benefit systems of the EU-15 countries. For each country, it computes all direct taxes and monetary transfers, and hence disposable income, for all the households of a representative dataset (see Sutherland, 2001 and Immervoll et al. 2005). The choice of the initial system (1998) is made available for all 15 countries and updates for years 2001 and 2003 become available. However, we have opted for the year 1998 as it has been proof-checked through a variety of exercises and it is the most reliable (see Bargain, 2006). Table 2 reports the different national household data used to simulate tax-benefit systems. These datasets are all representative of each population.

The treatment of the family composition in the optimal tax framework is a difficult task. We therefore focus on a sample of single men and women
designed to simulate the tax-benefit systems of the EU-15 countries. For each country, it computes all direct taxes and monetary transfers, and hence disposable income, for all the households of a representative dataset (see Sutherland, 2001 and Immervoll et al. 2005). The choice of the initial system (1998) is made available for all 15 countries and updates for years 2001 and 2003 become available. However, we have opted for the year 1998 as it has been proof-checked through a variety of exercises and it is the most reliable (see Bargain, 2006). Table 2 reports the different national household data used to simulate tax-benefit systems. These datasets are all representative of each population.

The treatment of the family composition in the optimal tax framework is a difficult task. We therefore focus on a sample of single men and women
designed to simulate the tax-benefit systems of the EU-15 countries. For each country, it computes all direct taxes and monetary transfers, and hence disposable income, for all the households of a representative dataset (see Sutherland, 2001 and Immervoll et al. 2005). The choice of the initial system (1998) is made available for all 15 countries and updates for years 2001 and 2003 become available. However, we have opted for the year 1998 as it has been proof-checked through a variety of exercises and it is the most reliable (see Bargain, 2006). Table 2 reports the different national household data used to simulate tax-benefit systems. These datasets are all representative of each population.

We select potential salary workers in the age range 18-65 (i.e. exclude pensioners, student, farmers and self-employed). To keep up with the logic of the optimal tax model, we exclude all households where capital income represents more than 10% of total gross income. Unemployment benefit is treated as a replacement income from work and unemployed are thus considered in the same way as actual workers; this leaves nonetheless the option to treat unemployment benefit as pure redistribution or as pure insurance in the implementation of the model, as discussed below. Sample sizes are reported in Table 2.

18 Immervoll et al. (2007) choose to include all working-age individuals in the population but this implies ignoring the joint decision in couple households. Bourguignon and Spadaro (2007) also ignore this dimension by treating families as providers of a common labor supply function and characterized by a household productivity.
We study the national tastes for redistribution implicit in the transformation of initial incomes into final incomes by tax-benefit systems. While the concept of final income is simply associated with the household disposable income (market income and replacement incomes plus benefits minus social contributions and taxes), the initial income is subject to discussion. In particular, social security contributions may have an important redistributive role. This point is discussed below.

4.2 The Treatment of Social Contribution and Replacement Incomes
Replacement incomes, which include social retirement benefits and unemployment benefits, deserve special attention. These are part of the public sector transfers but also comprise a redistributive component, at least in some countries. Thus, a simple treatment of these incomes would be to put them beside purely redistributive transfers. The opposite stance consists in focusing on the social insurance roots of replacement incomes, as done by some authors like Bourguignon (1997). Since in most countries public pensions and unemployment benefits are linked to workers' past earnings through social security contributions when active, they can be viewed as delayed salaries. A careful sensitivity analysis requires checking results with both options.

In the same line of reasoning, one may consider the redistributive effects of social security contributions (cf. Rochet 1996 on health contributions in France). Alternatively, one may see this instrument as pure contributions to personal insurance in case of sickness, unemployment or old age.

In the baseline above, the former case is used, with gross income as the starting point to evaluate the redistributive effect of the tax-benefit system including the effect of SSC.

4.3 Defining Groups
The definition of the I+1 groups necessarily bears some arbitrariness in the way we partition the population. A large number of groups would probably be detrimental to the cross-country comparison. Keeping this constraint in mind, we opt for a small number of groups (I=5) that are made somewhat comparable. Group 0 is identified as the population of 'idle poor', with zero market income, while group 1 is going to be the 'working poor' population. The following groups are defined consistently in reference to the median income of each country. Cut-off points (lower bounds), gross income and disposable income for each income group are reported in Table 3. The corresponding proportion of the selected population in each group is reported in Table 4. Precisely, group 0 gather those with no labor income or very small amounts, the upper limit being the level corresponding to a part-time job paid at

19 The differences in the extent of social security programs among developed countries, along with the substitution between public and private assurance has driven the literature to limit the redistributive analysis to non-contributive social benefits and taxes.
20 Since we focus on working age households, we can leave aside the problem of public pensions. Yet, all countries operate unemployment insurance benefits. Those generally expire after some maximum duration and/or are conditional on participating in some type of active labor market program. By definition, these schemes are meant to replace lost earnings due to job loss. By narrowing the difference in disposable income when working and when not working, they substantially reduce gains to work, at least temporarily. Yet, except where they are affected by the spouse's earnings, they generally have no effect on the marginal tax rate of those in work. As a result, in the presence of positive labor supply participation elasticities, unemployment benefits certainly contribute to making in-work benefits more desirable. In the baseline, we therefore combine unemployment benefits to market income.
21 For instance, see Borsch-Supan and Reil-Held (2001) for a decomposition of the (public) pay-as-you-go pension systems between its role as insurance against longevity-related old-age poverty (and related risks) and its redistributive role.
22 Given the objectives of our research, choosing a particular criterion of definition of income assumes a strong normative character. This is the reason why we put a lot of emphasis in the description of the data selection procedure.
minimum wage. The number of observation between zero and this upper bound is very small in most countries, essentially due to the presence of fixed costs of working. For the next group (1), the population of working poor, the upper income limit is fixed as 1.3 times the minimum wage (or 1.3 time 60% of the median for countries without minimum wage). Group 2 is upper bounded by the median income, group 3 by 1.5 times the median income and group 4 by twice the median.

4.4 Labor Supply Elasticities
The magnitude of disincentive effects due to effective taxation depends crucially on the size of elasticities. However, the relative consensus which has emerged from the large literature on labor supply has not proved to be extremely precise. It establishes that income-elasticity is usually negative while own wage-elasticity are positive, below one and larger for married women due to larger responsiveness at the extensive margin (cf. Blundell and MaCurdy, 1999, Heckman, 1993). Some authors have dealt with this issue by relying on the latest econometric techniques to estimate as accurately as possible elasticities of countries under investigation (cf. Laroque, 2005, using empirical results of Laroque and Salanié, 2001). Other authors acknowledge both the limits of our empirical knowledge and the fact that responses in terms of hours and participation may not summarize all the possible effects -- high incomes, in particular, may response via changes in effort or via tax evasion. These authors, in particular Saez (2002) for the US and Spadaro (2005), Bourguignon and Spadaro (2007) and Immervoll et al. (2007) for EU countries, then analyze results of the Mirrlees model in the light of several hypothesis (upper and lower bounds) on the elasticity level.

In the present case, we could not estimate labor supply models for 7 countries and also rely on estimates drawn from the literature, emphasizing the importance of differentiating between intensive and extensive margins. While there is a wide empirical literature on the labor supply of married women (see Blundell and MaCurdy, 1999), evidence about singles, and in particular childless singles, is limited. Table 5 summarizes some of the relevant studies. It appears that, for singles, there is no evidence of participation elasticity larger than 0.5 (in contrast to married women). Moreover, the formula describing participation elasticity, i.e. expression (3), is slightly different from the elasticity usually measured in the literature. The latter is obtained by 1% increase in Yi rather than in \(Ci-C0=Yi-(Ti+C0) \). In most cases, \(Ti+C0>0 \) so that \(Ci-C0 \) increases by more than 1% and \(\eta_i \) is therefore overstated by usual estimates. The inverse is true only when \(Ti<-C0 \), i.e. when transfers to working poor are very large. Consequently, we suggest taking 0.5 as an upper bound, 0.25 as the baseline and 0 as the lower bound (i.e. pure intensive model).

For the intensive margin, evidence for singles is also limited and points out toward modest sized elasticities (cf Table 5). Yet, the classical labor supply elasticity (as in Mirrlees, 1971) is defined as the change in labor supply L in response to a marginal change in productivity:

\[
\varepsilon = \frac{1-\tau}{\tau} \frac{\partial Y}{\partial (1-\tau)} = \frac{1-\tau}{\tau} \frac{\partial wL}{\partial L} \frac{\partial L}{\partial w(1-\tau)} \frac{\partial w(1-\tau)}{(1-\tau)} = \frac{w}{\tau} \frac{\partial L}{\partial w}
\]

With present notations, it is written \(\varepsilon_i = \frac{1-\tau_i}{\tau_i} \frac{\partial Y_i}{\partial (1-\tau_i)} \) with the effective marginal tax rate \(\tau_i = \frac{T_i - T_{i-1}}{Y_i - Y_{i-1}} \).

As shown in Saez (2002), the classical labor supply elasticity, \(\varepsilon_i \), is then related to the intensive elasticity previously defined, \(\zeta_i \), by the expression:

\[
\zeta_i(Y_i - Y_{i-1}) = \varepsilon_i Y_i
\]

The numerical application will be expressed in terms of \(\varepsilon \), i.e. what we know from the empirical literature. Saez sets it at 0.25 for low income (up to $20,000, corresponding to the
1st half of the distribution) and either 0.25 (lower bound) or 0.5 (upper bound) above this threshold. We opt for a similar choice, with 0.25 for group 0 to 2 (more or less the 1st half), and above this threshold: 0.5 (upper bound), 0.25 (baseline) or 0 (pure extensive model).

5 Empirical Results
The first type of findings we are looking for is a characterization of the redistributive tastes of each country using the inverse optimal tax approach. In particular, we want to check if social weights are increasing, as expected from a social planner with aversion for inequalities. The assumption of optimality of actual system is interesting per se. What matters is not the dynamic process leading to a given system but the fact that different systems in neighbor countries may reflect, among other things, differences in social preferences.

We also want to check if weights are placed on the idle poor (group 0) or rather on the working poor (group 1), reflecting value judgments regarding the role of personal responsibility in financial conditions and the way this affects institutional redistribution.

Standard assumptions, as described previously, lead to results for the baseline scenario, as reported in Figure 6. Alternative assumptions on the elasticity levels provide a sensitivity analysis for each country, as summarized in Figure 7. About the “optimality concerns” we recover here the same qualitative results obtained in Bourguignon and Spadaro (2007): Figure 6 shows ‘flat’ redistributive tastes in Southern Europe and, to some extent, in the UK. In contrast, generous social assistance translates into high weights on group 0 in Nordic countries, Germany and France. For those countries, however, weights in other groups are relatively flat. In general, marginal social welfare is both positive and flat or decreasing throughout the range of individual incomes classes, which convey that these systems are not far from Rawlsian preferences. This result suggests that the redistribution systems in these countries are consistent with the hypothesis of an optimizing redistribution authority. Clearly, the basic optimization problem would not make sense if the objective function were not concave. This is an interesting result, which was certainly not guaranteed by the inversion methodology used in this paper. Moreover it acquires a strong relevance given the heterogeneity of the redistribution systems and the socio-demographic characteristics of the countries analyzed.

The results also show the importance of including in the whole analysis the efficiency concerns: Figure 6 shows that, in most of the cases the weight on group 1, representing the working poor, is smaller than the weight on group 0 and even smaller than on the next group (and roughly equal to flat weights on upper groups, 3 to 5). This result rationalizes the fact that working poor are subject to very high distortions corresponding to the high phase-out rate of social assistance (especially in Nordic countries), as previously documented by the distribution of effective marginal tax rates. As can be seen in Figure 7, the gap between weights on groups 0 and 1 is even larger when participation elasticity is large, which reinforce previous interpretation. In other words, higher responses at the extensive margin should motivate higher in-work transfers (and lower withdrawal rate) for the working poor; it does not occur, which can only be justified by even smaller weights on this group. Another

23 The dominance of the local system is not fixed: changes in internal characteristics (productivity, demographics, etc.) or the evolution of neighbor systems (i.e. changes in the choice set for the local planner) may let room for Pareto improving changes. For instance, the ‘Danish model’ is often praised as an example to follow in recent debates in German or France; interestingly, this interest arises in countries which can be suspected to have similar type of sensitivity for redistribution. One may object that the recent trend in lowering marginal tax rates in Western Europe offers a different picture. We argue that these changes are driven by concern of tax evasion in a context of fiscal competition rather than by a convergence in social preferences; besides, taxes are only part of the picture and large differences remain on the benefit side across European systems.
important result from Figure 7 is the fact that the weight patterns do not vary too much with alternative assumptions, apart from the absolute level of weights on group 024. Concerning the main objective of our analysis (i.e. looking at the social value judgments regarding the role of personal responsibility in financial conditions and the way this affects institutional redistribution), results from Figure 6 are in line with the “EA and others” classification of the welfare regimes (Esping Andersen, 1990). Recall that our basic work hypothesis is that a high social marginal weight of group 0 is assimilated to a strong level of decommodification. There appears to be a clear coincidence of high decommodification and high Rawlsianism in the Scandinavian, social-democratically influenced welfare states (Denmark). There is an equally clear coincidence of low decommodification and utilitarianism in the Anglo–Saxon liberal model (UK) and in the Southern European welfare states (Italy and Spain). Finally, the Continental European countries (Finland, Germany and France) group closely together in the middle of the scale, as corporatist and etatist. It seems that the optimal tax theory supports (at least under the decommodification dimension of the analysis) the vision of Esping Andersen and following works. This is the most relevant and striking result (which, again, was certainly not guaranteed by the methodology used in this paper).

The results obtained are in line not only with the “decommodification classification” obtained by EA in their works (1990 and 1999) but also with other attempts, based on aggregate indicators, to compute in alternative ways some decommodification index for European countries as in Menahem (2007).

6 Conclusions
The aim of this paper has been to contribute to the debate regarding Esping-Andersen’s (EA) typology of welfare states by offering a formal theorizing drawing from the optimal taxation literature (Mirrlees 1971) and allowing for comparative research on the structure of the Welfare State.

In order to assess the degree of decommodification of seven European welfare systems (Esping-Andersen, 1990), we have derived the shape of their social welfare functions by inverting the optimal tax model of Saez (2002) on actual average tax rate, under the (work) assumption that existing system are optimal for the government. Actual distributions of incomes before and after redistribution are obtained using a pan-European tax-benefit microsimulation model. Results are in line with the “EA and others” classification of the welfare regimes. There appears to be a clear coincidence of high decommodification and high Rawlsianism in the Scandinavian, social-democratically influenced welfare states (Denmark). There is an equally clear coincidence of low decommodification and utilitarianism in the Anglo–Saxon liberal model (UK) and in the Southern European welfare states (Italy and Spain). Finally, the Continental European countries (Finland, Germany and France) group closely together in the middle of the scale, as corporatist and etatist.

We have shown the potential of this approach: it offers a consistent way to compare social preferences across countries with different welfare regimes and possibly different efficiency constraints. It also allows us to test if this framework respects basic properties as often posited in the literature.

We have also shown the importance of taking seriously into account the agent behavioral reactions in this type of analysis. About this issue, it is important to emphasize that the economic empirical literature has pointed out toward larger elasticities at the extensive margin (Heckman, 1993, for an overview). If participation elasticities are large, then targeting the working poor through in-work transfers is preferable than generous social assistance schemes.

24 As expected, the tighter the efficiency constraint at the extensive margin, i.e. the larger participation elasticities, the less generous transfers to the idle poor must be. The fact that this does not happen is rationalized by all the larger weights on this group.
This rationalizes the choice of a generous EITC in the US, as discussed by Saez (2002). All European regimes investigated, with the exception of Southern countries, are, on the contrary, characterized by important redistribution toward the idle poor and the absence of in-work transfer to childless singles (implemented in the UK only in 2003), which must be justified by either small participation elasticity and/or large redistributive tastes for this group. Our work purely explores the cross-country dimension but extensions to account for changes over time are desirable. In particular, recent trend toward EITC schemes in Europe may translate a change in social preferences, or the recognition of the disincentive effects.

This may be the case in particular for some groups, i.e. single mothers, for whom participation elasticity is larger. Interestingly, even stronger differences across countries exist for this group, as illustrated by the budget curves of Figure 8. In particular, large transfers to unemployed (Nordic and corporatist models) contrast with large transfers to working poor singles with children (UK). As suggested above, divergences may come from differences in efficiency constraints or from significantly differences in social preferences. In the limit of our exercise on (childless) single individuals, cross-country differences are fairly robust to different assumptions on elasticity and clearly distinguish welfare regimes in terms of social preferences. Future work must check the validity of these results and exploit the (even larger) heterogeneity across EU countries when it comes to single mothers (see Blundell et al. 2006 for a focus on this group in the case of the UK and Germany). Also, more attention must be paid to the role of unemployment benefits and social contributions, as extensively discussed in the text.

Another interesting line of research is to treats social preferences as endogenously determined. In particular, it would be interesting to question how social preferences are shaped by society's belief about fairness and luck (Alesina and Angeletos, 2005) or how they translate into the political process. Yet, this work could possibly be extended to account for the link between the design of redistributive policies and social choice. Coggins and Perali (2002) suggest an exciting first attempt in this direction, revealing social preferences by connecting a social welfare function to a voting mechanism.

Future work should be also directed to include in the analysis the dynamic dimension of the construction of the welfare state (that in our paper is missing). Given the importance of the issue of intergenerational solidarity and the role of welfare state in his enhancement (Masson 2007, 2004a, 2004b, 2002), it would be interesting, for example, to try to fix a link between the ideal typology proposed in the “EA and others” literature and the theoretical literature on the optimal design of pensions system (see Cremer, Lozachmeur and Pestieau 2007).

Our last remarks concern the limits of the suggested exercise (that we have already discussed all along the text). First and most important: we are aware that income taxes and benefits are only a very small part of the welfare state as conceived by the EA related literature. In this sense, our contribution must be seen as a step toward the construction of formal theorizing

25 One of the questions is: are negative EMTR generated by the WFTC, as can be observed on Figure 8, due to larger participation elasticity for single mums in the UK or to higher weight g_1? See Laroque (2006) on the justification of negative EMTR in the optimal tax framework.

26 Systems in force may reflect to some extent the redistributive concern of the party or coalition in power, hence of only part of the electorate. This is fairly evident in periods following a change of majority; Oliver and Spadaro (2004) show for instance that the arrival of the right-wing Aznar government in Spain has been followed by a tax reform that can be interpreted in terms of changes in the redistributive concern of the State. Therefore, we should remain cautious with the term ‘social’ preference -- the reconciling political economy process is beyond our scope. Note, however, that the whole system does not change at each election and the alternance of majorities in Europe -- even if leading to some reshaping of redistributive systems -- may still leave room for significant differences ‘on average’ between countries. In particular, political spectrums in different countries are not perfectly overlapping. Overall, then, we argue that cross-country differences in underlying social preferences may be important and deserve characterization.
allowing for better understanding the nature of welfare system and, eventually, to better define (if possible) ideal-typical models starting from the analysis of real welfare state.

Second: it is natural to think that real world tax-benefit schedules result more from political economy forces than from the pursuit of some well defined social objective. Even though, deriving and comparing social welfare functions implicit in each national system provide a new way to compare countries’ tastes for redistribution as embodied in tax-benefit systems.

Third, the differences between countries are computed on the basis of the inversion of the tax model on single individuals. The family dimension is completely missing in our analysis. This is an important shortcoming given that the role of the family, and in particular, the substitutability between state and families in providing protection against decommodification risks, is one of the pillars of the EA analysis.

While it is customary to compare systems in terms of (effective) average and marginal tax rates, degree of progressivity or degree redistribution (e.g. change in Gini due to the impact of tax-benefit systems), the present approach allows reading actual tax-benefit systems, and their recent evolutions, through the social preferences that they reveal.
References

Bourguignon F. (1997), Fiscalité et redistribution, Conseil d'Analyse Economique report, La Documentation Française.

Table 0. “EA and others” classification of the seven Countries analyzed

<table>
<thead>
<tr>
<th>Degree of decommodification</th>
<th>Social democracy</th>
<th>Corporativist</th>
<th>Liberal</th>
<th>Southern European</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Medium</td>
<td>Weak</td>
<td>Weak</td>
<td>Weak</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ideological reference point</th>
<th>Universalism</th>
<th>Social Hierarchy, Family</th>
<th>Individual responsibility</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries</td>
<td>Denmark</td>
<td>Finland, Germany, France</td>
<td>UK</td>
<td>Spain, Italy</td>
</tr>
</tbody>
</table>
Table 1: Tax System, Social Benefits and Replacement Incomes

<table>
<thead>
<tr>
<th>Income Tax System</th>
<th>Denmark</th>
<th>Finland</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Spain</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of tax bands</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3 &</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Lowest/highest tax band limit * §</td>
<td>12 / 100</td>
<td>35 / 223</td>
<td>30 / 336</td>
<td>30 / 252</td>
<td>0 / 118</td>
<td>22 / 492</td>
<td>29 / 220</td>
</tr>
<tr>
<td>Lowest/highest tax rate §§</td>
<td>.40 / .59</td>
<td>.235 / .557</td>
<td>.185 / .62</td>
<td>.273 / .557</td>
<td>.185 / .455</td>
<td>.20 / .56</td>
<td>.20 / .40</td>
</tr>
<tr>
<td>Main tax credit*</td>
<td>individual</td>
<td>individual</td>
<td>family</td>
<td>family</td>
<td>individual</td>
<td>up to 6</td>
<td>3</td>
</tr>
<tr>
<td>Tax unit</td>
<td>choice of tax free allowance or child benefit</td>
<td>up to 2 tax credit per family members</td>
<td>up to 2 tax credit per child (plus additional amounts in some regions)</td>
<td>2 tax credit for married couples; 13 tax deduction for lone parents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family-related tax provision</td>
<td>unused deductions transferable to spouse</td>
<td>choice of tax free allowance or child benefit</td>
<td>up to 2 tax credit per dependent family members</td>
<td>up to 2 tax credit per child (plus additional amounts in some regions)</td>
<td>2 tax credit for married couples; 13 tax deduction for lone parents</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Social Assistance

Max. amount*	34 + housing allowance	18 + reasonable housing costs	24	13	none at the national level	none at the national level	18
Disregard*	up to 9	4	none at the national level	none at the national level	2 - 4		
Withdrawal rate	1	1	1	.75 - 1	1		

Note: social assistance is not taxable except in Denmark

Housing Benefit

| Max. amount* | 3 if no children; 14 if children | 17 | 15 | 25 | none at the national level | none at the national level | 100% of recognised rent; 100% of council tax |
| Withdrawal rate | .75 | .80 | .34 | .40 | .65% (housing benefit); 20% (council tax benefit) |

Family Benefits

| Amount* | 3–4 per child; higher for lone parents; plus day-care subsidy | 5–9 per child; plus 2 per child for lone parents; plus day-care subsidy | main benefit: 7 to 12 for 2nd and further children; special benefits for young children
main benefit: 100% income > 174-261 | 5–9 per child; plus 5–7 child raising benefits for very young children
main benefit: 100% once income > 174-261 | see employment conditional benefits
young child raising benefit: 20–40% once income > 62
100% of income > 55 |
| Withdrawal rate | .2 for first child, 0.2 for further children | 3–5 per child |

Unemployment Benefits

Floor	56 (if previous job full-time) 90% of gross minus SSC	30	33				
Rate or amount*	up to 42% of net exceeding 22	57.75% of gross	60% of net	30% of gross	70% of gross	18	
Ceiling	66	313	125	66	75		
Taxable §§§	IT: yes, SSC: partly	no	IT: yes, SSC: yes	no	IT: yes, SSC: no	IT: yes, SSC: reduced	IT: yes, SSC: no

Note: shown for initial phase of unemployment (after any waiting period if applicable) for persons aged 30+. Insurance is to some extent voluntary in Denmark and Finland

Notes: except for family benefits all rates are for single benefit recipients without children.

* in % of median gross employment income (not including employer social security contributions)
& MTR increases progressively between lower and middle and between middle and top tax bands

§ The lowest bounds accounts for standard tax-free allowances, deductions or exemptions available to single employees, i.e. represents the upper bound of the zero-tax income range

§§ rates include special social security tax (CSG: 7.5%, CRDS: 0.5%), solidarity surplus tax in Germany (5.5%); they combine flat-tax municipal taxation and progressive national taxation for Finland

For these two countries, municipal tax rates differ between municipalities and we count here the average (17.5% in Finland, 32.4% in Denmark). In Denmark, a 'tax shield' of 59% is applied as top rate.
Table 2: Data Description

<table>
<thead>
<tr>
<th>Country</th>
<th>Data</th>
<th>Year</th>
<th>size of selected sample</th>
<th>weighted no. of singles</th>
<th>proportion of all singles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>European Community Household Panel</td>
<td>1995</td>
<td>574</td>
<td>417,945</td>
<td>40%</td>
</tr>
<tr>
<td>Finland</td>
<td>Income distribution survey</td>
<td>1998</td>
<td>1193</td>
<td>421,447</td>
<td>38%</td>
</tr>
<tr>
<td>France</td>
<td>Household Budget Survey</td>
<td>1994/5</td>
<td>1639</td>
<td>3,615,095</td>
<td>40%</td>
</tr>
<tr>
<td>Germany</td>
<td>German Socio-Economic Panel</td>
<td>1998</td>
<td>1387</td>
<td>8,242,791</td>
<td>43%</td>
</tr>
<tr>
<td>UK</td>
<td>Family Expenditure Survey</td>
<td>1995/6</td>
<td>1227</td>
<td>5,172,454</td>
<td>47%</td>
</tr>
<tr>
<td>Italy</td>
<td>Survey of Households Income and Wealth</td>
<td>1996</td>
<td>1482</td>
<td>3,651,857</td>
<td>51%</td>
</tr>
<tr>
<td>Spain</td>
<td>European Community Household Panel</td>
<td>1996</td>
<td>738</td>
<td>1,297,780</td>
<td>37%</td>
</tr>
</tbody>
</table>

Table 3: Cut-off points, gross income and disposable income of the Income Groups

<table>
<thead>
<tr>
<th>Country</th>
<th>cut off point</th>
<th>Y_0</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>C_0</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>0</td>
<td>788</td>
<td>2050</td>
<td>2628</td>
<td>3942</td>
<td>5256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>0</td>
<td>1432</td>
<td>2342</td>
<td>3125</td>
<td>4499</td>
<td>6475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0</td>
<td>574</td>
<td>1492</td>
<td>1823</td>
<td>2735</td>
<td>3646</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0</td>
<td>1109</td>
<td>1643</td>
<td>2180</td>
<td>3136</td>
<td>4167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0</td>
<td>623</td>
<td>969</td>
<td>1242</td>
<td>1537</td>
<td>2027</td>
<td>2670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>0</td>
<td>627</td>
<td>1630</td>
<td>2094</td>
<td>3141</td>
<td>4188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>0</td>
<td>1184</td>
<td>1887</td>
<td>2503</td>
<td>3563</td>
<td>5013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All figures are in Euros per month. Group 1 starts at half the minimum wage (around 60% of the median income), group 2 at 1.3 time the minimum wage, group the median income, group 3 at 1.5 the median and group 5 at twice the median.
Table 4: Distribution of Singles between the different income groups (hi)

<table>
<thead>
<tr>
<th>Country</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>0.06</td>
<td>0.25</td>
<td>0.20</td>
<td>0.37</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Finland</td>
<td>0.08</td>
<td>0.28</td>
<td>0.22</td>
<td>0.28</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>France</td>
<td>0.07</td>
<td>0.20</td>
<td>0.23</td>
<td>0.28</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Germany</td>
<td>0.05</td>
<td>0.24</td>
<td>0.20</td>
<td>0.32</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Italy</td>
<td>0.09</td>
<td>0.22</td>
<td>0.18</td>
<td>0.27</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Spain</td>
<td>0.07</td>
<td>0.24</td>
<td>0.18</td>
<td>0.25</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>UK</td>
<td>0.15</td>
<td>0.17</td>
<td>0.21</td>
<td>0.25</td>
<td>0.12</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 5: Labor supply elasticity of Singles: a brief review

<table>
<thead>
<tr>
<th>Country</th>
<th>Data</th>
<th>Selection</th>
<th>Extensive elasticity</th>
<th>Intensive elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleven and Kreiner (2006a, 2006b)</td>
<td>Denmark</td>
<td>ECHP 97-98 singles</td>
<td>0.45</td>
<td>0.2</td>
</tr>
<tr>
<td>Bargain and Orsini (2006)</td>
<td>Finland</td>
<td>IDS 97 single women</td>
<td>0.18 - 0.33</td>
<td>0.18 - 0.34</td>
</tr>
<tr>
<td>Bargain and Orsini (2006)</td>
<td>France</td>
<td>HBS 95 single women</td>
<td>0.04 - 0.07</td>
<td>0.08 - 0.14</td>
</tr>
<tr>
<td>Laroque and Salanie (2001)</td>
<td>France</td>
<td>Tax revenue 97 single women</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Bargain and Orsini (2006)</td>
<td>Germany</td>
<td>GSOEP 98 single women</td>
<td>0.08 - 0.15</td>
<td>0.09 - 0.18</td>
</tr>
<tr>
<td>Haan and Steiner (2005)</td>
<td>Germany</td>
<td>GSOEP 02 single men</td>
<td>0.01 - 0.09</td>
<td>0.02 - 0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.06 - 0.19</td>
<td>0.09 - 0.28</td>
</tr>
<tr>
<td>Aaberge et al. (1998)</td>
<td>Italy</td>
<td>SHIW 1993 single women</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>single men</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Labeaga, Oliver and Spadaro (2007)</td>
<td>Spain</td>
<td>ECHP 95 singles</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Blundell and MaCurdy (1999)</td>
<td>UK</td>
<td>FES 1980 singles</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Market Income, Taxes, Benefits and Replacement Incomes, as a proportion of disposable incomes

All households

Bottom decile

Top decile

Source: EUROMOD (See http://www.eurex cess.ac.uk/mex/emodstats/index.php)
Figure 2: Budget Constraints (low-income singles)
Figure 3: Change in Gini of Market Income due to Taxes, Benefits Contributions and Replacement Incomes

Figure 4: The Distribution of Effective Marginal Tax Rate
Figure 5: Participation and Unemployment (1998)

Figure 6: Social Marginal Weights: Baseline

\[\eta = 0.25, \ \varepsilon_{low} = 0.25, \ \varepsilon_{high} = 0.25 \]
Figure 7: Social Marginal Weights: Sensitivity Analysis

$\eta = 0; \varepsilon_{\text{low}} = 0.25; \varepsilon_{\text{high}} = 0.25$ (baseline)

$\eta = 0.25; \varepsilon_{\text{low}} = 0.25; \varepsilon_{\text{high}} = 0.25$

$\eta = 0.5; \varepsilon_{\text{low}} = 0.25; \varepsilon_{\text{high}} = 0.25$

$\eta = 0.25; \varepsilon_{\text{low}} = 0.25; \varepsilon_{\text{high}} = 0.5$

$\eta = 0.25; \varepsilon_{\text{low}} = 0; \varepsilon_{\text{high}} = 0$
Figure 8: Hypothetical Budget Constraint for a Single Mother