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Chapter 1.   Cooperation, altruism and economic theory 
 
 
 1.1  A cooperative species 

 It is frequently said that homo sapiens is a cooperative species.   It is clearly not 

unique in this regard:  ants and bees cooperate, and perhaps other mammalian species do 

as well.  But Michael Tomasello (2014a, 2014b) argues, I think persuasively, that the 

only cooperative species among the five great apes (chimpanzees, bonobos, gorillas, 

orangutans, and humans) are the humans.   Tomasello believes that the tendency to 

cooperate with other humans is inborn.   He offers a number of examples of our features 

and behavior that are unique to humans among the five great apes, indicating that the 

tendency to cooperate must have evolved very early.    Here are three such examples: (1) 

among the great apes, humans are the only beings with sclera  (the whites of the eyes);  

(2) only humans point and pantomime; (3) only humans have language.    The conjecture 

is based on the fact that it is the sclera of the eye that enables you to see what I am 

looking at.  If I am looking at an animal that would make a good meal, and if you and I 

cooperate in hunting, it is useful for me that you can see the prey I am looking at, because 

then we can catch and consume it together.  Were you and I only competitors it would not 

be useful for me that you see the object of my gaze, as we would then fight over who gets 

the animal.   Thus, one would expect the mutation of sclera to be selected in a 

cooperative species, but not to be selected in a competitive one1.    Miming and pointing 

probably first emerged in hunting as well, and were useful for members of a species who 

cooperated in hunting.  Chimpanzees, who do not cooperate in hunting, do not mime or 

point2 -- either with other chimpanzees, or with humans.  Miming and pointing are the 

predecessors of language.   Complex organs like the eye and language must have evolved 

incrementally as the result of selection from among many random mutations.  Tomasello 

argues that language would not be useful, and therefore would not evolve in a species that 

did not already have cooperative behavior.   If you and I are only competitors, why 

should you believe anything I tell you?   I am only out for myself, and must be trying to 

mislead you, because cooperation is not something in our toolkit.  So language, were 

                                                
1

 See Kobayoshi and Kojima (2001). 
2

 Tomasello disagrees with some who argue that chimpanzees do cooperate in hunting smaller monkeys. 
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primitive forms of it to emerge in a non-cooperative species, would die out for lack of 

utility. 

 Tomasello’s main work consists of experiments in which he compares human 

infants to chimpanzees, who are set with a task in which cooperation would be useful.  

The general outcome of these experiments is that human infants (ten months old or older) 

cooperate immediately, while chimpanzees do not.   Often, the cooperative project that 

Tomasello designs in the lab involves working together to acquire some food, which then 

must be shared.  If chimpanzees initially cooperate in acquiring the food, they find they 

cannot share it peacefully, but fight over it, and hence they do not cooperate the next time 

the project is proposed to them, for they know that the end would be a fight, which is not 

worth the value of the food acquired.   Human infants, however, succeed immediately 

and repeatedly in cooperating in both the productive and consumptive phase of the 

project3. 

 There are, of course, a huge number of examples of human cooperation, involving 

projects infinitely more complex than hunting or acquiring a piece of food that is difficult 

to get.   Humans have evolved complex societies, in which people live together, cheek by 

jowl, in huge cities, and do so relatively peacefully.    We organize complex projects, 

including states and taxation, the provision of public goods, large firms and other social 

organizations, and complex social conventions, which are only sustained because most of 

those who participate do so cooperatively – that is, they participate not because of the 

fear of penalties if they fail to do so, but because they understand the value of 

contributing to the cooperative venture.  (This may seem vague at this point, but will 

become more precise below.)    We often explain these human achievements by the high 

intelligence that we uniquely possess.   But intelligence does not suffice as an explanation.  

The tendency to cooperate, whether inborn or learned, is surely necessary.  If we are 

persuaded by Tomasello, then the tendency to cooperate is inborn and was necessary for 

the development of the huge and complex cooperative projects that humans undertake. 

                                                
3

 Formally, the game being played here is the game of chicken.   The issue to whether to share the captured food peacefully or to fight 

over it.   In chapter 2, we show that the cooperative solution to the game of chicken is usually to share peacefully, but this depends 

upon the precise values of the payoffs.   
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 Of course, Tomasello’s claim (that humans are the uniquely cooperative great 

ape) does not fall if cooperation is learned through culture rather than transmitted 

genetically.  In the former case, cooperation would be a meme, passed down in all 

successful human societies.   

 It is even possible that large brains that differentiate humans from the other great 

apes evolved as a result of the cooperative tendency.   Why?  Because large brains are 

useful for complex projects – initially, complex projects that would further the fitness of 

the members of the species.  From an evolutionary viewpoint, it might well not be 

efficient to spend the resources to produce a large brain, were it not necessary for 

complex projects.  Such projects will not be feasible without cooperation:  by definition, 

complexity, here, means that the project is too difficult to be carried out by an individual, 

and requires coordinated effort.   If humans did not already have a tendency to cooperate, 

then a mutation that enlarged the brain would not, perhaps, be selected, as it would not be 

useful.   So not only language, but intelligence generally, may be the evolutionary 

product of a prior selection of the cooperative ‘gene.’   

 Readers may object:  cooperation, they might say, is fairly rare among humans, 

who are mainly characterized by competitive behavior.   Indeed, what seems to be the 

case is that cooperation evolves in small groups – families, tribes – but that these groups 

are often at war with one another.   Stone-age New Guinea, which was observable up 

until around the middle of the twentieth century, was home to thousands of tribes (with 

thousands of languages) who fought each other; but within each tribe, cooperation 

flourished.   (One very important aspect of intra-tribal cooperation among young men 

was participating in warfare against other tribes. See Bowles and Gintis (2011), who 

attribute the participation of young men in warring parties against other tribes as due to 

their altruism towards co-tribals.  I am skeptical that altruism is the key here, rather than 

cooperation.)     Indeed, up until the middle of the twentieth century (at least), human 

society has been characterized by increasingly complex states, in which cooperative 

behavior is pervasive internally, but between whom there is lack of trust.   Sharp 

competition between states (war) has been pervasive.   So the human tendency to 

cooperate is, so it appears, not unlimited, but generally, as history has progressed the 
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social units within which cooperation is practiced have become increasingly large, now 

sometimes encompassing over a billion humans. 

  

 1.2  Cooperation versus altruism 

 For members of a group to cooperate means that they ‘work together, act in 

conjunction with one another, for an end or purpose (Oxford English Dictionary).’  There 

is no supposition that the individuals care about each other.   Cooperation may be the 

only means of satisfying one’s own self-interested preferences.    You and I build a house 

together so that we may each live in it.  We cooperate not because of an interest in the 

other’s welfare, but because cooperative production is the only way of providing any 

domicile.   The same thing is true of the early hunters I described above:  without 

cooperation, neither of us could capture that deer, which, when caught by our joint effort, 

will feed both of us.  In particular, I cooperate with you because the deer will feed me.  It 

is not necessary that I ascribe any value to the fact it will feed you, too. 

 Solidarity is defined as ‘a union of purpose, sympathies, or interests among the 

members of a group (American Heritage Dictionary).’   H.G. Wells is quoted there as 

saying, “A downtrodden class … will never be able to make an effective protest until it 

achieves solidarity.”     Solidarity, so construed, is not the cooperative action that the 

individuals take, but rather a characterization of their objective situation: namely, that all 

are in the same boat.  I take ‘a union of interests’ to mean we are all in the same situation 

and have common preferences.    It does not mean we are altruistic towards each other.    

Granted, one might interpret ‘a union of …sympathies’ to mean altruism, but I choose to 

focus rather on ‘a union of purpose or interests.’    The Wells quote clearly indicates the 

distinction between the joint action and the state of solidarity, as the action proceeds from 

the solidaristic situation.  

 Of course, people may become increasingly sophisticated with respect to their 

ability to understand that they have a union of interests with other people.   The old trade-

union expression “we all hang together or we all hang separately” urges everyone to see 

that he does, indeed, have similar interests to others, and hence it may be logical to act 

cooperatively (hang together).   Notice the quoted expression does not appeal to our 

altruism, but to our self-interest, and to our solidaristic state.   
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 My claim is that the ability to cooperate for reasons of self-interest is less 

demanding than the prescription to care about others.     I believe that it is easier to 

explain the many examples of human cooperation from an assumption that people learn 

that cooperation can further their own interests, than to explain those examples by 

altruism.     For this reason,  I separate the discussion of cooperation among self-

interested individuals from cooperation among altruistic ones; the latter topic will be 

addressed mainly in chapter 8. 

 Altruism and cooperation are frequently confounded in the literature.  I do not 

mean the example I gave from Bowles and Gintis (2011), which explicitly views altruism 

as the characteristic that induces young men to undertake dangerous combat for their 

community.   I mean that writers often seem not to see a distinction between altruism and 

cooperation.  The key point is that cooperation of an extensive kind can be undertaken 

because it is in the interest of each, not because each cares about others.  I am skeptical 

that humans can, on a mass scale, have deep concern for others whom they have not even 

met, and so to base grand humanitarian projects on such an emotion is risky.   I do, 

however, believe that humans quite generally have common interests, and it is natural to 

pursue these cooperatively.  (One can hardly avoiding thinking of the control of 

greenhouse gas emissions as a leading such issue at present.)   It seems a safer general 

strategy to rely on the underlying motive of self-interest, active in cooperation, than on 

love for others, active in altruism. 

 The necessary conditions for cooperation are solidarity (in the sense of our all 

being in the same boat) and trust – trust that if I take the cooperative action, so will 

enough others to advance our common interest.    Solidarity comes in different degrees – 

recall the familiar expression that first the tyrants come after the homosexuals and the 

Jews… and finally they come after us.  The listener is being urged, here, to see that ‘we 

are all in the same boat,’ even if differences among us may frustrate that understanding.    

Trust usually must be built by past experience of cooperation with the individuals 

concerned.    Trust is usually distributed in a somewhat continuous way in a population:  

some people are unconditional cooperators, who will cooperate regardless of the 

participation of others, some will cooperate when a certain threshold is reached (say, 20% 

of others are cooperating), and some will never cooperate, even if all else are doing so.    
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(More on this in chapter 5.)    The general name we have for persons of the first kind is 

saint.   

 

 1.3  Cooperation and economic theory 

 Economic theory has focused not on our cooperative tendencies but on our 

competitive ones.   Indeed, the two great theoretical contributions of economics are both 

models of competition: the theory of competitive or Walrasian equilibrium, and game 

theory, with Nash equilibrium.   It is clear that cooperation does not exist in the everyday 

meaning of the word in these theories.   There is indeed nothing that can be thought of as 

social action.  The kind of reasoning, or optimization, that individuals engage in in these 

theories is autarkic. 

 In general equilibrium theory, at least its most popular Walrasian version, 

individuals do not even observe what other people are doing: they simply observe the 

price vector and optimize against prices4.   Prices summarize all the information about 

what others are doing, and so it is superfluous for the individual to have specific  

information about others’ actions.  This indeed is usually championed as one of the 

beauties of the model – its ability to decentralize economic activity in the sense that each 

person has to know only information about itself  (preferences for humans, technologies 

for firms) for Pareto efficiency to be achieved.    To be precise, the ‘achievement’ of 

efficiency is an incomplete story, as it lacks dynamics: we only know that if an 

equilibrium is reached, it will be Pareto efficient, and the theory of dynamics remains  

incomplete.    (Of course, the first theorem of welfare economics only holds under 

stringent and unrealistic conditions: economic problems that require cooperation, such as 

the financing of public goods and the regulation of public bads, are stipulated not to 

exist.)   In the Nash equilibrium of a game each player treats his competitors as inert: he 

imagines a counterfactual where he alone changes his strategy, the others’ holding theirs 

                                                
4

 The Walrasian model is to be contrasted with the general-equilibrium model of Makowski and Ostroy (2001) who formalize the 19th 

century Austrian tradition in which equilibrium is produced by many bargaining games, where each attempts to extract as much 

surplus as she can from her opponents.  Prices, for these authors, are what one sees after the ‘dust of the competitive brawl clears,’  

and do not decentralize economic activity as with the Walrasian auctioneer.  Their model cannot be accused of being asocial, although 

it is hyper-competitive.  



 7 

fixed.  A Nash equilibrium is a strategy profile such under each person’s strategy is 

optimal (for himself) given the inertness of others’ strategies.    

 There is no doubt that general equilibrium and game theory are beautiful ideas; 

they are the culmination of what is probably the deepest thinking in the social sciences 

over the past several centuries.  But they are not designed to deal with that aspect of 

behavior that is apparently unique to humans (among the great apes), our ability to 

cooperate with each other.  

   Of course, economic theory does not ignore cooperation, but it attempts to fit it 

into the procrustean bed of competition.   Until behavioral economics came along, the 

main way of explaining cooperation – which here can be defined as the overcoming of 

the Pareto inefficient Nash equilibria that standardly occur in games – was to view 

cooperation as a Nash equilibrium of a complex game with many stages.  Players are 

induced to take the cooperative action for fear of being punished by others in the next 

stage if they fail to do so; and punishment, being costly for the enforcer, is only carried 

out against shirkers in the first stage if there is a third stage in which those enforcers who 

fail to punish are themselves punished.    Clearly, the game must have an infinite number 

of stages, or at least an unknown number of stages, for this approach to support a 

cooperative equilibrium.   For if it were known that the game had only three stages, say, 

then enforcers in the third stage would not punish deviators in the second stage, because 

nobody would be around to punish them for failing to do so  (there being no fourth stage).  

So those who are charged with punishing in the second stage will not do so (punishing 

being costly), which means that people can deviate from cooperation in the first stage 

without fear of punishment.     Thus, with a known, finite number of stages, the good 

equilibrium (with cooperation) unravels.   For the sake of specificity, the reader can think 

of the repeated prisoners’ dilemma as an example where playing the ‘cooperative’ 

strategy can be enforced with an infinite number of stages. 

 But is this really why people cooperate?   Mancur Olson (1965) argued that it is.   

Workers join strikes only because they will be punished by other workers if they do not; 

they join unions not in recognition of their solidaristic situation, but because they are 

offered side-payments to do so.    



 8 

 Communities that suffer from the ‘free rider problem’ in the provision of public 

goods often do adopt punishment strategies to induce members to cooperate.   Fishers 

must often control the total amount of fishing to preserve the fishery.   Lobster fishermen 

in Maine apparently had a sequence of increasing punishments for those who deviated 

from the prescribed rules.   If a fisherman put out too many lobster nets, the first step was 

to place a warning note on the buoys of the offending nets.  If that didn’t work, a 

committee went to visit him.  If that didn’t work, his nets were destroyed.    Now 

consider the optimization problem of those who were appointed to do these acts of 

warning or punishment.  If they failed in their duty, there must be another group who 

were charged with punishing them – or perhaps this would be accomplished simply by 

social ostracism.  But is it credible that the whole system was maintained although 

everyone was in fact optimizing in the autarkic Nash way?  I think not.   There must have 

many who were committed to implementing the cooperative solution, many who did not 

require the threat of punishment to behave properly, at any stage of the game.     

 The explanation of cooperation as a Nash equilibrium of a game with 

punishments seems Ptolemaic to me.  It is an effort to fit an observed outcome into a 

theory that indeed cannot explain it in a simple way. 

 The second place where we find cooperation addressed in neoclassical economic 

theory is in the theory of cooperative games.   A cooperative game with a player set N is a 

function v mapping the subsets of N into the real numbers.  Each subset S ∈2N  is a 

coalition of players, and the number v(S)   is interpreted as the total utility (let us say) 

that S’s members can achieve by cooperation among themselves.   A solution to a 

cooperative game is way of assigning utility to the members of N which does not violate 

the constraint that total utility cannot exceed v(N ) .    For instance, the core is the set of 

‘imputations’ or utility allocations such no coalition can do better for itself by internal 

cooperation.   If (x1,..., xn )  is in the core, then the following inequality must hold: 

 (∀S ∈2N )(v(S) ≤ xi )
i∈S
∑  . (1.1) 

While cooperation is invoked to explain what coalitions can achieve on their own, the 

core itself is a competitive notion: the values v(S)  are backstops that determine the 
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nature of competition among the player set as a whole.   It is therefore somewhat of a 

misnomer to call this approach ‘cooperative.’  Indeed,  Mas-Colell (1987, p.659) writes: 
The typical starting point [of cooperative game theory] is the hypothesis that, in 
principle, any subgroup of economic agents (or perhaps some distinguished 
subgroups) has a clear picture of the possibilities of joint action and that its members 
can communicate freely before the formal play starts.  Obviously, what is left out of 
cooperative theory is very substantial. 
 

Indeed! 
 

 Behavioral economists have responded to this unlikely rationalization of 

cooperative behavior as a Nash equilibrium of a complex game with punishments by 

fiddling with the standard assumption of self-interested preferences.   There are many 

versions, but they share in common the move of putting new and ‘exotic’ arguments into 

preferences – arguments like a concern with fairness (Fehr [1999] and Rabin [2003]),or 

giving gifts to one’s opponent (Akerlof [1968]) , or of seeking a warm glow (Andreoni 

[1990]).  Once preferences have been so altered then the cooperative outcome can be 

achieved as a Nash equilibrium.   Punishments may indeed be inflicted by such players 

against others who fail to cooperate, but it is no longer necessarily costly for the enforcer 

to punish, because his sense of fairness has been offended, or a social norm has been 

broken that he values.   Or he may even get a warm glow from punishing the deviator!    I 

will discuss these approaches more below.   My immediate reaction to them is that they 

are too easy – in the sense of being non-falsifiable.  The invention of the concept of a 

preference order was a wonderful conceptualization, but one must exercise a certain 

discipline in using it.   Just as econometricians are not free to mine the data, so theorists 

should not allow everything (‘the kitchen sink’) to be an argument of preferences.   This 

is, of course, a personal judgment that can be challenged.   

 If this were the only critique of behavioral economics, it might be minimized.  A 

more formidable critique, I think, is that the trick of modifying preferences only works – 

in the sense of producing the ‘good’ Nash equilibrium – when the problem is pretty 

simple.  (Simple usually means a player has only a few strategies, and that the 

‘cooperative’ strategy is obvious to everyone.  This is true in most 2 x 2 matrix games, in 

laboratory games involving the voluntary contribution to a public good, and in ultimatum 

and dictator games.)     If we consider, however, the general problem of the tragedy of the 



 10 

commons in common-pool resource games, the cooperative strategy – that is, the one that 

is part of a Pareto-efficient solution – is not obvious.   Some kind of decentralization of 

cooperation is needed, just as the Walrasian equilibrium of a market economy is not 

obvious to anyone, and requires decentralization.   

 In other words, the moves of behavioral economics do not supply , as far as I 

know, microfoundations for cooperation of a general kind.  And if cooperation is a major 

part of what makes us human, we should be looking for its general microfoundations. 

 

1.4  Simple Kantian optimization 

 This book will offer a partial solution, which I call Kantian optimization, with its 

concomitant concept of Kantian equilibrium.   The new move is not to fiddle with 

preferences but with how people optimize.  In the simplest case, the game is symmetric.    

A two-person game is symmetric if the payoff matrix is symmetric.  In a symmetric game, 

each player asks himself, “What is the action I would like all of us to take?”     Suppose 

players have a common strategy set S , which is an interval of real numbers.  Let the 

payoff function of player i be a function V i  of the profile of strategies of all players.  

Denoting strategies as p,q∈S  then each of the n players solves the problem: 

 

 max
p∈S

V i (p, p,..., p)  . (1.2) 

Each will have the same optimal solution to this problem, some p*  , because all the V i   

coincide on the diagonal of Sn   in a symmetric game. 

 

Definition 1.1  In a symmetric game, the strategy that each would like all to play is a 

simple Kantian equilibrium (SKE). 

 

 Invoking Kant is due to his categorical imperative, stating one should take those 

actions one would like to see universalized.  The concept of Kantian equilibrium will be 

generalized beyond the case of symmetric games below, but it is useful to consider these 

games first – for one, laboratory experiments in economics almost all involve symmetric 
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games, and secondly, it is in symmetric games that Kantian optimization takes its 

simplest form. 

 It is important to note that the Kantian optimizer asks what common strategy 

would be best for him:  he is not altruistic, in thinking about the payoffs of others.  He 

need only know his own preferences and that the others have the same set of strategies.    

Assuming he does know the game is symmetric, he also knows, however, that this 

strategy will be chosen by all others who ask the same question.    And surely that 

question is motivated by our ‘all being in the same boat,’ here modeled as the game’s 

being symmetric.    I do not deny that a social norm is involved:   but the norm is not an 

argument of preferences  (we may, for instance, assume the payoff functions are those of 

the prisoners’ dilemma), but rather is in how we optimize, which is to ask what is the 

common strategy we would (each) like played.   I do not wish to motivate this kind of 

behavior as magical thinking: I am not proposing that players think ‘if I decide to this , 

then everyone situated like me will also so decide.’  Rather, it is symmetry of the 

situation that implies that we should all do the same thing, and therefore, of course, it 

should be the best ‘same thing’ that we can do – best for me (and, as it happens, for you, 

too).   

 



Words: 4571 

Chapter 2.   Simple Kantian equilibrium 

 To keep the exposition simple, I will assume that the games in sections 2.1 and 

2.2 have two players.  Generalization to n players is straight-forward. 

 

2.1 Monotonicity and Pareto efficiency 

 In a symmetric game with two players, the payoffs are V (p,q) and V (q, p)  for 

players One and Two, respectively, for some common payoff function V, where p (q) is 

the strategy of player One (Two), assumed here to be chosen from a set of real numbers, 

S.   The game is (strictly) monotone decreasing if each player’s payoff is (strictly) 

monotone decreasing in the strategy of the other player(s);  it is (strictly) monotone 

increasing if it is strictly monotone increasing in the strategy of the other player(s).  

  

Definition 2.1   A game is (strictly)monotone if it is either (strictly) monotone increasing 

or (strictly) monotone decreasing. 

 

Proposition 2.1  In a symmetric strictly monotone game, the SKE is Pareto efficient. 

Proof: 

Let the game be strictly monotone increasing. Let  p*  be an SKE, and suppose it is 

Pareto-dominated by (p,q)  , so: 

  V (p,q) ≥V (p*, p*) and V (q, p) ≥V (p*, p*)   

with at least one inequality strict.   Obviously p ≠ q  , for otherwise we contradict the 

assumption that p*   is a SKE.   Suppose p < q  .   Then: 

  V (q,q) >V (q, p) ≥V (p*, p*)  , 

where the first inequality follows by the strict monotone-increasing property of the game, 

invoked for the second player.  But this inequality contradicts the premise that p*  is an 

SKE.   

 An analogous argument works if the game is strictly monotone decreasing.  
 
 

2.2  Two-person symmetric games  
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 The prisoners’ dilemma is given by the payoff matrix below.  In the discrete 

version of the game, call ‘Defect’ strategy 0 and ‘Cooperate’ strategy 1.   Then the game 

is strictly monotone increasing, and so the simple Kantian equilibrium, which is (Coop, 

Coop), is Pareto efficient  (by Proposition 2.1).    If we move to mixed strategies, where 

the strategy space is S = [0,1]   then the equilibrium depends on the payoff matrix, which 

is, in general form1: 

   

 Cooperate Defect 

Cooperate (0,0) (-c,1) 

Defect (1,-c) (-b,-b) 

 

where 0 < b < c  .    The payoff function of the row player is 

V PD (p,q) = − p(1− q)c + (1− p)q − b(1− p)(1− q)  , where p (q) is the probability that Row 

(Column) plays Cooperate.  The game is symmetric  (thus, the payoff function of the 

column player is V PD (q, p)  ).   Recall that in the mixed-strategy game, Pareto efficiency 

is defined in terms of expected utility (i.e., ex ante efficiency). 

 The PD game is strictly monotone increasing: just note that 

  ∂V PD (p,q)
∂q

= pc + (1− p)(1+ b) > 0  . 

It follows immediately from Proposition 2.1 that the SKE of the mixed-strategy PD game 

is Pareto efficient. 

   

Proposition 2.2   

a. The SKE of the PD game is Pareto efficient. 

b. If 1≤ c ≤1+ b  , the SKE of the PD game is (p*, p*) = (1,1)  . 
                                                
1

 Since the payoffs are von Neumann- Morgenstern utilities, we are free to pick one payoff to be 0 

and one to be 1 for each player. Thus, the PD game in mixed strategies is a two-parameter game – 

here, (b,c)  .  
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c. If c <1  the SKE of the PD game is p*= 2b +1− c
2(1+ b − c)

 and 0 < p*<1  . 

d. If 1+ b < c  , the SKE of the PD game is p*= 1  . 

Proof:    

Part a follows from Proposition 2.1 since the PD game is strictly monotone increasing. 

The function V (p, p)   is concave if and only if c − b ≤1  .   In this case the first-order 

condition d
dp
V PD (p, p) = 0   gives the SKE.  If 1≤ c  the solution is a corner one, at 

p* = 1   (part b ).   If c <1  , the solution is interior, and given by part c.    If c − b >1  , the 

function V PD (p, p)   is convex, and hence the SKE occurs either at p = 0 or 1  .   The 

value is higher at p = 1 , giving part d.     

  

 It is interesting that in the case of part c, although the simple Kantian equilibrium 

is Pareto efficient, it entails less than full cooperation.  The intuition here is that the 

payoff to defecting against a cooperator (which is one) is high, and so it is optimal for 

both players not to cooperate fully.    This shows that cooperation, in the Kantian sense, 

does not always deliver what we might intuitively consider to be ‘ideal’ cooperative 

behavior.  

 We next consider the game of ‘chicken,’ also known as ‘Hawk-Dove’ game, 

which we take as the names of the strategies.   The payoff matrix is given by: 

    

 Dove Hawk 

Dove (c,c) (b,1) 

Hawk (1,b) (0,0) 

 

where 1> c > b > 0  .    The payoff function is V HD (p,q) = cpq + bp(1− q)+ q(1− p)  , 

where p (q) is the probability that the row (column) player plays Dove.  We immediately 

verify that HD  is a strictly monotone increasing game, and so the SKE is Pareto efficient.   

The SKE is given by: 
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   p*=
1,  if c ≥ 1+ b

2
1+ b

2(1+ b − c)
,  if c < 1+ b

2
.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  

Thus, peace reigns if c is sufficiently large; otherwise, there is a positive probability that 

peace reigns although it is not assured.  There are three Nash equilibria to HD:  

(1,0),(0,1),  and ( b
1+ b − c

, b
1+ b − c

)  .  The SKE Pareto dominates the symmetric Nash 

equilibrium. 

 We finally consider the ‘battle of the sexes.’ For the game to be symmetric  (i.e., 

for V Row (p,q) =VCol (q, p)  ) we must write the payoff matrix unconventionally, as 

follows: 

 

 

 Dance Box 

Box (b,b) (1,a) 

Dance (a,1) (0,0) 

 

That is, the ‘first’ strategy for the  Row player (“He”) is the event he prefers, and the first 

strategy for the Column player (“She”) is the event she prefers.  The game has two 

parameters, (a,b)   where 0 < b < a <1  .  The payoff function for the row player is

V BS (p,q) = bpq + p(1− q)+ aq(1− p)  and the column player’s payoff is V BS (q, p)  . The 

simple Kantian equilibrium in pure strategies is (Dance, Box).  It is not Pareto efficient, 

being dominated by both (Dance, Dance) and (Box, Box).  

 The reader can check that the BS game in mixed strategies is not a monotone 

game. We have: 

Proposition 2.3    



 5 

a.The SKE of the 2 × 2   mixed-strategy BS game is (p*, p*) = 1+ a
2(1+ a − b)

 , and 

0 < p* <1 .  

b. There are BS games in which the SKE is not Pareto efficient. 

c.  The Nash equilibrium of the mixed-strategy BS game is p̂ = q̂ = 1
1+ a − b

 .  It is strictly 

Pareto dominated by the SKE. 

d.  p* < p̂  . 

 

Proof:   

Compute that V BS (p, p) = (b − (1+ a))p2 + p(a +1)  , which is a strictly concave function 

of p.  Hence the FOC gives us the SKE, which is p*= 1+ a
2(1+ a − b)

.  It is easy to compute 

that p*   is interior in [0,1].   Compute that V BS (p*, p*) = (a +1)2

4(a +1− b)
.    Let  

a = 0.75, b = .01, p = 0, q = 0.6  .  Then 

 V BS (p*, p*) = 0.4400,V BS (p,q) = 0.45,V BS (q, p) = 0.6  , 

and so (p*, p*)   is Pareto-dominated by (p,q)  .    

 The Nash equilibrium of the mixed-strategy BS game is computed from the first-

order conditions for Nash equilibrium.  Write V BS (p,q) = p(bq +1− q − aq)+ aq  .   

Therefore,  Row’s best response to q is: 

  p =
1,  if bq +1− q − aq > 0
0,  if bq +1− q − aq < 0

[0,1],  if bq +1− q − aq = 0

⎧

⎨
⎪

⎩
⎪

  

It follows that (1,1) is not a Nash equilibrium, because if q = 1  , the best response of Row 

is 0.    Likewise (0,0) is not a Nash equilibrium, because if q = 0   the best response of 

Row is 1.    The only Nash equilibrium occurs in the third case, when p = q = 1
1+ a − b

 .  
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 In other words, simple Kantian optimization does not generally deliver Pareto 

efficiency in the BS game, although the SKE always dominates the Nash equilibrium of 

the game.   From part d, we have that in the SKE, both ‘She’ and ‘He’ offer to attend 

their favorite event with lower probability than in the Nash equilibrium (NE): in other 

words, they compromise more in SKE than in NE.    

 More generally, we must have that, in any symmetric game, the SKE Pareto 

dominates the symmetric NE, as long as the two equilibria are not the same, because the 

symmetric NE is of the form (p, p) , and SKE maximizes the payoff of the players on the 

diagonal of strategy space S2  . 

 For Nash equilibrium, it does not matter in which order we write the strategies.  

But for Kantian equilibrium it does, because Kantian optimization requires a conception 

of which strategies are the ‘same’ for the two players.   In the above formulation, of the 

battle of the sexes,  we identified the first strategy for the two players as the event that he 

or she preferred.   If we write the payoff matrix in its traditional form, then the payoff 

matrix is: 

 

   

 Box Dance 

Box (1,a) (b,b) 

Dance (0,0) (a,1) 

 

The game in this form is not symmetric.  We cannot suppose that a simple Kantian 

equilibrium exists, and in fact one does not exist.  His payoff function is now 

V̂ (p,q) = pq + bp(1− q)+ (1− p)(1− q)a , and V̂ (p, p)   is maximized at p = 1.  Her payoff 

function is maximized at q = 0  , and so a SKE , indeed, does not exist. 

 

 

2.3  Some simple non-symmetric games 

 



 7 

  Besides the 2 × 2  games, three other simple games about which much has been 

written are the dictator, ultimatum and trust games.   I will assume classical preferences: 

a player’s von Neumann Morgenstern utility is some strictly concave increasing function 

of the monetary prize, u(x) , normalized so that u(0) = 0 and u(1) = 1 .  The second 

player’s vNM utility function is v ,  similarly normalized.  In the stochastic dictator game,  

Nature chooses one of two players to be the dictator, who then assigns a division of a 

dollar between herself and the other player.   Thus, assuming each player is chosen to be 

the dictator with probability one-half, the expected utility of first player, if she keeps x 

and the second player, if chosen, decides to keep y, is 1
2
(u(x)+ u(1− y))  .  In a simple 

Kantian equilibrium,  the first player chooses x   to maximize 1
2
(u(x)+ u(1− x))  , the 

solution to which is x = 1
2

 .    Clearly, the second player also chooses x = 1
2

 .   Strict 

concavity is necessary to generate this result. 

 In the stochastic ultimatum game, a player’s strategy consists of an ordered pair 

(x, z)  , where x is what he will give to the other player, should he be chosen to be the 

decision maker, and z is the minimum that he will accept, should the other player be 

chosen the decision maker.  The game has three stages:  first, Nature chooses the 

ultimator; second, the ultimator presents an offer; third, the other player either accepts or 

rejects.  The unique subgame perfect Nash equilibrium is (x, z) = (1,0) .  

 It is not obvious how to model cooperation in the ultimatum game.  This is the 

first time we have encountered a game where the strategy is multi-dimensional.  It seems 

to me a Kantian should think as follows.   If I were chosen the ultimator, and were to 

propose to keep x, this must be the amount I would also like the other person to keep,  

were she chosen to be the ultimator, and hence I must accept any amount from her that is 

at least 1− x  .   Therefore, z ≤1− x .  Consequently, the simple Kantian solution solves 

the program: 

  

max 1
2
u(x)+ 1

2
u(z)

subj. to
z ≤1− x
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The unique solution, if u is strictly concave, is (x, z) = (1
2
, 1
2
) . 

 Arguably, the simple Kantian equilibria, in these two games, is closer to what is 

often observed in experiments than the Nash equilibrium.   Moreover, we have 

established this result without recourse to including a sense of fairness in the utility 

function.  Granted, in the ultimatum game, players who reject offers of less than 0.25 

may say they do so because the offer was unfair.   My claim is that those offers are 

considered unfair because these are not the offers a person should make if he recognizes 

the arbitrariness of being chosen the ultimator.   Thus, one uses the Kantian protocol 

because the situation strongly suggests that ‘we are all in the same boat’ -- Nature is just 

flipping a coin to choose the ultimator .  In more conventional language, it is a social 

norm to optimize in the Kantian manner in situations of solidarity, and deviators are 

punished by norm followers.  The same explanation applies in the dictator game, even 

though no retaliation is possible against a stingy dictator.   The arbitrariness of Nature’s 

choice induces, in players, use of the Kantian protocol.  

 These games demonstrate what is a general feature of Kantian optimization in 

stage games.    The notion of subgame perfection does not apply.  Fairness enters not as 

an argument of preferences, but as the realization that either player could have been 

chosen by Nature to be the first.   Thus a Kantian optimizer in these games ask:  How 

would I like each of us to play if each of us could be chosen to be the first or second 

player?    

 Finally, I discuss the ‘trust game,’  which is a public-good game. There are two 

players, who draw lots to determine who moves first.  Each player is endowed with M 

units of value.   Player One chooses an amount, x, to give to Player Two.  Player Two, 

however, receives ax units of value, where a >1  is a constant known to both.    Then 

Player Two returns some amount, y, to Player One and the game is over.   It is played 

only once.  

 Conventionally, this game is modeled as a stage game, with three stages: first, 

Nature chooses the order of players; second, the first player moves; third, the second 

player moves.   The unique subgame perfect Nash equilibrium is x = y = 0  if the players 

have self-interested preferences.  
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 Suppose a player’s von Neumann-Morgenstern utility function for money lotteries 

is u.    Before the game begins, her expected utility is 1
2
u(M − x + y)+ 1

2
u(M + ax − y)  . 

She chooses a strategy (x, y)  that she would like both players to choose, which is the one 

that maximizes her expected utility: 

   

max 1
2
u(M − x + y)+ 1

2
u(M + ax − y)

s.t.
0 ≤ x ≤ M
0 ≤ y ≤ M + ax

  

If the agent is risk averse (u is strictly concave), the unique solution to this program is 

   x = M , y = (1+ a)M
2

 . 

Thus, the Kantian optimizer does not break the game up into stages.   She recognizes that, 

before the game begins, both players are ‘in the same boat,’ and calculates the strategy 

(x, y)   that she would like each to play.   Total wealth is maximized when x = M   

(regardless of what the second player does).  At the simple Kantian equilibrium, the total 

wealth is split equally between the two players:  the solution engenders ex post efficiency 

and equity (in an obvious sense).     The game need not even be symmetric – players will 

converge on this equilibrium regardless of their risk preferences, so long as they are both 

risk averse. 

 Cox, Ostrom et al (2009) perform the trust game with students, and report the 

results.  It appears from Figure 4.1 of their paper that out of 34 games played by different 

players, three played the simple Kantian equilibrium.    (Cox, Ostrom et al (2009) do not 

call it that: I am imposing my interpretation on the results.)   In 11 out of 34 games, the 

first player played x = M  : that is, he played his part of the SKE.  In only three of these 

cases, however, did the second player respond with the value of y associated with the 

SKE.    However, in 9 out of these 11 cases, the second player returned at least M to the 

first player.   When the second player returns exactly M, she is, of course, keeping the 

entire surplus generated from cooperation, rather than sharing it with the first player, but 

she leaves the first player whole.   In four out of 34 games, the Nash equilibrium was 

played.  In six out of 34 games, the first player contributed a positive amount to the 
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second, and the second responded Nash, by returning zero to the first.   The authors 

conduct interviews with the participants after the conclusion of the game, and discover, 

unsurprisingly, that playing x = M is associated with having trust in others.   

 Very little interpretive gloss on the results is provided in Cox, Ostrom et al 

(2009); however,  Walker and Ostrom (2009) do provide an interesting gloss on the 

results of the earlier paper.  The authors discuss the results of experiments with three 

games:  the trust game of Cox, Ostrom et al (2009), another public-goods game, and a 

common-pool-resource game.    They write that each of these games are instances of 

‘social dilemmas:’     

 

Social dilemmas characterize settings where a divergence exists between expected 

outcomes from individuals pursuing strategies based on narrow self-interests versus 

groups pursuing strategies based on the interests of the group as a whole… individuals 

make decisions based on individual gains rather than group gains or losses; and 

environments that do not create incentives for internalizing group gains or losses into 

individuals’ decision calculus. 

  

 From my point of view, these authors are confounding cooperation with altruism.   

As I showed above, the fully cooperative solution is attained by a Kantian optimizer who 

has no concern for others:  caring about group gains is irrelevant.   Saying that the 

problem in social dilemmas is based upon ‘a divergence between …narrow self-interest 

versus …strategies based on the interests of the group as a whole’   is, for me, a 

gratuitous interpretation of the thought process.     Playing the strategy that one would 

like everyone to play is, for me, motivated entirely by self-interest, not by a concern for 

the welfare of the group as a whole.   It entails a recognition that cooperation can make 

me better off  (incidentally, it makes all of us better off).   But that parenthetical fact is 

not or need not be the motivation for my playing ‘cooperatively.’   The fact that these 

games are played only once by a team shows that building a reputation was not an issue. 

 My interpretation of the Cox, Ostrom (2009) results for the trust-game experiment 

is that about one-third of the players chosen to be first movers were playing (their part) of 

the simple Kantian equilibrium, because they had trust in their opponents/partners.   

About 27% of their partners responded by playing  (their part) of the Kantian equilibrium.   
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Another 54% of the second players in these matches shared the gains induced by the first 

players’ transfers, but did not share as much as the simple Kantian equilibrium 

prescribes; none of the second players in these matches played the Nash solution in the 

subgame that they faced (i.e., returning nothing to the first player).   A smaller fraction of 

players appear to be using autarkic optimization.     I cannot reject the hypothesis that a 

significant number of individuals are Kantian optimizers.   I see no reason to suppose that 

group welfare motivated anyone.   

 

 

2.4   Some examples of simple Kantian equilibria 

 

A.   Recycling.  In many cities, many or most people recycle.  There is no penalty for 

failing to do so.  Others do not observe if one does not recycle.  The cost of recycling 

may be non-trivial – certainly greater than the marginal benefit in terms of the public 

good one’s participation produces.  Most of the behavioral-economic explanations listed 

earlier do not explain this: Andreoni’s is an exception.  Perhaps one recycles in order to 

get a ‘warm glow.’  I think this puts the cart before the horse: one may indeed get a warm 

glow, but that’s because one has done the right thing.  The warm glow is an unintended 

by-product of the action, not its cause.    Suppose I help my child with her algebra 

homework: she masters the quadratic formula.  I feel a warm glow.  But seeking that 

glow was not my motivation: it was to teach her algebra, and the warm glow follows, 

unintendedly, as a consequence of success in that project. 

B.  ‘Doing one’s bit’ in Britain in World War 2.  This was a popular expression for 

something voluntary and extra one did for the war effort.  Is it best explained by seeking 

the respect or approval of others, or doing what one wished everyone to do?     

C.  Soldiers protecting comrades in battle.  This can be a Kantian equilibrium, but also 

could be induced by altruism.  One becomes close to others  in one’s unit. 

D. Voting.  The voting paradox is not one from the Kantian viewpoint:  I vote because I’d 

like all others to vote, as a contribution to the public good of democracy. 

E.  Paying taxes.   It has often been observed that the probability of being caught for 

evasion and the penalties are far too small to explain the relatively small degree of tax 
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evasion in some countries.  In most countries (though not all), tax cheaters are not 

publicly identified.   

F. Tipping.   A practice viewed by some as a paradox ( Gambetta (2015)) is not one from 

the Kantian viewpoint:  here, there is an altruistic element, but it is not the interesting part 

of the behavior.  The thought process is that I tip what I would like each to tip.   

G. Charity.    The Nash equilibrium is not to donate.  There is a Kantian and a Rawlsian 

explanation of charity: the Kantian gives what he’d like all others (like him) to give.  For 

the Rawlsian, charity is the random dictator game: behind the veil of ignorance, who will 

be the donor and who the recipient?  These two ways of looking at the problem generate 

different levels of charity (I may give much more in the so-called Rawlsian version).   

My conjecture is that the so-called Kantian thought process is more prevalent.  

H.  Do unto others as you would have them do unto you.  Strictly speaking, however, the 

golden rule and reciprocity more generally require repetition, while many of the practices 

described above do not (C is an exception).   

 

2.5  Economies with production 

 We introduce simple production economies.   There are n producers, each with a 

concave utility function ui  defined over consumption (x) and effort (E).    Effort is 

measured in efficiency units ( if s  is a person’s skill level and he exerts E units of 

efficiency effort, then his labor time is E / s  ).   Production is defined by a concave 

function mapping total units of efficiency labor into total output.  Defining ES = Ei∑  , 

then total output at the effort vector E = (E1,...,En )   is G(ES )  .   

 Suppose we consider a fishing economy: fishers fish on a lake, and there are 

decreasing returns to scale in labor expended fishing, due to congestion effects.  Each 

fisher keeps his catch, so the proportional allocation rule is 

xi = X Pr,i (E1,...,En ) = Ei

ES G(E
S )  : that is, except for noise, the fish caught by a fisher will 

be proportional to the labor in efficiency units he expends.   Traditionally, this allocation 
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rule has been used in fishing communities.   Given preferences, technology, and the 

allocation rule, a game is defined, where the payoff for fisher i at an effort allocation is: 

 V i (E1,E2,...,En ) = ui ( E
i

ES G(E
S ),Ei )   (2.1) 

In this chapter, we assume homogeneous preferences, and so ui = u   for all  i. 

 It is well-known that, if G is strictly concave, then the Nash equilibrium of this 

game is Pareto inefficient.  Fishers fish too much: each does not take into account the fact 

that his labor contributes to a public bad, the reduction of the productivity of the lake.   

The Nash equilibrium of the game {V i}  is given by: 

 (∀i) − u2[i]
u1[i]

= Ei

ES ′G (ES )+ (1− Ei

ES )
G(ES )
ES  , (2.2) 

where uj[i]   is the j th  derivative of u evaluated at the consumption bundle of individual i. 

This says that the marginal rate of substitution for each player is equal to a convex 

combination of the marginal product ( ′G (ES )  ) and the average product.     But the 

condition for Pareto efficiency at an interior solution is: 

   

 (∀i)MRSi ≡ − u2[i]
u1[i]

= MRT = ′G (ES )  . (2.3) 

Only in the case where G is linear  ( and so the average and marginal products are equal) 

does (2.2) reduce to (2.3).   In general the MRSi is greater than the MRT (because the 

marginal product is less than the average product for strictly concave G) and each fisher 

could benefit from a reduction in her effort.    This example is the simplest form of the 

‘tragedy of the commons’ (Hardin [1968]). 

 Now let’s compute the SKE for this game.   Each fisher solves the problem: 

 max
E
u( E
nE

G(nE),E)  ; (2.4) 

the first-order condition is: 
  

 u1[i] ′G (nE)+ u2[i]= 0 or − u2[i]
u1[i]

= ′G (nE)  , (2.5) 
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and the SKE is Pareto efficient.  Kantian reasoning overcomes the commons’ tragedy. 

 Indeed the argument is more general.  Let an allocation rule be specified by 

(X1,...,Xn )   where Xi :ℜ+
n →ℜ+  with the identity Xi

j
∑ (E1,...,En ) = G(ES )   for all 

effort vectors (E1,...,En )  .   Suppose the rule is symmetric, meaning that: 

 (∀E ≥ 0)(∀i)(Xi (E,E,...,E) = G(E
S )

n
)  . (2.6) 

Of course, the proportional rule X Pr   is a symmetric rule.   Then: 

Proposition 2.1  The SKE for any concave production economy and any symmetric 

allocation rule is Pareto efficient. 

Proof: 

The typical producer maximizes u(1
n
G(nE),E)  , using the definition (2.6), and the 

characterizing F.O.C. is (2.5).        

 Another historically important allocation rule for hunter-gather societies was the 

equal-division rule, defined by: 

 XED,i (E1,...,En ) = G(E
S )

n
 . (2.7) 

Since the equal-division rule is symmetric, it follows that the SKE for hunting societies – 

which often used this rule – is Pareto efficient.    Again, the Nash equilibrium of the game 

defined by XED   is Pareto inefficient.   But the tragedy is of a different sort from that in 

the fisher economy: this time, hunters hunt too little at the Nash equilibrium.   The 

characterizing condition for an interior Nash equilibrium is: 

  

 − u2[i]
u1[i]

= 1
n

′G (ES )  . (2.8) 

As long as n >1 , the MRS for each player is less than the MRT.  Note this is, as well, the 

case when G is linear, and in this sense the tragedy is deeper than in the fishing economy.   

 In sum, Kantian optimization can resolve inefficiencies that plague autarkic 

optimization in simple fishing and hunting economies.  Did the producers in some such 

economies, in ancient times, learn to think in the Kantian manner, leading to greater 
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success of their communities?   Is it possible that Kantian thinking became a meme, 

passed down through the generations, so that the individual fitness of the members of 

these groups was greater than of groups using the Nash optimization protocol?  Can we 

see today, in hunting and fishing economies that remain, indications of Kantian 

reasoning? 

 

2.6  Four models 

 I propose a 2 x 2 typology of modeling. 

 

                       preferences →  

optimization↓    

Self-interested    Altruistic, Complex 

Nash   classical  behavioral econ 

Kant  this book, most chapters this book, chapter  5 

 

The northwest cell in the matrix is the classical model.  Behavioral economists alter the 

column of the matrix by proposing non-classical preferences but retaining Nash 

optimization;  my proposal is to change the row.  (The southeast cell of the matrix studies 

Kantian equilibrium with altruistic preferences.)  To entertain this proposal one must of 

course relax one’s belief that autarkic optimization is the only rational way of thinking in 

a game.   While this may be a correct statement for a decision problem, it is not obviously 

so for a game.   Those of us who have been schooled in Nash equilibrium tend to view 

many examples of successful cooperation as irrational.   Would it not perhaps be more 

modest to think that we have not properly characterized rationality in games?  In some 

social situations, at least, people may adopt the Kantian protocol, resolving free rider 

problems.   

 

2.7 Literature notes  

 Jean-Jacques Laffont (1975) wrote: 

 To give substance to the concept of a new ethics, we postulate that a typical agent 

assumes (according to Kant’s morals) that the other agents will act as he does, and he 
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maximizes his utility function under this new constraint … Our proposition is then 

equivalent to a special assumption of others’ behavior.  It is clear that the meaning of 

‘the same action’ will depend on the model and will usually mean ‘the same kind of 

action.’ 

Not only does Laffont deserve credit for the general idea argued here, but his 

recognition that a Kantian must generally think in terms of the same kind of action 

will become clear in chapter 3. 

 Ted Bergstrom (1995), in a discussion of selective adaptation, defines the 

Kantian golden rule for asexual siblings as “Act toward your siblings as would be in 

your own best interest if your siblings’ action would mimic your own.”    

 Robert Sugden (1982) discusses philanthropy and argues, with empirical 

evidence, that “the Nash assumption” (that donors take the contributions of others as 

given) is not empirically verified. He writes : “Or suppose that each person, instead 

of having Nash conjectures, believes that if he gives a certain minimum sum of 

money, everyone else will do the same, but he gives less, everyone else will give 

nothing.”  This is his Kantian premise. 

 Tim Feddersen (2004) offers a ‘group-based ethical model’ to explain the 

voting paradox.  He writes, “First, ethical agents evaluate alternative behavioral rules 

in a Kantian manner by comparing the outcomes that would occur if everyone who 

shares their preferences were to act according to the same rule.” 

 Brekke, Kverndokk and Nyborg (2003) propose that in a symmetric 

contribution game with a public good, agents define the moral action as the simple 

Kantian equilibrium (not those words).  But they then introduce a penalty term in 

utility, which decreases utility to the extent that the player deviates from the Kantian 

action, so that it becomes a Nash equilibrium to play the SKE.    From my viewpoint, 

this a gratuitous move:  why say players pay a ‘cost’ for deviating from the Kantian 

action, rather than just saying they play the action they think is moral?    Is not the 

latter simpler, although heretical from the classical viewpoint?  
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Chapter 3:  Heterogeneous preferences: Multiplicative and additive Kantian optimization 

 

3.1  Fishing and hunting economies 

 We now suppose that the fishers have arbitrary concave preferences over 

consumption and effort represented by utility functions{ui | i = 1,...,n}  .   In the fishing 

economy, X Pr   continues to be the allocation rule: each fisher keeps her catch.    A 

simple Kantian equilibrium will not exist: that is, each fisher would choose a different 

effort vector on the diagonal of ℜ+
n  as the common level of effort.   Even if we relax the 

definition, and define E*,i  as the effort that fisher i would like all to expend, the vector 

(E*1,...,E*n )   will not be Pareto efficient. 

 Suppose, at an effort allocation (E1,...,En )   a fisher thinks: ‘I’d like to increase 

my fishing time by 10%.  But I only should do this if I would be happy if all were to 

increase their fishing time by 10%.’     Do not (at this point) ask where this thought 

comes from, but let’s define an equilibrium with respect to this kind of thinking.   

 

Definition 3.1 A multiplicative Kantian equilibrium in a game {V i}   is an effort vector 

(E1,..,En )   such that nobody would prefer to alter everybody’s fishing time by any non-

negative factor.  Formally: 

 (∀i)(∀r ≥ 0)(V i (E1,...,En ) ≥V i (rE1,...,rEn ))  . (3.1) 

We denote such an allocation as a K ×   equilibrium. 

 The fishing game is a strictly monotone decreasing game:  if anyone else 

increases his effort, my catch decreases, because the productivity of the lake decreases.    

We generalize Proposition 2.1: 

 

Proposition 3.1  Let E = (E1,E2,...,En )   be a strictly positive multiplicative Kantian 

equilibrium in a strictly monotone (increasing or decreasing) game.  Then it is Pareto 

efficient in the game. 
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Proof: 

1.   Let the game be strictly monotone decreasing.    Suppose E were Pareto 

dominated by an effort vector E* = (E*
1,...,E*

n )  .  Let k  be an index such that E*
i

Ei   is 

minimized.  Define r = E*
k

Ek  .   Note that rEk = E*
k   and for j ≠ k  , rE j ≤ E*

j  , by 

definition of r.  Furthermore, for at least one j,  rE j < E*
j  .   For otherwise, E* = rE  , and 

since E*   Pareto dominates E, at least one agent would prefer rE to E  , which 

contradicts the fact that E is a multiplicative Kantian equilibrium.   It follows that  

   

 V k (rE) >V k (E*) ≥V
k (E)  ,   (3.2) 

     

where the first inequality follows because the game is strictly monotone decreasing, and 

the second follows because E*   Pareto dominates  E.   But (3.2) contradicts the fact that 

E   is a multiplicative Kantian equilibrium – Mr. k would advocate changing the scale of 

E  by a factor of r.    This contradicts  the supposition that E  is not Pareto efficient in the 

game.  

2.     If the game is strictly monotone increasing, then  we define k to an index that 

maximizes E*
i

Ei  .   The positivity of the vector E guarantees that this number is not infinite.  

The proof proceeds as above.   

 

 Now let the game {V i}   be the fishing game; that is: 

   V i (E1,...,En ) = ui ( E
i

ES G(E
S ),Ei )  . 

The fact that multiplicative Kantian equilibrium  is Pareto efficient in the game {V i}    

does not imply it is Pareto efficient in the economy.  The game requires allocations to be 

proportional, but there may be some non-proportional allocation in the economy  

(requiring transfers among fishers) that Pareto dominates the K ×   equilibrium.  The next 

proposition shows that this is not the case. 
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Proposition 3.2   Any strictly positive K ×  equilibrium in the fishing economy is Pareto 

efficient (in the economy). 

Proof: 

 By concavity, the first-order condition is sufficient to establish multiplicative 

Kantian equilibrium: 

 (∀i)( d
dr r=1

ui ( rE
i

rES G(rE
S ),rEi ) = 0.   (3.3) 

Compute that (3.3) reduces to: 

 u1
i ⋅( E

i

ES ′G (ES )ES )+ u2
i Ei = 0;   (3.4) 

dividing through by the positive number Ei  , and rearranging, we have: 

 (∀i) − u2
i [i]
u1
i[i]

= ′G (ES )  , (3.5) 

which proves the claim.      

 Recall Laffont’s comment:  ‘It is clear that the meaning of ‘the same action’ 

will depend on the model and will usually mean ‘the same kind of action.’  In the 

fishing game, the same kind of action means ‘changing all efforts by a scale factor.’  

This is , admittedly, more complex  than ‘taking the action I’d like all to take.’  The 

efficiency result (Prop. 3.1) suggests that successful fishing communities may have 

discovered K ×  reasoning through cultural evolution (see Boyd and Richerson 

[1985]).  

 The reader should note the formal similarity between K ×   and Nash 

equilibrium.  Both use ordinal preferences only.  Each considers a counterfactual:  

with Nash reasoning the counterfactual is that only I change my strategy, while in 

Kantian reasoning, we all change our strategies in a prescribed way.  An equilibrium, 

in either case, is a strategy profile which dominates all permissible counterfactual 

profiles.  An optimizing agent in both cases evaluates the counterfactual profile 

using his own preferences only.  Other similarities will appear in the discussion of 

existence and dynamics (chapter 7).  

 Now let us consider hunting economies, which use the allocation rule XED  .  

Hunters fan out into the bush searching for game, and after several days they return 
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to camp, dividing the capture equally.   At an effort allocation (E1,...,En )  , a hunter 

thinks,  ‘I’d like to take a two hour nap under that tree.  But I should do this only if I 

would be happy if all hunters took a two hour nap.’    This time, the kind of action 

that the Kantian contemplates is additive rather than multiplicative. 

Definition 3.2   An additive Kantian equilibrium (K +  ) is an allocation such that 

nobody would prefer to add any constant to all efforts.  That is: 

 (∀i)(∀r ≥ −min
j
E j )(V i (E1,...,En ) ≥V i (E1 + r,...,En + r)) .  (3.6) 

The analogue of Proposition 3.2 continues to hold –except this time, we need not require 

that the equilibrium allocation be positive. 

 

Proposition 3.3 Any K +   equilibrium is Pareto efficient (in the economy). 

Proof: 

The F.O.C. that characterizes an interior K + equilibrium is: 

 d
dr r=0

ui (G(E
S + nr)
n

,Ei + r) = 0  , (3.7) 

which expands to: 

 u1
i ⋅ ′G (ES )

n
n + u2

i = 0  , (3.8) 

which immediately reduces to MRSi = MRT  .    

 So Kantian reasoning resolves the tragedy of the commons in both hunting 

and fishing communities with heterogeneous preferences – but the kind of action that 

a producer contemplates universalizing changes with the allocation rule.     I can 

think of no normative argument for why fishers might be led to think 

multiplicatively and hunters additively;  if these communities discovered the right 

kind of Kantian counterfactual, this was due to chance cultural mutation, as in 

biological evolution. 

  

 What is the relationship between K × ,K +  and simple Kantian equilibrium?   

We have: 

Proposition 3.4  In a production game where all players have the same preferences u 
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and the allocation rule X is symmetric, any positive SKE is both a K ×  and a K +

equilibrium. 

Proof: 

 Let the SKE be E*  .   Define the share functions θi   by

θi (E1,...,En )G(ES ) = Xi (E1,...,En )  .   To show that E*   is a K ×   equilibrium, we 

need to show that: 

 d
dr r=1

u(θi (rE*,...,rE*)G(rES ),rE*) = 0,   (3.9) 

which reduces to: 

  u1 ⋅(θ
i (E*,...,E*) ′G (nE*)nE* +∇θi iE*)+ u2E

* = 0   (3.10) 

where ∇θi   is the gradient vector of θi  at E*   where E*= (E*,...,E*)  .    Because E* > 0  , 

we may rewrite (3.10) as:  

 
 
− u2[i]
u1[i]

= θi ′G (nE*)nE* +∇θi iE*

E*
 ; (3.11)  

the right-hand side of (3.11) reduces to the MRT ′G (nE*)   if: 

 
 

θi (E*)nE*

E* = 1   and  ∇θi (E*) iE* = 0  . 

  

The first condition is true, because, by symmetry, θi (E*) = 1/ n  , and the second 

condition is likewise true by symmetry, for it says the directional derivative of θi  at E*   

in the direction E*   is zero – and this is true, because θi   is constant at 1/ n   along that 

path.  Therefore, a positive SKE is a K ×   equilibrium. 

 The demonstration that an SKE is a K +  equilibrium is left to the reader.  

 Thus, multiplicative and additive Kantian equilibria are true generalizations of the 

natural concept of simple Kantian equilibrium to the case of heterogeneous preferences. 

 

3.2  Incentive compatibility 

 Let us look more carefully at the Kantian equilibria in the fishing and hunting 

economies for the special case, canonical in optimal taxation theory, in which workers 

have the same preferences over consumption and labor time (L), but their skills are 
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different.     Suppose everyone has preferences over consumption and labor expended 

represented by a concave utility function u(x,L)  , but productivities, w, are distributed 

according to some distribution function F, so that utility functions expressed as functions 

of consumption and efficiency units of labor are given by: 

 uw (x,E) = u(x, E
w
)  . (3.12) 

(That is, Ei = wiLi  .)        So, although workers share the common preferences u, the 

differential skills they possess make this a case of heterogeneous preferences when we 

express labor in efficiency units.   

 We can ask whether the fishing and hunting equilibria are incentive compatible in 

the sense that, at the equilibrium, utility increases with skill.     In the production 

economies studied above, the condition for Pareto efficiency is that u1
i ′G (ES )+ u2

i = 0  for 

all i.   For the special case of  (3.12), this becomes: 

 (∀w) u1w ′G (ES )+ u2 = 0 ,  (3.13) 

where u is evaluated at the argument (x,E /w)  .    

 

Example: Quasi-linearity in a continuum economy 

 Assume u(x,L) = x − 1
2
L2  , and let skill levels w be distributed according to a 

distribution function F.   Let G(E) = 2 E  .   In the continuum economy, we replace ES   

with E = E(w)dF(w)∫  , and Ei   with E(w)  .   Thus (3.13) becomes: 

 E−1/2w = E(w)
w

 or E−1/2w2 = E(w)  . (3.14) 

Integrating this equation gives us  

 E−1/2µ2 = E  and so E = (µ2 )2/3  , (3.15) 

where µ2 = w2 dF(w)∫  is the second moment of the real wage distribution.  It now 

follows from (3.14) that E(w) = w2

(µ2 )
1/3  .   By recalling that the consumption of 
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individual w is E(w)
E

G(E)  in the multiplicative Kantian equilibrium, we can compute 

that w’s utility at the solution is given by: 

 uK
×

[w]= u(E(w)
E

G(E), E(w)
w

) = 3
2

w2

(µ2 )
2/3  . (3.16) 

Hence utility1 is indeed increasing in w. 

 Let us compute the Nash equilibrium of this fishing game.   The first-order 

condition for Nash equilibrium is d
dE

u(E G(E
N )

EN , E
w
) = 0  , or: 

 2(EN )1/2

EN = E
N (w)
w2   (3.17) 

or EN (w) = 2w2

EN
 , which integrates to give: 

  

 (EN )3/2 = 2µ2  or EN = (2µ2 )2/3  ,  (3.18) 

and it follows that EN (w) = 2w2

(2µ2 )
1/3  .    Compute that utilities at the Nash equilibrium are 

given by: 

  uN [w]= w
2

µ2
2(2µ2 )

1/3 − 1
2
( 2w
(2µ2 )

1/3 )
2 = 21/3 w2

(µ2 )
2/3  .                      (3.19) 

Comparing (3.19) with (3.16), we see that all players are strictly better off in the Kantian 

equilibrium, because 3
2
> 23  .   

 It follows from (3.16) that utility indeed increases with w at the K ×  equilibrium. 

 Let us now compute the utilities at the additive Kantian equilibrium for this 

example – which means at the equal-division solution.  Because of the quasi-linear 

structure, the values of E(w)   are the same for all Pareto efficient allocations.   We 

                                                
1 In particular, we have shown the existence and uniqueness of a K ×  equilibrium for this 

economy. 
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therefore know that E(w) = w2

(µ2 )
1/3  in the hunting economy.  The only change from the 

multiplicative Kantian equilibrium is that consumption for all agents is G(E) = 2(µ2 )
1/3  .  

It follows that utilities in the K +   equilibrium of the XED   economy are given by  

 uK
+

[w]= 2(µ2 )
1/3 − w2

2(µ2 )
2/3  . (3.20) 

The first-order condition for Nash equilibrium in the equal-division economy is 

d
dE

u(G(ÊN ), E
w
) = 0  , where ÊN   is the average efficiency units of effort expended in 

this Nash equilibrium.   This first-order condition reduces to u2
w

= 0  , so all efforts are 

zero in the Nash equilibrium of the equal-division economy.     From (3.20), it follows 

that the K +   equilibrium is not incentive compatible – utility is strictly decreasing in w.   

 How disturbing or relevant is this?   I question the relevance of the result.  In 

ancient hunting economies, young men, who were the hunters, acquired their skills 

during youth and adolescence, when there was doubtless praise and respect showered on 

those who developed high skill by their elders.  Hunters in the bush had their reputations 

to maintain, so utility is probably not properly represented by functions like u.   In 

modern times, we think of the more radical kibbutzim in Israel, which used, more or less, 

an equal-division allocation rule.   Some members, with high earning power who worked 

outside the kibbutz, contributed more than others to the common pool of consumption 

goods.  In the presence of a cooperative ethos, incentive incompatibility is not a death 

knell, although we can expect that ethos is more difficult to maintain if the variance in 

skills is high.   Moreover, the incentive incompatible nature of the equal-division solution 

suggests that the K +   equilibrium will be harder to maintain than the proportional K ×   

equilibrium. 

   

3.2  Sustainability in a dynamic setting 

  

 The fishing game is a very simple example of the tragedy of the commons.  

More realistically, one should examine the nature of stationary states where a 
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common pool renewable resource is exploited by a community.  Here we modify a 

model proposed by Richter and Grasman (2013). 

 Consider a community that exploits a renewable resource, such as a fishery.  At 

any point in time,  the harvest will be proportional to the total extraction effort of the 

community, where the factor of proportionality is itself proportional to the total amount 

of the resource; that is:  

    H (t) = qX(t)ES (t)       (3. 21)   

where X  and ES  are total supply of the resource  (the fish population in the lake) and 

total effort of extraction, and H is the harvest at time t.   Think of (3.21) as follows:   in 

unit time, an amount proportional to the total fish population can be extracted, qX(t)   -- 

we view qX as a measure of the density of the fish in the lake.   We now assume that 

there are constant returns in effort, at least for efforts that are not too large relative to X.  

Formulation (3.21) is standard in resource economics. 

 The law of motion of the renewable resource is given by: 

 X(t +1) = X(t)+ rX(t)(1− X(t)
K
)− H (t)  , (3.22) 

where K is the maximum possible population of fish, or the capacity constraint of the lake.   

In other words, the fish population renews itself at a rate that is decreasing as the resource 

approaches the maximum capacity.  It follows that the stationary states are given by: 

   

 H = rX(1− X
K
)   (3.23) 

or, using (3.21):    

 qES = r(1− X
K
)  . (3.24) 

 Suppose that the utility function of producer i is given by: 

 ui (x,E) = x − νiE2   (3.25) 

where x  is consumption of the resource and E  is extraction effort. The community 

wishes to choose among possible sustainable extraction rules: that is, it wishes to choose 
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a stationary state (X,ES )  as defined by (3.24).   As well as choosing the stationary state, 

it must choose the individual efforts Ei  so that ES = Ei∑  .  

 Production is carried out by individuals: thus, each keeps the resource he harvests. 

Since each producer is equally likely to extract a unit of the resource with the application 

of a unit of labor (in efficiency units), the total harvested resource is allocated in 

proportion to the efforts expended. 

 We examine a multiplicative Kantian equilibrium for such a problem.  Imagine 

that the community is considering a particular stationary state (X,ES )  .   Suppose 

everyone were to multiply his effort by a positive number ρ:  then a new stationary fish 

population Xρ  would ensue, where this quantity is defined by: 

  

 qρES = r(1− X
ρ

K
),  or Xρ = K(1− qρE

S

r
)  . (3.26) 

 

 It is assumed for simplicity that producers will exert the same effort at every date, 

forever.    Thus, they will quickly converge to a stationary state once the total effort is 

fixed.  (This follows from an examination of (3.22).)   Implicitly, producers are 

maximizing a discounted sum of their period utilities, and we ignore the issue of 

transition to a stationary state.   Since maximizing the present value of a constant stream 

of utilities is equivalent to maximizing the single-period utility, we need not further 

consider the discounted sum, although it is their looking into the future that motivates the 

fishers to study the stationary (sustainable) states.  Either because they have sufficiently 

low discount rates, or because they care about future generations of producers, they limit 

their search to sustainable states. 

 Now a Kantian equilibrium in such a situation is a vector of effort levels 

E = (E1,...,En )  , inducing a total effort ES, and a stationary state via (3.24), such that no 

producer would advocate changing all  effort levels by any constant factor, passing to the 

associated new stationary state.   In other words,  E has the following property: 
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 (∀i)(1= argmax
ρ

[ E
i

ES qX
ρρES − νi (ρEi )2 ])  . (3.27) 

To understand (3.18), note that, at (X,ES )  , the amount of the resource (fish) that agent i 

gets is equal to his fraction of the total extraction time multiplied by the total harvest, 

which is qXES . So if i were to advocate multiplying all efforts by ρ ,  her new resource 

harvest would be E
i

ES qX
ρρE , and her new utility would be the expression in square 

brackets in (3.18).   Thus, (3.18) is the condition for the effort vector’s being a K ×   

equilibrium. 

 Substituting for Xρ  from (3.17), the above maximization is: 

 max
ρ
EiqρK(1− qρE

S

r
)− ρ2νi (Ei )2  , (3.28) 

which is concave in ρ, and hence we examine the first-order condition for the solution to  

 

(3.28) at ρ = 1  , which reduces to: 

 

 Ei =
qK(1− qE

S

r
)− q

2KES

r
2νi

 . (3.29) 

 

Adding  equations (3.20) over all i gives us an equation in ES, which solves to give: 

 ES = Ω
2
qK(1− 2qE

S

r
)  , (3.30) 

where Ω ≡ 1
νi∑  ,  which in turn gives: 

 

 ES = ΩqKr
2(r +Ωq2K )

 . (3.31) 

Now the value of X follows from (3.26), and the individual effort levels are given by  

 

substituting ES into (3.29); they turn out to be: 
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 Ei = qK
2νi

r
r +Ωq2K

 . (3.32) 

Unsurprisingly, the individual efforts are inversely proportional to the disutilities of effort 

( νi  ).   They are also increasing in r, the regeneration rate of the resource. 

 We next ask about the welfare properties of this solution to the commons problem.  

If the society limits itself to sustainable solutions (in the sense of (3.26)), what are the 

Pareto efficient allocations of the resource and effort?  In other words, we seek to 

characterize the Pareto efficient allocations of the resource and effort, subject to 

sustainability.  To solve this problem, we maximize the utility of an arbitrary agent i 

subject to placing lower bounds on the utilities of all other agents, and restricting 

ourselves to sustainable solutions.   The problem is: 

 

 

max xi − νi (Ei )2

subj. to
(∀j ≠ i) x j − ν j (E j )2 ≥ kj                    (λ j )

E j = ES

all  j
∑                                             (b)

qXES ≥ x j
 j
∑                                         (a)

qES = r(1− X
K

)                                      (c)

  (3.33) 

where I have listed Lagrangian multipliers to the right of the constraints.  Constraints (b) 

and (a) are feasibility constraints, and (c) is the sustainability constraint.   The variables 

that must be chosen are {x j ,E j ,ES ,X}  .    The Kuhn-Tucker conditions for a solution to 

this problem are: 
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(∂xi ) a = 1
(∂x j , j ≠ i) λ j = a

(∂Ei ) Ei = b
2νi

(∂E j , j ≠ i) E j = b
2λ jν

j =
b
2ν j

(∂X) qES = cr
K

(∂ES ) qX = b + cq

  (3.34) 

It immediately follows that a = 1= λ j   and ES = bΩ
2

 .   From the last condition, 

b = q(X − c) = (X − q E
SK
r
)   and so  ES = Ω

2
q(X − q E

SK
r
)  , which solves to give: 

 ES = ΩqXr
2r +Ωq2K

 . (3.35) 

Now, substituting into (3.35) from the last constraint in (3.33), we compute: 

 

 ES = ΩqrK
2(r +Ωq2K )

 . (3.36) 

But this is identical to the total effort in the Kantian equilibrium , see (3.31).   Moreover, 

the individual efforts Ei  are also identical to those of the Kantian equilibrium: this is 

obvious, since we note from (3.34) that the individual efforts are inversely proportional to 

the νi   as well, and must add up to the same total effort.  Any allocation of the harvested 

resource among the producers generates a Pareto efficient solution – the Kantian 

equilibrium picks out the allocation where ‘each keeps his catch’.     

 To complete the KT analysis, we must check the sign of the shadow prices.  

c = qKE
S

r
> 0   from the  (∂X)   condition.   It remains only to check that b ≥ 0  .  Now 

b = q(X − c)  , so we need check that X ≥ c  , that is, rX ≥ qKES  .  Using constraint (c) in 

(3.33), this becomes E ≤? r
2q

 , or ΩqrK
2(r +Ωq2K )

≤ r
2q

 or Ωq2K
(r +Ωq2K )

≤1 which is true.  

This completes the argument.  
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 Thus, multiplicative Kantian optimization is a protocol for solving the problem of 

efficient, sustainable exploitation of a renewable resource. 

 

3.3 Oligopolistic collusion2 

 Consider n producers in an oligopolistic market, who face a demand curve D(p) ,  

where we assume D−1   is a concave function, and where producer i has a convex cost 

function ci (y)  .  The oligopolist game, where firms choose quantities, is given by the 

payoff functions: 

  

 V i (y1,..., yn ) = D−1(yS )yi − ci (yi )  . (3.37) 

Because D−1   is a decreasing function, the game so defined is strictly monotone 

decreasing, and hence by Proposition 2.1, the K ×  equilibrium is Pareto efficient (for the 

producers).   

 

3.4  Strikes 

 A group of workers is contemplating a strike.   Each worker’s strategy is the 

probability that he will join the strike, πi  .   If he does not join the strike, he scabs. 

Workers are of types i,  with ni   workers of type i.   The probability that the strike wins is 

p(m)  where m = πini∑  , the number of strikers, and  p is monotone increasing.     

 The utilities of a striker are: 

  Ai   if the strike wins, Bi   if it loses  where Ai > Bi   

and scabs earn, in addition C(m) , where C is a decreasing function of m.  Thus the utility 

of a worker (striker or scab) at a profile π = (π1,...,πn )   is: 

  EUi = p(m)Ai + (1− p(m))Bi + (1− πi )C(m)  .     (3.38) 

Note that scabs enjoy the outcome of the strike whatever it is.  This is not a monotone 

game, since C is decreasing in the strategies of the other players, while the first two terms 

are in sum increasing, since  Ai − Bi > 0  . 

                                                
2 I thank Luis Corchon for this example. 
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 We first compute the K ×   equilibrium, which involves solving: 

 max
r
p(rm)(Ai − Bi )+ Bi + (1− rπi )C(rm)  . 

The F.O.C. for the solution at r = 1   is: 

 

  ′p (m)m(Ai − Bi )+ (1− πi ) ′C (m)m − πiC(m) = 0  or 

  ∀i ′p (m)(Ai − Bi )+ (1− πi ) ′C (m) = πi C(m)
m

.       (3.39)      

 Now we solve this program to characterize interior Pareto efficient allocations: 

  
max p(m)(Ai − Bi )+ (1− πi )C(m)
s.t.
(∀j ≠ i) p(m)(A j − B j )+ (1− π j )C(m) ≥ k j (λ j )

   (3.40) 

 

The KT conditions for an interior solution (that is, 0 < πi <1  ) can be written as follows.   

Let λi = 1 .  Then : 

 

 
(∀j = 1,...,n) (C(m)λ j = λkn j ( ′p (m)(Ak − Bk )+ ′C (m)(1− πk ))

all k
∑  .     (3.41) 

Define K = λk ( ′p (m)(Ak − Bk )+ ′C (m)(1− πk ))
all k
∑  , and so λ j = n jK

C(m)
 holds for all j. 

Substituting these values into the r.h.s. of (3.41) gives: 

 n jK = n j nk K
C(m)∑ ′p (m)(Ak − Bk )+ ′C (m)(1− πk )( )   

or 

 
C(m) = nk ′p (m)(Ak − Bk )+ ′C (m)(1− πk )( )∑  .        (3.42)    

Notice that the λ j ≥ 0  if and only if K is non-negative which occurs when   

 

  
nk ( ′p (m)(Ak − Bk )+ ′C (m)(1− πk ))

all k
∑ ≥ 0 .      (3.43) 

But this is true, since the l.h.s. of (3.43) is simply C(m)  . Thus a vector of probabilities 

(π1,...,πn )   is ex ante Pareto efficient if (3.42) holds. 
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 Eqn. (3.43) can be written: 

        

  
′p (m) nk (Ak − Bk ) ≥ − ′C (m)∑ (nk − nkπk ))

all k
∑ , 

which says that the expected marginal gain to all workers, where the margin is increasing 

participation in the strike must be at least equal to the expected marginal loss to the 

scabs3. 

 Now multiply equations (3.39) by ni  and add over i, giving: 

                     ∑ ni ( ′p (m)(Ai − Bi )+ (1− πi ) ′C (m)) = C(m) ,  

which is eqn. (3.42).  Thus, multiplicative Kantian equilibria, where the strategies are 

probabilities of striking,  are (ex ante) Pareto efficient.  If strikers choose their 

probabilities of participation in a Kantian manner, the strike is efficient.   

 

3.5 Lindahl equilibrium for a public-good economy 

 Individuals in a society have utility functions ui  defined over arguments (y,Ei )  

where y is the value of a public good, Ei   is i’s contribution to the public good, and the 

cost function is C(y) = E  .  The production function G is the inverse of the cost function. 

 The payoff function of individual i is ui (G(ES ),Ei )  .   The K ×   equilibrium (if it 

exists) is characterized by: 

  d
dr r=1

ui (G(rES ),rEi ) = 0 or u1
i ′G (ES )ES + u2

i Ei = 0  , 

which can be written: 

   −u1
i

u2
i = Ei

ES
1
′G (ES )

 .         (3.44) 

Now 1
′G (ES )

= ′C (y)  , and so adding (3.44) over all i gives: 

   1
MRSi∑ = ′C (y)       (3.45) 

                                                
3 If there is no interior solution in the probabilities to (3.42), then ex ante Pareto 

efficiency will require , for some i, πi ∈{0,1}  .  
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which is the Samuelson condition for efficiency in the public good economy. 

    

Definition 3.3 A linear cost-share equilibrium is a vector of shares (b1,...,bn )∈[0,1]n  

such that bi = 1∑   , a contribution vector (E1,..,En )   and a public good level y , which 

is feasible, such that:  

 (∀i)(Ei = biC(y) and y maximizes ui (y,biC(y))  . 

(See Mas-Colell and Silvestre (1989).) 

 A linear-cost-share equilibrium is special case of a Lindahl equilibrium.    

Suppose the K ×   equilibrium characterized by (3.35) exists.  Define bi = Ei

ES  .  Then the 

linear-cost-share equilibrium for the vector b solves: 

  for all i,  y maximizes ui (y,biC(y))  . 

The F.O.C.s for this problem are: 

  for all i   u1
i + u2

i bi ′C (y) = 0  .                             (3.46) 

But these equations are identical to (3.44), and so Kantian optimization decentralizes the 

Lindahl equilibrium.    Mas-Colell and Silvestre (1989) prove such an equilibrium exists, 

and therefore the multiplicative Kantian equilibrium exists as well. 

  

3.6  Affine taxation in a linear economy 

 Consider an economy which produces a good, which is redistributed through an 

affine tax scheme (t,b)   where t is the constant marginal tax rate on income and b is the 

demogrant received by all.  Utilities are ui (yi ,Ei )  defined on income and labor.  

Production is linear in efficiency units of labor: y = aES   .  The real wage for an 

efficiency unit of labor, in a competitive economy, equals its marginal product, which is 

a. 

 Let t ∈[0,1]  be the tax rate.   Then the payoff function for individual i is 

  ui ((1− t)aEi + taE
S

n
,Ei )  , 
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because the demogrant will equal taES / n  .    The Nash equilibrium of this game (where 

the strategies are the labor supplies) is , of course, inefficient for t > 0  : this is the 

deadweight loss of taxation.   Let us examine the K +   equilibrium of this game.  It is 

characterized by: 

  d
dr r=0

ui ((1− t)a(Ei + r)+ ta(E
S + nr)
n

,Ei + r) = 0   

which expands to: 

  u1
i ⋅(a(1− t)+ at)+ u2

i = 0 or − u2
i

u1
i = a .      (3.47) 

But this says , regardless of the tax rate, MRSi = MRT   for all i, and so the allocation is 

Pareto efficient. 

 In other words, for a linear economy, additive Kantian optimization resolves the 

deadweight loss of affine taxation.  It allows us to completely separate distribution from 

efficiency.    Why does this occur?   Because, with additive Kantian optimization, the 

individual does not take the demogrant as fixed, even if he is only one of very many 

taxpayers.  Contemplating a reduction in his labor supply makes him contemplate a 

similar reduction in everyone’s labor supply thus reducing the size of the demogrant. The 

rule of thumb the additive Kantian optimizer uses is: reduce my labor supply only if my 

marginal rate of substitution is greater than the marginal rate of transformation (and 

analogously for increasing the labor supply): this is the verbal interpretation of (3.38).   

Thus, stability of labor supply occurs at the efficient allocation. 

 It is interesting to see what happens if production is concave but not linear.  Then 

the condition for K +   equilibrium becomes (recalling that the wage equals the marginal 

product): 

 d
dr r=0

u((1− t) ′G (ES + nr)(Ei + r)+ tG(E
S + nr)
n

,Ei + r) = 0  ,  

or        u1
i ⋅((1− t)Ei ′′G (ES )n + (1− t) ′G (ES )+ t ′G (ES ))+ u2

i = 0  

or       − u2
i

u1
i = (1− t)nE

i ′′G (ES )+ ′G (ES )  ,        (3.48) 
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and so the MRS is always less than the MRT when ′′G < 0  .  (The Kantian optimizer 

does not assume the wage is fixed, but recognizes the responsiveness of the wage to the 

effort supply.)   Notice, however, that if t = 1  , we again have Pareto efficiency, even for 

concave production – but this is because t = 1   is simply the equal-division (hunting) 

economy!      So, in a sense that is not precise, the deadweight loss diminishes as the tax 

rate approaches unity in K +  equilibrium. 

 

3.7  Gift exchange  

 In a well-known paper, Akerlof (1982) explains the fact that in some firms, 

workers work more than a stipulated, required minimum, and firms pay more than the 

market wage, as a gift exchange.  

 Here is a model of Akerlof’s observation.   The firm’s profit function is P(w,e)  , 

which is concave, increasing in effort of workers e, and increasing in w, the wage, for 

sufficiently small w but decreasing in w thereafter.  We interpret the wage as the weekly 

income of the worker, independent of her effort e.     The existence of a region in which 

P1 > 0  is explained by the fact that increasing the wage induces low turnover of workers 

by increasing the opportunity cost of quitting, which is of greater value to the firm than 

the increased cost of labor, as long as the wage is not too high.   The worker’s utility 

function is u(w,e)  , concave,  increasing in w and decreasing in e.   

 Normal firms specify a minimal acceptable effort level em  , and the equilibrium in 

a normal labor-firm relationship is a Nash equilibrium where w is the firm’s strategy and 

e is the worker’s.   The unique Nash equilibrium in the firm-worker game is given by: 

   eN = em , P1(w
N ,em ) = 0  .         (3.49) 

 However, Akerlof observes that there are other firms where workers offer more 

effort than em  , employers pay a wage greater than wN  , and presumably both workers’ 

utility and firm profits are greater than in the normal firm.    Akerlof explains this by a 

gift relationship:  the workers provide a gift to the employer, by working harder than 

necessary, and in return the employer offers a gift to the workers, of a higher than normal 

wage. 
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 I will propose an alternative explanation to Akerlof’s, which is that the players in 

the game are playing a multiplicative Kantian equilibrium. A K ×  equilibrium is a pair 

(w,e)   such that: 

   1= argmax
r

P(rw,re) and 1= argmax
r

u(rw,re)  .       (3.50) 

Notice this is a strictly increasing monotone game: each player’s payoff is strictly 

increasing in the other player’s strategy. It follows by Proposition 3.1 that the solution, if 

it exists, is Pareto efficient.  Typically, the Nash equilibrium in the game will not be 

Pareto efficient: so it is certainly possible that the Kantian equilibrium Pareto dominates 

the Nash equilibrium, and the other observations made above hold – that 

eK > em  and wK > wN  .   We cannot, however, deduce these inequalities without more 

structure.   

 Consider this example:    

   u(w,e) = w −αe, P(w,e) = w − β
2
w2 + γe   

where (α,β,γ )   are positive numbers.    Kantian equilibrium , the solution of (3.50), is 

given by: 

   w = αe, (1−βw)w + γe = 0   

which solves to : 

 wK = 1
β
(1+ γ

α
), eK = wK /α, u(wK ,eK ) = 0, P(wK ,eK ) = 1

2β
(1+ γ

α
)2  .     (3.51) 

On the other hand,  the Nash equilibrium is given by: 

  wN = 1
β
, eN = em , u(wN ,eN ) = 1

β
−αem , P(wN ,eN ) = 1

2β
+ γem  . 

One can compute that both players do better in the Kantian equilibrium than the Nash 

equilibrium if and only if : 

   1
2βα

< em < 1
2β
1
α
(2 + γ

α
)  .        (3.52) 

The wage is always greater in the Kantian equilibrium, and effort is greater if and only if  

   1
αβ
(1+ γ

α
) > em .           (3.53) 
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Check that (3.53) is implied by (3.52).   It follows that all the features of the observed 

characteristics of the normal and ‘gifting’ firms hold precisely when (3.52) is true.  

 So there are certainly environments in which the phenomenon Akerlof observes is 

explained by Kantian optimization.   Many firms are caught in a non-cooperative Nash 

equilibrium, and some have achieved cooperation, in the sense that the worker and 

employer are optimizing in the Kantian manner.    Both gift and Kantian explanations are 

based upon trust: for Akerlof, each side trusts that the other side will make a gift if it does, 

and in my explanation,  each side trusts the other will optimize in the Kantian manner if it 

does.   It may be very difficult to decide if one explanation is better than the other.  

Indeed, the ‘gift’ explanation may just be another way – but an imprecise one -- of stating 

Kantian optimization.   

 The advantage of the Kantian approach is that it gives an exact solution to the 

game.   Akerlof’s explanation is incomplete, for it does not determine how large the gifts 

will be. 

 

3.8   Summary thoughts 

 Kantian optimization provides microfoundations for the efficient solution of many 

phenomena involving public goods and bads:  achieving efficiency in common-pool 

resource problems, explaining collusion among oligopolists,  decentralizing Lindahl 

equilibrium, resolving the voting paradox, Akerlovian gift exchange, and strikes.    It also 

suggests how certain problems might be resolved that at present have not been, such as 

reducing the deadweight loss from taxation.   The virtue of the approach is that it gives a 

precise solution to many games (modulo the existence question), a solution that does not 

depend upon parameterizing the role of ‘exotic’ arguments that behavioral economists 

insert into preferences.   Preferences in all the examples I have given are classical.    With 

heterogeneous preferences, we have introduced Kantian protocols which, mathematically, 

sound a lot like Nash optimization:  we have simply chosen the counterfactual to which 

the agent compares the present strategy profile in a different manner from Nash.   

 Major drawbacks seem to be that there will be difficulty in generalizing the 

approach to more complex strategy spaces than intervals of real numbers, we have no 

explanation for which Kantian protocol a person chooses in a given situation, and there 
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remains the skepticism of the Nash advocate that Kantian optimization is not rational.  I 

will have something (though not a lot) to say about the first problem in chapter 10;  my 

answer to the second question is that the right protocol is discovered, if it is, through 

random cultural mutation; my answer to the third question is that morality does not 

disappear with the Kantian approach, but rather it enters in a different place:  in the 

choice of how to optimize rather than as an argument of preferences4. 

 Perhaps this is an appropriate place to expand on the morality of Kantian 

optimization, although I can hardly do better than Immanuel Kant.   When a fisher 

believes he must justify an expansion in his own labor supply by 10% by asking how she 

would feel if others similarly expanded their labor supplies, she is internalizing the 

negative externality her labor expansion imposes on others (through reducing the lake’s 

productivity).   But she does not internalize this by contemplating how the reduction in 

the lake’s productivity will hurt others  (that would be altruism) : rather, she asks how 

similar behavior by others would impact upon her.  This approach to moral thinking has 

several advantages: first, it does not require that she know the preferences of others, and 

second, it does not require her to care about others.   We use the same technique in 

teaching our children not to litter  (we ask the child how he would feel if others were to 

litter the way he is doing).  Our practice with littering children suggests to me that 

appealing to the categorical imperative is more persuasive than appealing to altruism. 

 

3.9 Literature notes  

 In Roemer and Silvestre (1993), we proved that in fishing economies, more 

general than the ones defined here, allocations exist in which consumption is proportional 

to labor expended and which are Pareto efficient.   We viewed this is a canonical 

‘socialist allocation’: it adjoins to the socialist principle of proportionality of 

consumption to labor, Pareto efficiency, strangely ignored in the socialist tradition.  We 

called this allocation a ‘proportional solution.’ In Roemer (1996), I noted that the 

                                                
4 The inquisitive reader may ask whether the choice of a Kantian optimization protocol is 

somehow equivalent to optimizing  à la Nash but with altered preferences.  This is the 

topic of chapter 6 below. 
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proportional solution possesses the multiplicative Kantian property, and so named it a 

Kantian equilibrium. 

 In Roemer (2006), I applied multiplicative Kantian equilibrium to solve the free-

rider problem of donors contributing to a political party in an efficient manner.   

 At some point during the last decade, Joaquim Silvestre suggested varying the 

Kantian protocol to ‘additive.’   He noted that one advantage of additive Kantian 

equilibrium is that it eliminates one embarrassing (multiplicative) Kantian equilibrium in 

the fishing game, where all efforts are zero.  In general, one need not specify positivity in 

K +   equilibrium to guarantee Pareto efficiency, while one does, for K ×  equilibrium. 

 The proof presented here that positive multiplicative Kantian equilibria in strictly 

monotone games with heterogeneous preferences is Pareto efficient is due to Colin 

Stewart.  

 The presentation in this book is non-chronological.  I first discovered 

multiplicative Kantian equilibrium, and only much later, saw the simpler idea of simple 

Kantian equilibrium in symmetric games, to which I credit Brekke, Kverndokk and 

Nyborg (2003).    

 

 

  

 

  

  

  

  

 


