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Motivation

There has been a growing interest in the last decade in the
treatment of ordinal data when measuring inequality,
poverty or welfare. This comes from both literature and
policymaking.
Standard literature on inequality measurement focuses on
the inequality of attributes that are measurable and
comparable among different units of measurement
(individuals, groups, regions, countries etc.) e.g. income.
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Motivation

Yet in the last decades researchers have acknowledged
that, while important, income cannot be treated as sole
indicator of well-being (Atkinson and Bourguignon 1982;
Sen 1973, 1987; Maasoumi 1986; Tsui 1995; Gajdos and
Weymark 2005; Duclos, Sahn and Younger 2011).
Well-being is a multidimensional concept (Stiglitz, Sen and
Fitoussi 2008).
Empirical analyses increasingly include non-income
dimensions of well-being e.g. health.
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Motivation

Some governments (e.g. UK, France, Canada, Japan) and
international organizations have been responding to
economists’ urges to incorporate a multidimensional
perspective on well-being (progress, quality of life),
inequality, and poverty.
In 2010 British Prime Minister announced that in evaluating
people’s quality of life the government would rely not only
on GDP growth but also on non-income indicators such as
education, health and environment. Cameron described
monitoring people’s well-being as one of central political
issues of our time.
The UK Office for National Statistics has a program
“Measuring what matters” in which they are developing
new measures of national well-being.
In 2008 French government created a renowned
Stiglitz-Sen-Fitousi commission in order to better tackle the
problem of measuring social and economic performance.
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Motivation

In May 2011, in its 50th Anniversary Week, OECD
launched the Better Life Index which allows citizens to
compare lives across 34 countries, based on 11
dimensions such as housing, income, jobs, community,
education, environment, governance, health, life
satisfaction, safety, and work-life balance.
Some NGOs become involved too e.g. Social Progress
Imperative develops Social Progress Index and aims to
“solve the world’s most pressing challenges by redefining
how the world measures success".
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Motivation

Many non-income wellbeing dimensions are available in
surveys in the form of ordinal data. Such is the case with
self-reported health status, educational attainment, life
satisfaction, living conditions and many others. Mostly in
health economics, happiness economics, educational
economics, and development economics.
To be precise, we deal with data that are ordinal and
discrete. Ordinal - invariance with respect to monotone
transformations (vs. cardinality - particular numbers are
meaningful). Discrete - variables are concentrated on a
fixed number of points (vs. continuous variables which
accord a particular value with probability zero).
There are numerous measurement problems with ordinal
data.
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Motivation

There is another strand of literature which is not related to
well-being measurement, but uses ordinal data a lot,
namely so called socioeconomic inequalities in health
(Wagstaff et al. 1991, Kakwani et al. 1997, O’Donnell et al.
2008, van Doorslaer and Jones 2003).
This literature involves the study of the relationship
between income/SES/education and health. We focus on
pure measurement issues here (no causality etc.)
In a sense, the study of univariate distributions measures
total dispersion in health, irrespective of socioeconomic
factors. To include socioeconomic dimensions (like income
or education) one necessarily deals with (at least) bivariate
distributions.
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Univariate distributions: the measurement problem

The standard procedure of dealing with ordinal variables is
to try to cardinalize them (O’Donell et al. 2008; Van
Doorslaer and Jones 2003). The cardinalization may come
from a simple assignment of a sequence of numbers
(Deaton and Paxson 1998) but also via assuming a
distribution of a latent variable or through tying a
distribution of an ordinal variable to a distribution of a
cardinal variable.
Allison and Foster (2004) show that cardinalization is a
flawed procedure. Variations in the scale that cardinalizes
an ordinal variable may reverse the ranking of distributions
based on means, variance, coefficient of variation (Lazar
and Silber 2013) or standard inequality measures like Gini
index (Kobus 2015).
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Univariate distributions: the measurement problem

More recently, Bond and Lang (2014) arrive at the same
conclusion in a slightly different way.
If the latent distribution can be represented by a a
two-parameter distribution (e.g. cdf being a function of
mean and variance) with different parameters for each
group being compared - like in any estimation using
ordered probit or ordered logit - then the CDFs of two
groups will always cross except for a zero-probability event
where the variances are the same, so there cannot be
FOD which is necessary for the mean of two distributions
to be invariant to monotonic transformations.
We cannot strictly rank groups by mean happiness.
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Univariate distributions: the measurement problem

Key concepts of standard inequality measurement
literature are difficult to interpret in an ordinal framework. It
is difficult to imagine a meaningful version of a
Pigou-Dalton Transfer in the health context. “Transferring”
health (?) from a healthier to a less healthy individual may
exacerbate income inequality if a healthier individual is
also a poorer one.
Solution: consider an underlying social good that is
transferrable and affects the distribution of health status
e.g. access to health care.
But then we need to know whether a transfer is sufficient to
change the distribution of health status. So again, without
further assumptions on the underlying variable, the impact
of a Pigou-Dalton transfer will remain indeterminate.
One solution: to develop a theory that deals directly with
distributions of ordinal variables.
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Univariate distributions: the measurement problem

In standard inequality measurement literature, a perfectly
equal distribution is the one in which every individual
possesses the same amount of income which then by
definition is mean income. Inequality indicates a deviation
from such a perfectly equal distribution and an inequality
index measures the degree of the deviation.
Similarly, in an ordinal data framework inequality can be
thought of as a distance from the perfectly equal
distribution. A natural candidate for a perfectly equal
distribution is a distribution for which every individual is in
the same category. Yet while in a standard framework a
perfectly equal distribution is unique with ordinal data there
are as many perfectly equal distributions as there are
categories.
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Univariate distributions: new theory for ordinal data

The way this problem has been dealt with so far in the
literature is to resort to the notion of a perfectly unequal
distribution. For many researchers the most natural
candidate for a perfectly unequal distribution is the one
where half of probability mass is concentrated in the lowest
category and half of probability mass is concentrated in the
highest category (Leik (1966), Berry and Mielke (1992a),
Blair and Lacy (2000), Allison and Foster (2004), and Abul
Naga and Yalcin (2008) and others). Such distribution has
the advantage of being uniquely defined.
Zheng (2008) argues that it is more polarization than
inequality and it is hard to disagree ...
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Univariate distributions: new theory for ordinal data

Apouey and Silber (2013) claim that maximal inequality
obtains if all individuals except one are in the lowest
category, whereas one individual is in the highest category.
On the other hand, they claim that there is no inequality
(and polarization) if all mass is concentrated in one cell. –>
discontinuity problem
Recently, Gravel, Magdalou and Moyes (2015) propose a
relation which can be thought of as measuring inequality
rather than bi-polarization. They relate so called Hammond
transfers to a dominance curve Fi := 2Fi−1 + fi .
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Univariate distributions: new theory for ordinal data

We typically work with the following framework. A
numerical representation of categories of ordinal variables
I := I1 × I2 = {0, . . . ,n} × {0, . . . ,m} which is arbitrary as
long as it preserves the ordering.
Let f be a probability distribution on the set I (independent
of scale). Obviously we require

∑n
i=0
∑m

j=0 fij = 1 and for
all (i , j) ∈ I, fij ≥ 0. We define marginal distributions by
f 1
i :=

∑m
j=0 fij , f 2

j :=
∑n

i=0 fij and cumulative distributions by

F 1
i :=

∑i
k=0 fk , F 2

j :=
∑j

l=0 fl . When speaking about
univariate distribution let f ,g denote univariate distributions
(i.e. f j ,g j ), and F ,G univariate cdfs, respectively.
A multidimensional cumulative distribution function F at
(i , j) equals Fij :=

∑i
k=0

∑j
l=0 fkl .

For each dimension j we define a median mj which is the
number for which F j

mj−1 ≤ 1/2 and F j
mj
≥ 1/2. Finally, let

inequality index be denoted by I : Λ 7→ R.
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Univariate distributions: new theory for ordinal data

Definition

Hammond transfer We say that g is obtained from f via a
Hammond transfer if there exist categories
1 < l < s ≤ m < j < k such that gi = fi ∀i 6=l,s,m,j and

gl = fl − η1 gs = fs + η1

gm = fm + η2 gj = fj − η2,

where η1, η2 > 0.

Gravel, Magdalou and Moyes (2015) define it by moving
individuals between categories. The spread of the distribution
of an ordinal attribute is reduced irrespective of whether the
“gain” of one individual is equal to the “loss” of the other.
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Univariate distributions: new theory for ordinal data

Definition

FOD Fixing n ≥ 1 and allowing f ,g to be two probability
distributions on I.

F 6FOD G⇔ Fi ≤ Gi for any i .

Theorem

(Allison and Foster 2004) Let c = {c1
1 ≤ . . . ≤ c1

n} be a scale on
I. Further, let µF :=

∑n
i=1 fici , µG denote the mean of F ,G. F

first order dominates G if and only if µF ≥ µG for every c.
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Univariate distributions: new theory for ordinal data

Allison and Foster (2004) postulate that inequality
increases when probability mass is moved away from the
median. They introduce the following partial ordering 6AF .
Mendelson (1987) proposes similar relation for any quintile.

Definition

Unidimensional AF
Fixing n ≥ 1 and allowing f ,g to be two probability distributions
on I.

F 6AF F ⇔

(AF1) F ,G have a unique and common median m,
(AF2) Fi ≤ Gi for any i < m,
(AF3) Fi ≥ Gi for any i ≥ m,

Interpretation of this ordering is intuitive, in particular,
F 6AF G when F is more concentrated around the median
than G.
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Univariate distributions: new theory for ordinal data

Abul Naga and Yalcin (2008), and Lazar and Silber (2013)
characterize indices based on AF relation.
In the general case, I is of the form: I(f ) = ψ(F )−ψ(F̌ )

ψ(F̂ )−ψ(F̌ )
,

where ψ(F ) =
∑

i<m h1(Fi)−
∑

i≥m h2(Fi), and h1,h2 are
increasing functions.
They derive several classes of indices.
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Univariate distributions: new theory for ordinal data

Kobus (2015) proves an Atkinson - type theorem (Atkinson,
1970) for ordinal data.

Definition

Median-preserving spread principle An index does not
decrease following a median-preserving spread i.e. a transfer
of probability mass away from the median (in both directions).

Definition

A function is T − convex if it does not decrease following a
multiplication via a T − convex matrix.

In short, T − convex functions are matrix representations
of median-preserving spreads.
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Univariate distributions: new theory for ordinal data

Theorem
(Kobus 2015) The following conditions are equivalent.

1 f 6AF g.
2 g can be obtained from f via a finite sequence of

median-preserving spreads.
3 I(f ) ≤ I(g) for all indices satisfying 4.
4 I(f ) ≤ I(g) for all T − convex indices.
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Univariate distributions: new theory for ordinal data

Kobus and Miłoś (2012) characterize indices
decomposable by population subgroups (similarly to
Shorrocks 1980, 1984 for cardinal data).
DECOMP requires that an index be presented as some
function of inequality values in subgroups and subgroup
sizes expressed in percentages. For example, let
f = (0.25,0.25,0.50); g = (0.30,0.40,0.30) and α = 0.5.
Total distribution is 0.5f + 0.5g = (0.275,0.325,0.40).
Then, if the inequality index fulfills DECOMP the inequality
value associated with the distribution (0.275,0.325,0.40)
can be decomposed into inequality values in groups f and
g.
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Univariate distributions: new theory for ordinal data

Theorem

(Kobus and Miłoś 2012) I is continuous and fulfills DECOMP if
and only if I is of the form

I(f ) = h(
n∑

i=1

ai fi),

where (a1,a2, . . . ,an) ∈ Rn, h : R 7→ [0,1] is a continuous
strictly monotonic function. Moreover, let I be decomposable.
Then, I is consistent with AF relation if and only if either h is a
strictly increasing function and ai ≥ ai+1 when i < m and
ai ≤ ai+1 when i ≥ m or h is a strictly decreasing function and
ai ≤ ai+1 when i < m and ai ≥ ai+1 when i ≥ m.
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Univariate distributions: measures of
inequality/polarization

Several measures have been proposed in the literature
(Blair and Lacy 2000; Allison and Foster 2004; Apouey
2007; Abul Naga and Yalcin 2008). We focus on measures
proposed in Abul Naga and Yalcin (2008).
Let n be the number of categories and m denote the
median.

Ia,b(f ) =
a
∑

i<m Fi − b
∑

i≥m Fi + b(n + 1−m)

(a(m − 1) + b(n −m)) /2
; a,b ≥ 0.

When a > b the index is more sensitive to inequality below
the median, whereas the opposite is true if a < b and more
weight is attached to inequality above the median. Kobus
and Miłoś (2012) prove that this is the only class
decomposable by population subgroups (among measures
proposed in the literature).
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Univariate distributions: measures of
inequality/polarization

Iα,β(f ) =

∑
i<m Fα

i −
∑

i≥m Fβ
i + (n + 1−m)

kα,β + (n + 1−m)
,

where kα,β = (m − 1)
(1

2

)α − (1 + (n −m)
(1

2

)β)
and

α, β ≥ 1.
For a given value of β, the index becomes more sensitive
to inequality in the lower end as α→ 1 and in the higher
end as α→∞. Conversely, for given value of α, the index
becomes more sensitive to inequality in the top of the
distribution as β rises.
Recently, Abul Naga and Stapengurst (2015) provide
estimation for both Iα,β and Ia,b.
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Univariate distributions: new theory for ordinal data

Cowell and Flachaire (2015) develop a class of inequality
indices conditional on a reference point. In particular, they
characterize the following family of indices

Iα(s,e) :=
1

α(α− 1)

(
1
n

n∑
i=1

sαi − eα
)
,

where si is person i status (which can be measured by
person i ’s position in the distribution of an ordinal variable
e.g. downward looking status - the proportion of those
below me), e is the reference point and α measures
sensitivity to inequality in different parts of distributions.
Also e can be a function of s.
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Univariate distributions: new theory for ordinal data

Cowell and Flachaire (2015) consider different reference
points and choose maximal status (e = 1). This is the only
situation where for downward or upward looking status
distance from the reference point is zero for everyone.
In the case where e = 1 they obtain

Iα(s,1) :=
1

α(α− 1)

(
1
n

n∑
i=1

sαi − 1

)
, α 6= 0,1

Iα(s,1) := −1
n

n∑
i=1

ln si , α = 0.

They develop statistical properties of Iα.
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Univariate distributions: new theory for ordinal data

Lv et al. (2015) characterize the following family of
inequality measures.

I(f ) :=
n∑

i=1

∑
j 6=i

h(|i − j |)fi fj ,

where h : {0, . . . ,n− 1} 7→ (0,∞) is an increasing function.
The degree of inequality between any two categories i , j is
captured, and h increases with the distance between
categories.
Depending on h, this class includes various measures.
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Bivariate distributions

As mentioned, bivariate distributions of ordinal data
emerge most often in the so called socioeconomic
inequalities in health literature.
Typically to assess income-related inequality in health we
use concentration curve and a related concentration index
(Wagstaff et al. 1991; Kakwani et al. 1997) which plots the
cumulative percentage of health variable vs cumulative
percentage of the sample, ranked by incomes, from the
poorest to the richest.
For ordinal data common problems with scaling apply i.e.
the use of ordinal variables to compute an index developed
for ratio-scale variables (Makdisi and Yazbeck 2014).
Often regression coefficient is interpreted as the gradient.
This picks up linear dependence.
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Bivariate distributions: dominance conditions

Zheng (2011) proposes the following definition of Generalized
Lorenz dominance for welfare comparisons.

GL(f , l) :=
l∑

i=1

m∑
j=1

πi fijhj , l = 1,2, . . . ,n,

where π = (πi)
n
i=1 is a socioeconomic structure i.e. income

quintiles, and hj is the value of health (scale –> ordered).

Theorem
(Zheng 2011) For a given π and for all increasing scales h, f
Generalized Lorenz dominates g i.e.

GL(f , l) ≥ GL(g, l) ∀l ⇐⇒
l∑

i=1

k∑
j=1

πi fij ≤
l∑

i=1

k∑
j=1

πigij ∀k ,l ,

where l = 1, . . . ,n and k = 1, . . . ,m.
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Bivariate distributions: dominance conditions

For inequality comparisons, he defines relative and
absolute Lorenz curves which are mean-normalizations of
GL. The relative (absolute) Lorenz curve remans
unchanged if all expected health levels are increased
proportionally (by the same amount).
GL dominance is related to welfare functions which are
monotone and satisfy Pigou-Dalton Transfer (PDT) axiom.
Here PDT involves a transfer of health from a healthier
class to a less healthy which is problematic.
Zheng (2011) proposes to define welfare functions on the
vector of expected health
e(f ) :=

(∑m
j=1 f1jhj , . . . ,

∑m
j=1 fnjhj

)
and to assume that this

vector is in non-decreasing order i.e. higher
socioeconomic class has better expected health.
Then, he argues, PDT becomes more acceptable because
a healthier class also has higher income.
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Bivariate distributions: dominance conditions

The problem with Zheng (2011) is that π appears ad hoc,
without relation to f and is assumed to be the same for
distributions under comparison. The only empirical
application is thus income-health matrix, where π is
income quintile distribution.
One needs to modify Zheng’s conditions to use it for the
case of two ordinal variables e.g. education-health
distribution (work in progress).
Sonne-Schmidt et al. (2013) characterize all comparisons
in the 2× 2 case i.e. two binary variables. But there does
not seem to be an easy method to generalize this case
even a bit.
There is a related literature in segregation (Reardon 2009,
Cuhadaroglu 2015) and dissimilarity (Zoli and Andreoli
2015).
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Bivariate distributions: other solutions

Makdisi and Yazbeck (2014) omit the problem of
cardinalizing health variable by changing the way in which
one measures health.
In particular, the number of health problems is a variable
with a fixed measurement scale. Thus, they use the so
called counting approach (Alkire and Foster 2010 in
poverty measurement).
They have to transform the available distribution into 0− 1
i.e. something counts as a problem if some specified
threshold/cutt-off point is met. This causes substantial loss
of information.
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Bivariate distributions: measuring interdependence in
ordinal data

Few authors (Decancq 2012, 2013; Meyer and Strulovici
2012, 2015; Kobus 2015) focus on measuring
interdependence in ordinal data, which is a distinctive
feature of multivariate distributions as opposed to
univariate is interdependence between variables (i.e.
ceteris paribus, higher association means higher
inequality).
Acknowledging association explicitly makes measures
attribute decomposable (Naga and Geoffard 2006) by
definition, which is a useful property.
Given the problems with cardinalization, it seems more
appropriate to measure association not between health
and income/education/SES, but between the distributions
of health and income/education/SES.
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Bivariate distributions: measuring interdependence in
ordinal data

There is a measure of association that does exactly this. It
is a copula.
Copulas are well-known in mathematics and statistics due
to the celebrated Sklar’s theorem (Sklar, 1959) which
states that copula and marginal distributions characterize
joint distribution fully. Copula is a bivariate function that
binds marginal distributions and returns joint distribution.
Formally, a bi-dimensional copula C : [0,1]2 7→ [0,1] is a
function such that

Fij = C
(

F 1
i ,F

2
j

)
.
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Bivariate distributions: measuring interdependence

Copula is invariant under increasing transformations of
variables, whereas cdf is not.
Monotone transformation change the dependence
structure. Copula is “designed” exactly for situations when
such re-scaling should not change underlying
distributional. As Schweizer and Wolff (1981) note, “it is
precisely the copula which captures those properties of the
joint distribution which are invariant under (...) strictly
increasing transformations.”
This is a very natural concept when studying mobility IF
mobility is based on relative position in the income
distribution - the probability that the child from bottom
quintile gets to the top quintile.

Martyna Kobus Inequality with ordinal data



Bivariate distributions: measuring interdependence

Copula is invariant under increasing transformations of
variables, whereas cdf is not.
Monotone transformation change the dependence
structure. Copula is “designed” exactly for situations when
such re-scaling should not change underlying
distributional. As Schweizer and Wolff (1981) note, “it is
precisely the copula which captures those properties of the
joint distribution which are invariant under (...) strictly
increasing transformations.”
This is a very natural concept when studying mobility IF
mobility is based on relative position in the income
distribution - the probability that the child from bottom
quintile gets to the top quintile.

Martyna Kobus Inequality with ordinal data



Bivariate distributions: measuring interdependence

Copula is invariant under increasing transformations of
variables, whereas cdf is not.
Monotone transformation change the dependence
structure. Copula is “designed” exactly for situations when
such re-scaling should not change underlying
distributional. As Schweizer and Wolff (1981) note, “it is
precisely the copula which captures those properties of the
joint distribution which are invariant under (...) strictly
increasing transformations.”
This is a very natural concept when studying mobility IF
mobility is based on relative position in the income
distribution - the probability that the child from bottom
quintile gets to the top quintile.

Martyna Kobus Inequality with ordinal data



Bivariate distributions: measuring interdependence

Decancq (2013) proposes several measures of
dependence based on a copula. His results are, however,
for continuous distributions, and their application to
discrete data is far from straightforward.
In general, using copulas for discrete distributions is not
easy. Genest and Neslehova (2007) describe all the bad
things that happen with copulas for discrete data.
Main problem: unidentifiability.
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Bivariate distributions: measuring interdependence

Meyer and Strulovici (2015) are concerned with comparing
distributions in terms of interdependence only (so margins
are identical, and the unidentifiability does not cause too
many problems). They define supermodular ordering
which in this case is equivalent to an ordering on copulas
used by Kobus (2015, work in progress).
Yet in empirical comparisons we often have discrete
distributions with different margins. Kobus (2015) is
concerned with comparing such distributions. She deals
with unidentifiability by considering the whole set of
copulas associated with a given distribution and studying
its bounds which were specified in mathematics literature
by Carley (2002) and further by Neslehova (2007).
This allows to define concordance (increasing
dependence) ordering, which can be then combines with
different unidimensional dominance conditions (e.g. AF
dominance).
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Multivariate distributions

Decancq (2012) provides a generalization of bivariate
association concepts to trivariate distributions (elementary
rearrangements).
In three dimensions positive association no longer equals
minus negative association. This very quickly gets very
technical, but especially in health economics many health
indicators are often available.
Meyer and Strulovici (2012) provide a range of
dependence orderings in several dimensions (and rank
them!).
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Summary: what has been done and can be used when
measuring inequality in ordinal data

If one wants to measure inequality/polarization in health,
happiness, educational attainment or other types of
inequality when ordinal data are present, there is now a
whole array of measures that can be used for which
estimation has also been developed - Abul Naga and
Yalcin (2008) two classes, with the extension proposed by
Kobus and Miłoś (2012), or Cowell and Flachaire (2015).
If one is interested in more robust, non-parametric
comparisons, there are dominance conditions that can be
used - Allison and Foster (2004) or Gravel, Magdalou and
Moyes (2015).
For income-related or socioeconomic-related inequalities
in health, happiness etc. one may start with checking
Zheng (2011) conditions.
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Summary: future research

There is lack of normative inequality theory in the ordinal
data context. In the standard literature, welfare functions
can be expressed as functions of means (“efficiency”) and
inequality (“equity”). Here we do not have an appropriate
“efficiency statistic”.
The literature on bivariate comparisons is small. There is a
need for new dominance conditions, measures.
There seems to be a need for developing modelling
approaches which model the association structure more
flexibly so that the ordinal nature of the data is accounted
for.
The comparisons of multivariate distributions remain to be
solved.
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