Tax Me if you Can!
 Optimal Nonlinear Income Tax between Competing
 Governments

Etienne LEHMANN ${ }^{1}$
Laurent SIMULA ${ }^{2}$ Alain TRANNOY ${ }^{3}$

$$
\text { PET } 2014
$$

[^0]
Motivation

Some empirical evidences that highly skilled are responsive to tax changes through migration.

- Liebig, Puhani, Sousa-Poza (2007 JRS): finds small but significant migration responses across Swiss Cantons.
- Young and Varner (2011, NTJ) studies the migration response to the millionaire tax in NJ and find low but significant responses.
- Kleven, Landais, Saez (2013 AER) find a migration elasticity of 0.15 for domestic football players in Europe, but around 1 for foreign players.
- Kleven, Landais, Saez and Schultz (2013 QJE) find an elasticity above 1 for foreigners in Denmark (identified using a notch created by a preferential tax scheme for high-earning foreigners).

Main question

How different is the nonlinear income tax schedule that a government finds optimal when workers can vote with their feet?

- How the optimal tax schedule is affected by tax competition?
- What sufficient statics do we need to estimate?

Main features of the model

- Two countries (not necessarily symmetric).
- Individuals differ with respect to their skills and migration costs.
- In each country, a government sets the nonlinear income tax, taking into account intensive labor supply and migration responses.
- Focus on the Nash equilibrium between two Maximin governments.
- Identify key parameters to estimate: semi-elasticity of migration and how it evolves along the skill distribution.

Definition (Migration responses at a given skill level)

- Semi-elasticity: percentage change in the density of taxpayers of a given skill level when their consumption is increased by $\$ 1$.
- Elasticity: "... by 1% " $=$ consumption \times semi-elasticity.

What we show analytically

- The optimal marginal tax rate formula extends that of Diamond (1998 AER) to account for migration responses.
- Optimal Marginal Tax rates are positive if the semi-elasticity is decreasing in skill or constant.
- Optimal Marginal Tax rates may be negative for high-income earners if the semi-elasticity is increasing in skill.

Related Optimal tax literature

- Brewer, Saez and Shepard (2010) and Piketty Saez (2013): a constant elasticity of migration (Hence a decreasing semi-elasticity) + Pareto distribution leads to positive asymptotic Marginal Tax Rates.
- Blumkin, Sadka and Shem-Tov (2013): Optimal asymptotic marginal tax rate is zero under independent distribution of migration cost per skill level (hence, constant semi-elasticity).
- Simula Trannoy (e.g. JPubEcon 2010, SCW 2012): One migration cost per skill level. At any skill level, the migration response is 0 or ∞ (Hence a stepwise increasing semi-elasticity). Negative marginal tax rates may be optimal.

Outline of the talk

(1) The model.
(2) Analytical Results.
(3) Numerical Illustration of the Results.

The model

- Two countries $i=A, B$ of size N_{i}.
- Skills $w \sim\left[w_{0}, w_{1}\right]$, with $w_{1} \leq+\infty$, pdf $h_{i}(w)$ and $\operatorname{cdf} H_{i}(w)$.
- Migration costs $m \sim \mathbb{R}_{+}$, with conditional pdf $g_{i}(m \mid w)$ and $\operatorname{cdf} G_{i}(m \mid w)$.
- Individuals of skill w and migration cost m have preferences:

$$
c-v(y ; w)-\mathbb{1} \cdot m
$$

where $v_{y}^{\prime}>0>v_{w}^{\prime}$ and $v_{y y}^{\prime \prime}>0>v_{y w}^{\prime \prime}$. For instance: $v(y ; w) \equiv V\left(\frac{y}{w}\right)$

- Tax is conditioned on income y only and neither on type (w, m), nor on the native country (residence-based taxation).

Migration decisions

- An individual of skill w and migration cost m, born in country A :
- She gets $U_{A}(w)$ if she stays in country A.
- She gets $U_{B}(w)-m$ if she move to country B.
- She migrates to B if and only if $m<U_{B}(w)-U_{A}(w)$.
- The mass of movers of skill w is $G_{A}\left(U_{B}(w)-U_{A}(w) \mid w\right) h_{A}(w) N_{A}$.
- Mass of residents in country A for $\Delta=U_{A}(w)-U_{B}(w)$:

$$
\varphi_{A}(\Delta ; w) \equiv \underbrace{\left(1-G_{A}(-\Delta \mid w)\right) h_{A}(w) N_{A}}_{\text {Non migrants in } A}+\underbrace{G_{B}(\Delta \mid w) h_{B}(w) N_{B}}_{\text {Migrants from } B}
$$

- We assume $m \sim \mathbb{R}^{+}$, so for each skill level w, there are workers for which migration is not an option and $\varphi_{A}(\cdot ; w)>0$

Migration decisions (2)

Definition (Semi-elasticity of migration)

$$
\eta_{i}(w ; \Delta) \equiv \frac{1}{\varphi_{i}(\Delta ; w)} \frac{\partial \varphi_{i}(\Delta ; w)}{\partial C(w)}
$$

$=$ Percentage change in the density of taxpayers with skill w when their consumption $C(w)$ is increased by $\$ 1$.

Definition (Elasticity of migration)

$$
\nu_{i}(w ; \Delta) \equiv \frac{C_{i}(w)}{\varphi_{i}(\Delta ; w)} \frac{\partial \varphi_{i}(\Delta ; w)}{\partial C_{i}(w)}=C_{i}(w) \times \eta_{i}(w ; \Delta)
$$

$\nu_{i}(w)$ can be increasing in w while $\eta_{i}(w)$ may be decreasing.

The government

- Governments are benevolent and Maximin (Rawlsian).
- Exogenous budget requirement $E \geq 0$.
- The worst-off are non-migrants of productivity w_{0} (because of the support of migration cost).
- Government A takes $T_{B}($.$) as given.$

Nash Equilibrium (Not Necessarily Symmetric)

For country i, let $f^{*}(.) \stackrel{\text { def }}{=} \varphi_{i}\left(U_{i}^{*}(w)-U_{-i}^{*}(w) ; w\right)$ and $\eta^{*}(w)=\eta_{i}\left(U_{i}^{*}(w)-\right.$ $\left.U_{-i}^{*}(w) ; w\right)$.

Proposition 1: Optimal marginal tax under tax competition

$$
\frac{T^{\prime}(Y(w))}{1-T^{\prime}(Y(w))}=\underbrace{\frac{\alpha(w)}{\varepsilon(w)}}_{\text {Intensive }} \underbrace{\frac{1-F^{*}(w)}{w f^{*}(w)}}_{\text {Distribution }} \underbrace{\left(1-\mathbb{E}_{f^{*}}\left[T(Y(x)) \eta^{*}(x) \mid x \geq w\right]\right)}_{\text {Decrease of tax liabilities above } Y(w)}
$$

$\mathbb{E}_{f^{*}}\left[T(Y(x)) \eta^{*}(x) \mid x \geq w\right]=\mathbb{E}_{f^{*}}\left[\left.\frac{T(Y(x))}{Y(x)-T(Y(x))} \nu^{*}(x) \right\rvert\, x \geq w\right]$

The "Tiebout" best

- The same problem as in the second best without IC constraints, i.e.: The government maximizes $U\left(w_{0}\right)$ subject to budget constraint and observes the skill level w, but not the migration cost m.
\Rightarrow Tax distortions only come from the migration margin (" 1.5 best").
- The optimal tax level for $w>w_{0}$ is $\tilde{T}(w)=\frac{1}{\eta^{*}(w)}$: mechanical effects are just compensated by migration responses.
- Tax revenues are used to decrease $\tilde{T}\left(w_{0}\right)$.
- Discontinuity of $\tilde{T}(\cdot)$ at w_{0}.

The Tiebout best as a "target" for the second best

Optimal marginal tax rates are given by: Formula

$$
\frac{T^{\prime}(Y(w))}{1-T^{\prime}(Y(w))}=\frac{\alpha(w)}{\varepsilon(w)} \frac{\int_{w}^{\infty}[\tilde{T}(x)-T(Y(x))] \eta^{*}(x) f^{*}(x) d x}{w f^{*}(w)}
$$

The second best consists in "smoothing" the Tiebout best (Jacquet et alii (2013)) to have tax liabilities as close as possible to the Tiebout target to minimize distortions along the migration margin (lower $\mid \tilde{T}(x)-T(Y(x) \mid$).

Figure: Constant Semi-Elasticity of Migration

Figure: Decreasing Semi-Elasticity of Migration

Figure: Increasing semi-elasticity of Migration

Figure: The semi-elasticity of Migration increases to infinity

Parameters

- Constant labor supply elasticity $c-\left(\frac{y}{w}\right)^{1+\frac{1}{\varepsilon}}$, with $\varepsilon=0.25$.
- We use the CPS 2007 distribution of earnings for singles without kids.
- The skill distribution is recovered using the federal and Californian income tax schedules for singles without dependent.
- Following Diamond (1998), Saez (2001), we extend the obtained kernel estimation by a truncated Pareto distribution (+ a mass at $w_{1}=$ $\$ 1534$ 6660).
\Rightarrow The top 1% gets a fraction 17.6% of total income in our economy, instead of 18.3% (Alvarado, Atkinson, Piketty and Saez (2013)).
- Public expenditures E are kept at their initial level $\$ 18,157$, which represents 33.2% of total gross earnings of singles without kids.
- 3 different scenarios for $\eta(w)=g(0 \mid w)$ where the elasticity of migration within the top 1% is on average 0.25 .

Numerical illustration of the results

- Consider 3 US economies that are identical but their migration responses.
- Identical mean elasticity of migration among the top 1% (0.25) but 3 different scenarios for how the semi-elasticity varies. The 3 illustrative scenarios
$\Rightarrow \underset{\text { Welfare Losses and Gains from tax competition }}{\text { Numerical illustration: Optimal }}$
- The empirical literature should not only estimate the elasticity of migration among the top 1%.
- We also need to know how the semi-elasticity of migration is changing along the skill/income distribution.

Figure: The three profiles of semi-elasticities Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: The three profiles of elasticities Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: Optimal marginal tax rates
Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: Optimal tax liabilities
Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: Optimal average tax rates
Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: Welfare gains and losses from tax competition Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Figure: Welfare gains and losses from tax competition in the top 1% Constant elasticity (Brewer Saez Shepard (2010)) Independent distribution (Blumkin, Sadka and Shem-Tov (2012)) Increasing semi-elasticity Back

Conclusion

- With a numerical example. 3 economies that are identical, including mean migration elasticity among the top 1% but different profiles of the migration responses have very different optimal tax policies.
- A challenge of empirical research: investigating how migration responses are changing within the top 1%.

[^0]: ${ }^{1}$ CRED - University Paris 2 and CREST
 ${ }^{2}$ Uppsala University.
 ${ }^{3}$ Aix-Marseille School of Economics.

