Political and Economic Reinforcement

Kalle Moene

Canazei January 2015

Reinforcment

Enhancement:

A shift in inequality leads to endogenous adjustments changing inequality in the same direction.

U.S welfare generosity and wage dispersion 1945-2002

Social Transfers/GDP • d9d1 ratio, Male Wages

European welfare generosity and wage dispersion 1976-2002

- Inequality depends on public policy G and the productivity dispersion P (γ a shift parameter)

$$
I=I(G, P ; \gamma)
$$

- Inequality depends on public policy G and the productivity dispersion P (γ a shift parameter)

$$
I=I(G, P ; \gamma)
$$

- Productivity dispersion depends on inequality I and public policy G

$$
P=P(I, G)
$$

- Inequality depends on public policy G and the productivity dispersion P (γ a shift parameter)

$$
I=I(G, P ; \gamma)
$$

- Productivity dispersion depends on inequality I and public policy G

$$
P=P(I, G)
$$

- Public policy depends on inequality and average productivity P_{a}

$$
G=G\left(I, P_{a}\right)
$$

Ex

- Differentiating

$$
\begin{aligned}
& \frac{d l}{d \gamma}=\frac{1-P_{g} G_{p}}{D} l_{\gamma} \\
& \frac{d G}{d \gamma}=\frac{G_{i}+P_{i} G_{p}}{D} l_{\gamma} \\
& \frac{d P}{d \gamma}=\frac{P_{i}+P_{p} G_{i}}{D} l_{\gamma}
\end{aligned}
$$

- Differentiating

$$
\begin{aligned}
& \frac{d l}{d \gamma}=\frac{1-P_{g} G_{p}}{D} l_{\gamma} \\
& \frac{d G}{d \gamma}=\frac{G_{i}+P_{i} G_{p}}{D} l_{\gamma} \\
& \frac{d P}{d \gamma}=\frac{P_{i}+P_{p} G_{i}}{D} l_{\gamma}
\end{aligned}
$$

$$
D=1-\left[P_{g} G_{p}+I_{g} G_{i}+I_{p} P_{i}+G_{i} P_{g} I_{p}+G_{p} P_{i} I_{g}\right]<1
$$

EX

Economic reinforcement

- Fix $G=\bar{G}$

$$
I=I(\bar{G}, P(I, \bar{G}) ; \gamma)
$$

Economic reinforcement

- Fix $G=\bar{G}$

$$
\begin{gathered}
I=I(\bar{G}, P(I, \bar{G}) ; \gamma) \\
\frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{p} P_{i}}
\end{gathered}
$$

enhanced if $0<I_{p} P_{i}<1$

Economic reinforcement

- Fix $G=\bar{G}$

$$
\begin{gathered}
I=I(\bar{G}, P(I, \bar{G}) ; \gamma) \\
\frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{p} P_{i}}
\end{gathered}
$$

enhanced if $0<I_{p} P_{i}<1$

- the elasticities $I_{p} P / I$ and $P_{i} I / P$ positive and less than 1

Economic reinforcement

- Fix $G=\bar{G}$

$$
\begin{gathered}
I=I(\bar{G}, P(I, \bar{G}) ; \gamma) \\
\frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{p} P_{i}}
\end{gathered}
$$

enhanced if $0<I_{p} P_{i}<1$

- the elasticities $I_{p} P / I$ and $P_{i} I / P$ positive and less than 1

$$
\frac{d P}{d \gamma}=\frac{P_{i} I_{\gamma}}{1-I_{p} P_{i}}
$$

EX
Political reinforcement

- Fix $P=\bar{P}$,

$$
I=I(G(I, \bar{P}), \bar{P} ; \gamma)
$$

Political reinforcement

- Fix $P=\bar{P}$,

$$
\begin{aligned}
& I=I(G(I, \bar{P}), \bar{P} ; \gamma) \\
& \frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{g} G_{i}}
\end{aligned}
$$

enhanced if $0<I_{g} G_{i}<1$

Political reinforcement

- Fix $P=\bar{P}$,

$$
\begin{gathered}
I=I(G(I, \bar{P}), \bar{P} ; \gamma) \\
\frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{g} G_{i}}
\end{gathered}
$$

enhanced if $0<I_{g} G_{i}<1$

- if $I_{g}<0, G_{i}<0$ the elasticities $\left|I_{g} I / G\right|<1$ and $\left|G_{i} I / G\right|<1$

Political reinforcement

- Fix $P=\bar{P}$,

$$
\begin{gathered}
I=I(G(I, \bar{P}), \bar{P} ; \gamma) \\
\frac{d I}{d \gamma}=\frac{I_{\gamma}}{1-I_{g} G_{i}}
\end{gathered}
$$

enhanced if $0<I_{g} G_{i}<1$

- if $I_{g}<0, G_{i}<0$ the elasticities $\left|I_{g} I / G\right|<1$ and $\left|G_{i} I / G\right|<1$

$$
\frac{d G}{d \gamma}=\frac{G_{i} l_{\gamma}}{1-I_{g} G_{i}}
$$

Political and economic reinforcement combined rightarrow even higher multipliers

- P and G be endogenous

$$
\begin{aligned}
& \frac{d l}{d \gamma}=\frac{1-P_{g} G_{p}}{D} l_{\gamma} \\
& \frac{d G}{d \gamma}=\frac{G_{i}+P_{i} G_{p}}{D} l_{\gamma} \\
& \frac{d P}{d \gamma}=\frac{P_{i}+P_{p} G_{i}}{D} l_{\gamma}
\end{aligned}
$$

- D positive

$$
D=1-\left[P_{g} G_{p}+I_{g} G_{i}+I_{p} P_{i}+G_{i} P_{g} I_{p}+G_{p} P_{i} I_{g}\right]<1
$$

Economic enforcement

Ideal competition versus
 Real competition

Creative destruction and wage inequality

- profits of a job invested in at time t

$$
\Pi(t, t)=\theta(t) F(t)-\sum_{s=t}^{t+\theta(t)-1} W(s, t)
$$

Creative destruction and wage inequality

- profits of a job invested in at time t

$$
\Pi(t, t)=\theta(t) F(t)-\sum_{s=t}^{t+\theta(t)-1} W(s, t)
$$

- wage in period s in vintage t

$$
W(s, t)=Q(s)+\alpha \xi F(t)
$$

Creative destruction and wage inequality

- profits of a job invested in at time t

$$
\Pi(t, t)=\theta(t) F(t)-\sum_{s=t}^{t+\theta(t)-1} W(s, t)
$$

- wage in period s in vintage t

$$
W(s, t)=Q(s)+\alpha \xi F(t)
$$

- Free entry $\Pi(t, t)=B(n(t), t)$

Creative destruction and wage inequality

- profits of a job invested in at time t

$$
\Pi(t, t)=\theta(t) F(t)-\sum_{s=t}^{t+\theta(t)-1} W(s, t)
$$

- wage in period s in vintage t

$$
W(s, t)=Q(s)+\alpha \xi F(t)
$$

- Free entry $\Pi(t, t)=B(n(t), t)$
- Free exit: termination of jobs of age $\theta(t)$:

$$
(1-\alpha \xi) F(t-\theta(t)+1)-Q(t)=0
$$

Steady state

- pace of creative destruction λ

Steady state

- pace of creative destruction λ
- full employment $\theta n=1$

Steady state

- pace of creative destruction λ
- full employment $\theta n=1$
- fatness n : free entry $(1 / n) f-\tilde{w}=b(n) \rightarrow$

$$
\pi(n, \lambda) \equiv(1-\alpha \xi)[(1 / n)-x(1 / n)] f=b(n)
$$

Steady state

- pace of creative destruction λ
- full employment $\theta n=1$
- fatness n : free entry $(1 / n) f-\tilde{w}=b(n) \rightarrow$

$$
\pi(n, \lambda) \equiv(1-\alpha \xi)[(1 / n)-x(1 / n)] f=b(n)
$$

- ξ down $\Rightarrow n$ up, θ down, a higher level of income per capita $n x$ and a higher average wage \bar{w}
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- a lower local bargaining power yields a higher average wage
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- a lower local bargaining power yields a higher average wage
- Piketty on the head: local wage restraints raises expected profits higher investment more wage equality
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- a lower local bargaining power yields a higher average wage
- Piketty on the head: local wage restraints raises expected profits higher investment more wage equality
- Strange coalitions: beneficiaries low paid workers together with employers (ends against the middle)
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- a lower local bargaining power yields a higher average wage
- Piketty on the head: local wage restraints raises expected profits higher investment more wage equality
- Strange coalitions: beneficiaries low paid workers together with employers (ends against the middle)
- higher rate of technological change increases wage compression via structural change
- direct wage compressing effect is strengthened via structural change and reallocation of workers
- a lower local bargaining power yields a higher average wage
- Piketty on the head: local wage restraints raises expected profits higher investment more wage equality
- Strange coalitions: beneficiaries low paid workers together with employers (ends against the middle)
- higher rate of technological change increases wage compression via structural change
- to the extent that λ depends on n, wage compression implies higher growth and more compression

heterogenous workers

Sorting

$$
\begin{aligned}
& p_{H} F\left(\theta_{H}\right)-w_{H}=p_{L} F\left(\theta_{H}\right)-w_{L} \\
& p_{L} F\left(\theta_{H}+\theta_{L}\right)=w_{L}
\end{aligned}
$$

The wage distribution support efficient sorting has $\beta=1$

$$
\frac{w_{H}-w_{L}}{w_{L}}=\beta \frac{p_{H}-p_{L}}{p_{L}}(1+\lambda)^{\theta_{L}}
$$

Compression: $\beta<1$, inefficient, but of a special kind.

Dispersion of TFPR in Norway vs. United States

United States	1977	1987	1997
S.D.	.45	.41	.49
$75-25$.46	.41	.53
$90-10$	1.04	1.01	1.19
Norway	1997	2001	2005
S.D.	.35	.34	.33
$75-25$.37	.34	.34
$90-10$.8	.74	.73

Political Reinforcement

Political reinforcement: Welfare spending as a normal and

 inferior goodIndividual social preferences over disposable income $C_{i}=(1-t) w_{i}$ and welfare spending G - contingent on the social parameter h_{i} :

- $V_{i}=v\left(C_{i}, G ; h_{i}\right)$ for members of income class i
- v quasi concave utility function, for instance

$$
V_{i}=U\left((1-t) w_{i}\right)+h_{i} G \equiv V_{i}\left(G ; w_{i}\right)
$$

Figure: Social Welfare Should be Expanded. Predicted probabilities

Voting

- with party platforms G_{L} and G_{R}, voters in income class i for whom

$$
\Delta_{i}=V_{i}\left(G_{L}, w_{i}\right)-V_{i}\left(G_{R}, w_{i}\right) \geq \epsilon_{i}
$$

vote left

Competition within and between parties

Factions:

- The idealists Preferences $W_{L}(g)$ in the left party, and $W_{R}(g)$ in the right party.
- The opportunists, Preference q for the left and $(1-q)$ for the right party
- Must have consent by both factions

$$
\begin{aligned}
N_{L}\left(G_{L}, G_{R}\right) & \left.=\left[q\left(G_{L}, G_{R}\right)\right]^{\alpha_{L}}\left[W_{L}\left(G_{L}\right)-W_{L}\left(G_{R}\right)\right)\right]^{1-\alpha_{L}} \\
N_{R}\left(G_{L}, G_{R}\right) & \left.=\left[1-q\left(G_{L}, G_{R}\right)\right]^{\alpha_{R}}\left[W_{R}\left(G_{R}\right)-W_{R}\left(G_{L}\right)\right)\right]^{1-\alpha_{R}}
\end{aligned}
$$

Mixed cooperative non-cooperative game: The equilibrium: $\tilde{G}_{L}, \tilde{G}_{R}$ that fit in the internal bargaining solution, and that are consistent best responses to the program of the opposing party, i.e. where

$$
\begin{aligned}
& \max _{G_{L}} N_{L}\left(G_{L}, \tilde{G}_{R}\right)=N_{L}\left(\tilde{G}_{L}, \tilde{G}_{R}\right) \\
& \max _{G_{R}} N_{R}\left(\tilde{G}_{L}, G_{R}\right)=N_{R}\left(\tilde{G}_{L}, \tilde{G}_{R}\right)
\end{aligned}
$$

(PUNE, Roemer)

Figure: The political party equilibrium

As long as the bargaining power of the realists is positive, $\beta_{j}>0$ for $j=R, L$, a mean preserving compression of wages raises the welfare generosity of the political programs of both sides of the political spectrum.

Economic Reinforcement: Empowerment of welfare spending

Nash-product $\left[V_{i}^{e}-V_{i}^{u}\right]^{\alpha_{i}}\left[p_{i}-w_{i}\right]^{1-\alpha_{i}}$

$$
V_{i}^{e}-V_{i}^{u}=\gamma_{i}\left[U\left(c_{i}\right)-\delta_{i} U\left(\bar{c}_{i}\right)-\left(1-\delta_{i}\right) U(g)\right]
$$

where $\bar{c}_{i}=(1-b g) \bar{w}_{i}$ and U is CRRA with μ.

- $\mu<1$ higher g reduce pre tax wage gap
- $\mu \geq 1$ higher g reduce the pre-tax wage inequality $I=w_{s} / w_{\omega}$ between any weak group ω, with $\alpha_{\omega} \leq 1 / \mu$, and any group s with a more productive job.
- Coordination: all wages in income class i are set simultaneously. Nash product $\max _{w_{i}}\left[U\left(c_{i}\right)-\delta_{i} U\left(\bar{c}_{i}\right)-\left(1-\delta_{i}\right) U(g)\right]^{\alpha_{i}}\left[p_{i}-w_{i}\right]^{1-\alpha_{i}}$ is replaced by

$$
\max _{w_{i}}\left(1-\delta_{i}\right)\left[U\left(c_{i}\right)-U(g)\right]^{\alpha_{i}}\left[p_{i}-w_{i}\right]^{1-\alpha_{i}}
$$

- Coordination means that one source of heterogeneity different outside job opportunities- does no longer affect wages: Differentials across jobs become smaller.

Political and Economic
Reinforcement combined
Inequality Multiplier

Table: Generosity and Inequality. IV-regressions

	(1) Inequality	(2) Generosity	(3) Inequality
Generosity	$-0.374^{* *}$		
Inequality		(4) Unemployment generosity	
Unemployment		$-1.190^{* *}$	
generosity		(0.235)	
F-value first step	39.30	15.11	13.26
P-value Sargan	0.1317	0.6247	0.2510
N	359	359	359

Standard errors in parentheses. Instruments for generosity are measures of right wing in government and the share of women in parliament. Instruments for inequality are coordination in bargaining and industrial conflicts. All models include country and ye measures of gdp per capita, openness, tertiary education, union density, and depende population See appendix for details. ${ }^{* *} p<.05$

Table: Generosity and Inequality. IV-regressions

(1)
 (2)
 Inequality Generosity

Generosity
 -0.374**
 (0.147)
 Inequality
 -1.190**
 (0.235)

