The global distribution of education: 1970-2010

Vanesa Jordá University of Cantabria

Winter School on Inequality and Social Welfare Theory

Alba di Canazei, Italy 15th January 2015

Vanesa Jordá

The global distribution of education: 1970-2010

Main contribution

- We introduce a new database for mean years of schooling and inequality measures of educational outcomes for 143 countries from 1970 to 2010.
 - Reliability. More accurate estimates than the existing data sets.
 - **Distribution sensitive.** A battery of GE measures for different parameter values.
 - Flexibility. Overall inequality can be computed for any group of countries
- We present for the first time a complete and continuous picture of the distribution of schooling.

Vanesa Jordá

The global distribution of education: 1970-2010

Main contribution

- We introduce a new database for mean years of schooling and inequality measures of educational outcomes for 143 countries from 1970 to 2010.
 - Reliability. More accurate estimates than the existing data sets.
 - **Distribution sensitive.** A battery of GE measures for different parameter values.
 - Flexibility. Overall inequality can be computed for any group of countries
- We present for the first time a complete and continuous picture of the distribution of schooling.

Vanesa Jordá

Main contribution

- We introduce a new database for mean years of schooling and inequality measures of educational outcomes for 143 countries from 1970 to 2010.
 - Reliability. More accurate estimates than the existing data sets.
 - **Distribution sensitive.** A battery of GE measures for different parameter values.
 - Flexibility. Overall inequality can be computed for any group of countries
- We present for the first time a complete and continuous picture of the distribution of schooling.

Results

Conclusions

Contents

2 Data and methodology

3 Results

Vanesa Jordá

The global distribution of education: 1970-2010

15th January 2015

Winter School on Inequality and Social Welfare Theory

• Education is acknowledged to be a fundamental component of well-being.

Acemoglu and angrist, 2001; Oreopoluos and Salvanes, 2011.

- MYS is a widely used indicator to measure the educational performance of a country.
 - Barro and Lee (2013).
 - Cohen and Soto (2007).
 - UNESCO (2014).

BIASED ESTIMATORS OF THE MEAN

Vanesa Jordá

The global distribution of education: 1970-2010

• Education is acknowledged to be a fundamental component of well-being.

Acemoglu and angrist, 2001; Oreopoluos and Salvanes, 2011.

- MYS is a widely used indicator to measure the educational performance of a country.
 - Barro and Lee (2013).
 - Cohen and Soto (2007).
 - UNESCO (2014).

BIASED ESTIMATORS OF THE MEAN

Vanesa Jordá

The global distribution of education: 1970-2010

• Education is acknowledged to be a fundamental component of well-being.

Acemoglu and angrist, 2001; Oreopoluos and Salvanes, 2011.

- MYS is a widely used indicator to measure the educational performance of a country.
 - Barro and Lee (2013).
 - Cohen and Soto (2007).
 - UNESCO (2014).

BIASED ESTIMATORS OF THE MEAN

Vanesa Jordá

The global distribution of education: 1970-2010

• Education is acknowledged to be a fundamental component of well-being.

Acemoglu and angrist, 2001; Oreopoluos and Salvanes, 2011.

- MYS is a widely used indicator to measure the educational performance of a country.
 - Barro and Lee (2013).
 - Cohen and Soto (2007).
 - UNESCO (2014).

BIASED ESTIMATORS OF THE MEAN

Vanesa Jordá

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

Results

Conclusions

Mean years of schooling

The main approach: weighted average.

- Educational attainment rates. (census and surveys)
 - No schooling
 - Primary
 - Secondary
 - Tertiary
- Official duration of each educational level.

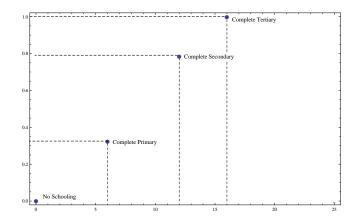
Vanesa Jordá

Results

Conclusions

Example: Japan (1990)

Example: Japan (1990).


Educational level	Attainment rate	Official duration
No schooling	0.0024	0
Primary	0.3213	6
Secondary	0.4609	12
Tertiary	0.2153	16

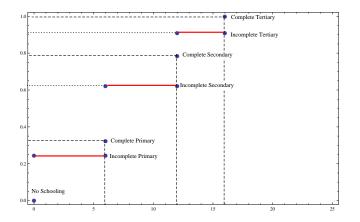
Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

Overestimation: Not all individuals completed the educational cycle

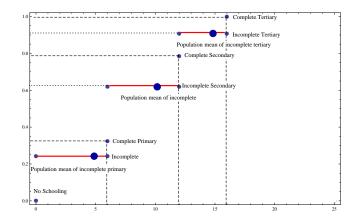

15th January 2015

The global distribution of education: 1970-2010

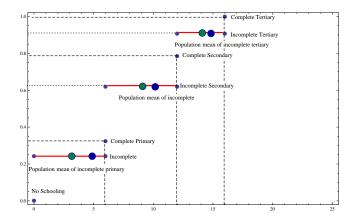
Winter School on Inequality and Social Welfare Theory

SOLUTION: Educational levels are broken down into **complete** and **incomplete** (estimated using completion rates: source of bias)

Educational level	Attainment rate	Official duration
No schooling	0.0024	0
Primary incomplete	0.2413	?
Primary complete	0.0800	6
Secondary incomplete	0.2973	?
Secondary complete	0.1636	12
Tertiary incomplete	0.1248	?
Tertiary incomplete	0.0905	16



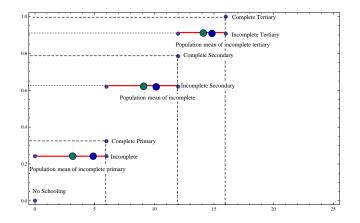
Vanesa Jordá


15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

It is not possible to approximate the direction of the bias

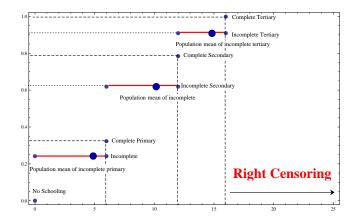

In this case UNESCO's methodology would underestimate the MYS

Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory


In this case UNESCO's methodology would underestimate the MYS

Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

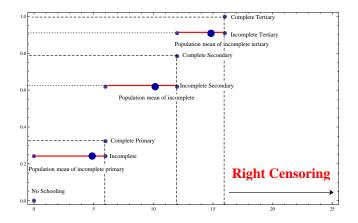
Even if we had information on the mean of incomplete levels, MYS would be biased

- The distribution of educational outcomes has also been of main interest in the literature.
- International inequality in education: a lower bound? (e.g. Ram,1990; World Bank, 2005)
- National inequality using the same approach as for the MYS. (Castello and Domenech, 2008, Thomas et al., 2001, Meschi and Scervini, 2013)
- The same sources of bias
 - No information on incomplete levels
 - Right censoring
 - ADITIONALLY: differences within each educational level are not considered.

- The distribution of educational outcomes has also been of main interest in the literature.
- International inequality in education: a lower bound? (e.g. Ram,1990; World Bank, 2005)
- National inequality using the same approach as for the MYS. (Castello and Domenech, 2008, Thomas et al., 2001, Meschi and Scervini, 2013)
- The same sources of bias
 - No information on incomplete levels
 - Right censoring
 - ADITIONALLY: differences within each educational level are not considered.

- The distribution of educational outcomes has also been of main interest in the literature.
- International inequality in education: a lower bound? (e.g. Ram,1990; World Bank, 2005)
- National inequality using the same approach as for the MYS. (Castello and Domenech, 2008, Thomas et al., 2001, Meschi and Scervini, 2013)
- The same sources of bias
 - No information on incomplete levels
 - Right censoring
 - ADITIONALLY: differences within each educational level are not considered.

- The distribution of educational outcomes has also been of main interest in the literature.
- International inequality in education: a lower bound? (e.g. Ram,1990; World Bank, 2005)
- National inequality using the same approach as for the MYS. (Castello and Domenech, 2008, Thomas et al., 2001, Meschi and Scervini, 2013)
- The same sources of bias
 - No information on incomplete levels
 - Right censoring
 - ADITIONALLY: differences within each educational level are not considered.

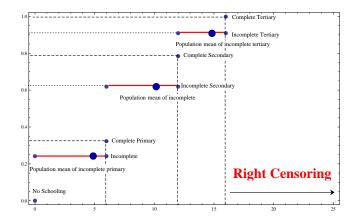

Vanesa Jordá

The global distribution of education: 1970-2010

- The distribution of educational outcomes has also been of main interest in the literature.
- International inequality in education: a lower bound? (e.g. Ram,1990; World Bank, 2005)
- National inequality using the same approach as for the MYS. (Castello and Domenech, 2008, Thomas et al., 2001, Meschi and Scervini, 2013)
- The same sources of bias
 - No information on incomplete levels
 - Right censoring
 - ADITIONALLY: differences within each educational level are not considered.

Vanesa Jordá

The global distribution of education: 1970-2010

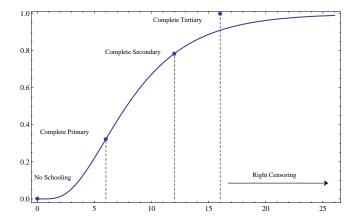


Even if we had information on the mean of incomplete levels, MYS would be biased

Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010


Even if we had information on the mean of incomplete levels, MYS would be biased

Methodology

MAIN CHALLENGE: Combine grouped information on educational attainment and duration levels to obtain reliable estimates of the distribution of schooling.

- Educational attainment rates of each educational level represent points of the CDF.
- Parametric model to link the empirical points of CDF.

Vanesa Jordá

Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

Results

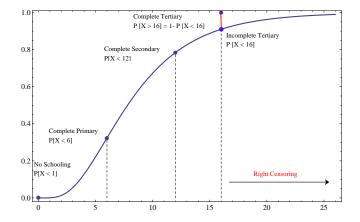
Methodology

MAIN CHALLENGE: Combine grouped information on educational attainment and duration levels to obtain reliable estimates of the distribution of schooling.

- Main limitation: the functional form of the distribution is defined ex-ante.
- Misspecification of the model leads inconsistent estimates.
- It is not possible to test the adequacy of this model for the unknown parts of the distribution (within educational stages).
- If we are able to fit the available information with high precision, there is no reason to assume that our model leads poorer estimates than those can be found in the literature.

Data

• BL data on educational attainments of the population over 15 $(h_i^{(j)})$.


- No schooling
- Primary
- Secondary
- Tertiary (Right censoring)
 - complete
 - incomplete
- Data on the official duration of primary and secondary education is drawn from UNESCO $(\mathsf{D}_i^{(j)}).$

Vanesa Jordá

Data

• BL data on educational attainments of the population over 15 $(h_i^{(J)})$.

- No schooling < 1 year
- Primary official duration
- Secondary official duration
- Tertiary (Right censoring)
 - complete > 4 years
 - incomplete<4 years</p>
- Data on the official duration of primary and secondary education is drawn from UNESCO $(\mathsf{D}_i^{(j)}).$

Vanesa Jordá

15th January 2015

The global distribution of education: 1970-2010

Definition of the educational variable

Let X be a continuous variable representing the time of schooling until either completing the maximum level of education or dropping out the school.

- Survival analysis provides an optimal framework.
- The same parametric functional form is used for all countries over the whole period.
- We need a flexible model due to the high degree of heterogeneity.
 - Global analysis of 143 countries.
 - Long period of time: 1970-2010.

Definition of the educational variable

Let X be a continuous variable representing the time of schooling until either completing the maximum level of education or dropping out the school.

- Survival analysis provides an optimal framework.
- The same parametric functional form is used for all countries over the whole period.
- We need a flexible model due to the high degree of heterogeneity.
 - Global analysis of 143 countries.
 - Long period of time: 1970-2010.

Vanesa Jordá

The global distribution of education: 1970-2010

Definition of the educational variable

Let X be a continuous variable representing the time of schooling until either completing the maximum level of education or dropping out the school.

GENERALIZED GAMMA DISTRIBUTION

- Includes most of the distributions commonly used in survival analysis. (the Weibull, the exponential and the gamma distributions)
- It is able to represent one and zero mode distributions.
 - One mode is expected in developed countries with compulsory years of schooling
 - Zero mode distributions are characteristic of developing countries, which present high illiteracy rates.

Definition of the educational variable

Let X be a continuous variable representing the time of schooling until either completing the maximum level of education or dropping out the school.

GENERALIZED GAMMA DISTRIBUTION

- Includes most of the distributions commonly used in survival analysis. (the Weibull, the exponential and the gamma distributions)
- It is able to represent one and zero mode distributions.
 - One mode is expected in developed countries with compulsory years of schooling
 - Zero mode distributions are characteristic of developing countries, which present high illiteracy rates.

Estimation Methods

Nonlinear least squares

$$\mathsf{SSR} = \sum_{j=1}^{J-1} \left(\mathsf{IG}(\mathsf{u}_{\mathsf{it}}^{(j)};\mathsf{p},\beta^{\mathsf{a}}) - \mathsf{h}_{\mathsf{it}}^{(j)}\right)^2 + \left(1 - \mathsf{IG}(\mathsf{u}_{\mathsf{it}}^{(\mathsf{TC})};\mathsf{p},\beta^{\mathsf{a}}) - \mathsf{h}_{\mathsf{it}}^{(\mathsf{TC})}\right)^2 + \epsilon_{\mathsf{it}},$$

- $(IG(u_{it}^{(j)}; p, \beta^a) CDF$ of the generalized gamma distribution
 - $u_{it} = \left(D_{it}^{(j)}\right)^a$.
 - IG(.) stands for the incomplete gamma function.
- h^(j)_{it} Observed attainment rates.
- ϵ_i is the error term.
- The second term accounts for right censoring.

Estimation Methods

Nonlinear least squares

$$\mathsf{SSR} = \sum_{j=1}^{J-1} \left(\mathsf{IG}(\mathsf{u}_{\mathsf{it}}^{(j)};\mathsf{p},\beta^{\mathsf{a}}) - \mathsf{h}_{\mathsf{it}}^{(j)}\right)^2 + \left(1 - \mathsf{IG}(\mathsf{u}_{\mathsf{it}}^{(\mathsf{TC})};\mathsf{p},\beta^{\mathsf{a}}) - \mathsf{h}_{\mathsf{it}}^{(\mathsf{TC})}\right)^2 + \epsilon_{\mathsf{it}},$$

• $(IG(u_{it}^{(j)}; p, \beta^a) CDF$ of the generalized gamma distribution

•
$$u_{it} = \left(D_{it}^{(j)}\right)^a$$
.

- IG(.) stands for the incomplete gamma function.
- h^(j)_{it} Observed attainment rates.
- ϵ_i is the error term.
- The second term accounts for right censoring.

Estimation Methods

Nonlinear least squares

$$SSR = \sum_{j=1}^{J-1} \left(IG(u_{it}^{(j)}; p, \beta^{a}) - h_{it}^{(j)} \right)^{2} + \left(1 - IG(u_{it}^{(TC)}; p, \beta^{a}) - h_{it}^{(TC)} \right)^{2} + \epsilon_{it},$$

- $(IG(u_{it}^{(j)}; p, \beta^a) CDF$ of the generalized gamma distribution
 - $u_{it} = \left(D_{it}^{(j)}\right)^a$.
 - IG(.) stands for the incomplete gamma function.
- h^(j)_{it} Observed attainment rates.
- ϵ_i is the error term.
- The second term accounts for right censoring.

Construction of the database

- We fit the GG for each country (i = 1, ..., 143) from 1970 to 2010 at five year intervals.
- MYS is given by the mean of the distribution,

$$\mu = \frac{\beta \Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}.$$

• GE measures are given by the following expressions (Jenkins, 2009; Sarabia et al., 2015)

$$\begin{aligned} \mathsf{GE}(2) &= -\frac{1}{2} + \frac{\Gamma(\mathsf{p} + \frac{2}{\mathsf{a}})\Gamma(\mathsf{p})}{2\Gamma^2(\mathsf{p} + \frac{1}{\mathsf{a}})}, \\ \mathsf{T}_0 &= -\frac{\psi(\mathsf{p})}{\mathsf{a}} + \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}, \\ \mathsf{T}_1 &= \frac{\psi(\mathsf{p} + \frac{1}{\mathsf{a}})}{\mathsf{a}} - \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}. \end{aligned}$$

Vanesa Jordá

The global distribution of education: 1970-2010

Construction of the database

- We fit the GG for each country (i = 1, ..., 143) from 1970 to 2010 at five year intervals.
- MYS is given by the mean of the distribution,

$$\mu = \frac{\beta \Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}.$$

• GE measures are given by the following expressions (Jenkins, 2009; Sarabia et al., 2015)

$$\begin{aligned} \mathsf{GE}(2) &= -\frac{1}{2} + \frac{\Gamma(\mathsf{p} + \frac{2}{\mathsf{a}})\Gamma(\mathsf{p})}{2\Gamma^2(\mathsf{p} + \frac{1}{\mathsf{a}})}, \\ \mathsf{T}_0 &= -\frac{\psi(\mathsf{p})}{\mathsf{a}} + \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}, \\ \mathsf{T}_1 &= \frac{\psi(\mathsf{p} + \frac{1}{\mathsf{a}})}{\mathsf{a}} - \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}. \end{aligned}$$

Vanesa Jordá

The global distribution of education: 1970-2010

Construction of the database

- We fit the GG for each country (i = 1, ..., 143) from 1970 to 2010 at five year intervals.
- MYS is given by the mean of the distribution,

$$\mu = \frac{\beta \Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}.$$

• GE measures are given by the following expressions (Jenkins, 2009; Sarabia et al., 2015)

$$\begin{split} \mathsf{GE}(2) &= -\frac{1}{2} + \frac{\Gamma(\mathsf{p} + \frac{2}{\mathsf{a}})\Gamma(\mathsf{p})}{2\Gamma^2(\mathsf{p} + \frac{1}{\mathsf{a}})}, \\ \mathsf{T}_0 &= -\frac{\psi(\mathsf{p})}{\mathsf{a}} + \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}, \\ \mathsf{T}_1 &= \frac{\psi(\mathsf{p} + \frac{1}{\mathsf{a}})}{\mathsf{a}} - \log\frac{\Gamma(\mathsf{p} + \frac{1}{\mathsf{a}})}{\Gamma(\mathsf{p})}. \end{split}$$

Vanesa Jordá

15th January 2015

The global distribution of education

Mixture of national distributions

Let X_i , i = 1, ..., N be the educational attainment in the county i which is assumed to follow a GG distribution. The global CDF can be expressed as,

$$\mathsf{F}(\mathsf{x}) = \sum_{i=1}^{\mathsf{N}} \lambda_i \mathsf{F}_i(\mathsf{x}) = \sum_{i=1}^{\mathsf{N}} \lambda_i \mathsf{IG}(\mathsf{u};\mathsf{p}_i,\beta_i^{\mathsf{a}_i}),$$

where λ_i stands for the population weights of the countries.

Global MYS

The mean of the mixture is ivan by,

$$\mu = \sum_{i=1}^{N} \lambda_{i} \mu_{i} = \sum_{i=1}^{N} \lambda_{i} \frac{\beta_{i} \Gamma(\mathsf{p}_{i} + \frac{1}{\mathsf{a}_{i}})}{\Gamma(\mathsf{p}_{i})}.$$

Vanesa Jordá

15th January 2015

The global distribution of education

Mixture of national distributions

Let X_i , i = 1, ..., N be the educational attainment in the county i which is assumed to follow a GG distribution. The global CDF can be expressed as,

$$\mathsf{F}(\mathsf{x}) = \sum_{i=1}^{\mathsf{N}} \lambda_i \mathsf{F}_i(\mathsf{x}) = \sum_{i=1}^{\mathsf{N}} \lambda_i \mathsf{IG}(\mathsf{u};\mathsf{p}_i,\beta_i^{\mathsf{a}_i}),$$

where λ_i stands for the population weights of the countries.

Global MYS

The mean of the mixture is ivan by,

$$\mu = \sum_{i=1}^{N} \lambda_{i} \mu_{i} = \sum_{i=1}^{N} \lambda_{i} \frac{\beta_{i} \Gamma(\mathbf{p}_{i} + \frac{1}{\mathbf{a}_{i}})}{\Gamma(\mathbf{p}_{i})}.$$

Vanesa Jordá

15th January 2015

Results

Global inequality in education

Generalized Entropy measures

$$\mathsf{I}(\theta) = \sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \mathsf{s}_i^{\theta} \mathsf{I}_i^{(\theta)} + \frac{1}{\theta(\theta-1)} \left(\sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \left(\frac{\mu_i}{\mu} \right)^{\theta} - 1 \right)$$

 λ_i and $l_i^{(\theta)}$ are the population share and the GE measure of the country i. s_i stands for the proportion of MYS of the country i in the global mean.

Theil's Entropy i<u>ndex</u>

$$T_{W} = \sum_{i=1}^{N} s_{i}T_{i}; T_{B} = \sum_{i=1}^{N} s_{i}log\left(rac{\mu_{i}}{\mu}
ight)$$
 ,

Mean Log Deviation

$$L_{W} = \sum_{i=1}^{N} \lambda_{i} L_{i}; L_{B} = \sum_{i=1}^{N} \lambda_{i} log\left(\frac{\mu}{\mu_{i}}\right),$$

Vanesa Jordá

The global distribution of education: 1970-2010

Results

Global inequality in education

Generalized Entropy measures

$$\mathsf{I}(\theta) = \sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \mathsf{s}_i^{\theta} \mathsf{I}_i^{(\theta)} + \frac{1}{\theta(\theta-1)} \left(\sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \left(\frac{\mu_i}{\mu} \right)^{\theta} - 1 \right)$$

 λ_i and $l_i^{(\theta)}$ are the population share and the GE measure of the country i. s_i stands for the proportion of MYS of the country i in the global mean.

Theil's Entropy index

$$\mathsf{T}_{\mathsf{W}} = \sum_{i=1}^{\mathsf{N}} \mathsf{s}_{i}\mathsf{T}_{i}; \mathsf{T}_{\mathsf{B}} = \sum_{i=1}^{\mathsf{N}} \mathsf{s}_{i}\mathsf{log}\left(rac{\mu_{i}}{\mu}
ight),$$

Mean Log Deviation

$$L_{W} = \sum_{i=1}^{N} \lambda_{i} L_{i}; L_{B} = \sum_{i=1}^{N} \lambda_{i} log\left(\frac{\mu}{\mu_{i}}\right),$$

Vanesa Jordá

The global distribution of education: 1970-2010

Results

Global inequality in education

Generalized Entropy measures

$$\mathsf{I}(\theta) = \sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \mathsf{s}_i^{\theta} \mathsf{I}_i^{(\theta)} + \frac{1}{\theta(\theta-1)} \left(\sum_{i=1}^{\mathsf{N}} \lambda_i^{1-\theta} \left(\frac{\mu_i}{\mu} \right)^{\theta} - 1 \right)$$

 λ_i and $l_i^{(\theta)}$ are the population share and the GE measure of the country i. s_i stands for the proportion of MYS of the country i in the global mean.

Theil's Entropy index

$$\mathsf{T}_{\mathsf{W}} = \sum_{i=1}^{\mathsf{N}} \mathsf{s}_{i}\mathsf{T}_{i}; \mathsf{T}_{\mathsf{B}} = \sum_{i=1}^{\mathsf{N}} \mathsf{s}_{i}\mathsf{log}\left(rac{\mu_{i}}{\mu}
ight),$$

Mean Log Deviation

$$L_{W} = \sum_{i=1}^{N} \lambda_{i} L_{i}; L_{B} = \sum_{i=1}^{N} \lambda_{i} log\left(\frac{\mu}{\mu_{i}}\right),$$

Vanesa Jordá

The global distribution of education: 1970-2010

Goodness of fit

Table: Empirical and estimated educational attainment rates.

Year		NS	PS or less	SS or less	TS or more	SSD
1970	GD	1.0000	5.1706	11,1916	15,1916	
1010	BL	0.3495	0.7357	0.9612	0.0388	
	Estimated %	0.3476	0.7470	0.9560	0.0440	0.0002
1980	GD	1.0000	5.1591	11.6410	15.6410	
	BL	0.2949	0.6307	0.9383	0.0618	
	Estimated %	0.2900	0.6498	0.9240	0.0760	0.0008
1990	GD	1.0000	5.1775	11.6283	15.6283	
	BL	0.2559	0.5613	0.9095	0.0905	
	Estimated %	0.2429	0.5822	0.8969	0.1031	0.0009
2000	GD	1.0000	5.2219	11.6524	15.6524	
	BL %	0.1947	0.4603	0.8784	0.1217	
	Estimated %	0.1730	0.4857	0.8635	0.1365	0.0016
2010	GD	1.0000	5.2814	11.7268	15.7268	
	BL	0.1435	0.3658	0.8587	0.1413	
	Estimated %	0.1159	0.3856	0.8341	0.1659	0.0024

Vanesa Jordá

15th January 2015

Comparison with Barro and Lee (2013) data

Table: Comparison of BL data on average years of schooling (AYS-BL) with the theoretical values of MYS for the GG distribution.

Year	Levels		Cha	nge		Correlation			
	AYS-BL	MYS	AYS-BL	MYS	levels	5-year D.	10-year D.		
1970	4.4564	3.4212	-	-	0.9097	-	-		
1975	4.8834	3.8937	9.58%	13.81%	0.9142	0.8215	-		
1980	5.3777	4.4311	10.12%	13.80%	0.9260	0.7668	0.8534		
1985	5.7794	4.8776	7.47%	10.07%	0.9301	0.7794	0.7603		
1990	6.1446	5.2060	6.32%	6.73%	0.9356	0.8050	0.8090		
1995	6.6993	5.7417	9.03%	10.29%	0.9487	0.8341	0.8262		
2000	7.2248	6.2320	7.84%	8.54%	0.9536	0.6351	0.7893		
2005	7.6943	6.7063	6.50%	7.61%	0.9587	0.7747	0.7463		
2010	8.0920	7.0870	5.17%	5.68%	0.9612	0.8662	0.7536		

Vanesa Jordá

15th January 2015

Comparison with Barro and Lee (2013) data

Table: Comparison of BL data on average years of schooling (AYS-BL) with the theoretical values of MYS for the GG distribution.

Year	Levels		Cha	Change			Correlation			
	AYS-BL	MYS	AYS-BL	MYS	I	evels	5-year D.	10-year D.		
1970	4.4564	3.4212				.9097	_			
		÷··	-	-				-		
1975	4.8834	3.8937	9.58%	13.81%	0	.9142	0.8215	-		
1980	5.3777	4.4311	10.12%	13.80%	0	.9260	0.7668	0.8534		
1985	5.7794	4.8776	7.47%	10.07%	0	.9301	0.7794	0.7603		
1990	6.1446	5.2060	6.32%	6.73%	0	.9356	0.8050	0.8090		
1995	6.6993	5.7417	9.03%	10.29%	0	.9487	0.8341	0.8262		
2000	7.2248	6.2320	7.84%	8.54%	0	.9536	0.6351	0.7893		
2005	7.6943	6.7063	6.50%	7.61%	0	.9587	0.7747	0.7463		
2010	8.0920	7.0870	5.17%	5.68%	0	.9612	0.8662	0.7536		

Vanesa Jordá

15th January 2015

The global distribution of education

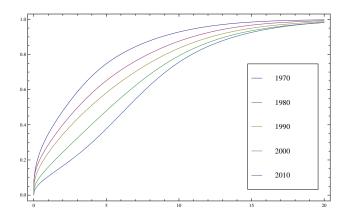


Figure: Global CDF of years of schooling

The global distribution of education

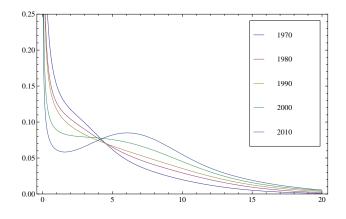


Figure: Global PDF of years of schooling

Global inequality in education

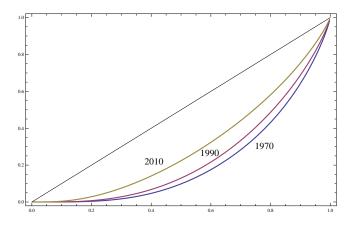


Figure: Global Lorenz curves of education

15th January 2015

The global distribution of education: 1970-2010

Winter School on Inequality and Social Welfare Theory

Global inequality in education

Table: Global inequality in education (1970-2010).

Year	1970	1975	1980	1985	1990	1995	2000	2005	2010
MLD	1.4711	1.5942	1.4829	1.2129	1.0990	0.9134	0.7611	0.6110	0.5232
Between	0.1945	0.1645	0.1339	0.1131	0.1054	0.0920	0.0790	0.0715	0.0610
Within	1.2766	1.4297	1.3490	1.0998	0.9936	0.8214	0.6821	0.5395	0.4622
% Between	13.22%	10.32%	9.03%	9.33%	9.59%	10.07%	10.37%	11.71%	11.67%
% Within	86.78%	89.68%	90.97%	90.67%	90.41%	89.93%	89.63%	88.29%	88.33%

Vanesa Jordá

The global distribution of education: 1970-2010

15th January 2015

Winter School on Inequality and Social Welfare Theory

- Existing databases include biased the estimates of MYS and inequality measures.
- We have used a flexible parametric model to estimate the distribution of years of schooling.
- In global terms, average educational outcomes by BL are substantially higher than our estimates.
- We have also focused on the global distribution of education.
 - Expansion of all levels of education.
 - Reduction of inequality levels.
 - Differences across countries represented a reduced proportion of global inequality.

January 2015

- Existing databases include biased the estimates of MYS and inequality measures.
- We have used a flexible parametric model to estimate the distribution of years of schooling.
- In global terms, average educational outcomes by BL are substantially higher than our estimates.
- We have also focused on the global distribution of education.
 - Expansion of all levels of education.
 - Reduction of inequality levels.
 - Differences across countries represented a reduced proportion of global inequality.

January 2015

- Existing databases include biased the estimates of MYS and inequality measures.
- We have used a flexible parametric model to estimate the distribution of years of schooling.
- In global terms, average educational outcomes by BL are substantially higher than our estimates.
- We have also focused on the global distribution of education.
 - Expansion of all levels of education.
 - Reduction of inequality levels.
 - Differences across countries represented a reduced proportion of global inequality.

January 2015

- Existing databases include biased the estimates of MYS and inequality measures.
- We have used a flexible parametric model to estimate the distribution of years of schooling.
- In global terms, average educational outcomes by BL are substantially higher than our estimates.
- We have also focused on the global distribution of education.
 - Expansion of all levels of education.
 - Reduction of inequality levels.
 - Differences across countries represented a reduced proportion of global inequality.

Vanesa Jordá

The global distribution of education: 1970-2010