Income mobility and welfare

Markus Jäntti ${ }^{1}$

${ }^{1}$ Swedish Institute for Social Research, Stockholm University
January 13, 2015

Acknowledgements

This lecture builds on joint work with Stephen P Jenkins
Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by
Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI:
doi:10.1016/B978-0-444-59428-0.00011-4.
URL: http://www.sciencedirect.com/
science/article/pii/B9780444594280000114
and on an unpublished lecture by Tony Atkinson,

Acknowledgements

This lecture builds on joint work with Stephen P Jenkins
Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by
Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI:
doi:10.1016/B978-0-444-59428-0.00011-4.
URL: http://www.sciencedirect.com/
science/article/pii/B9780444594280000114
and on an unpublished lecture by Tony Atkinson,
Anthony B Atkinson (2008). "Mobility, Meritocracy and Markets". Unpublished lecture at Russell Sage Foundation, New York

Outline

Introduction
Mobility concepts
Welfare implications of mobility
Basic setup
Only inequality aversion
Inequality and risk aversion
Inequality and risk aversion and origin independence Integrating intra- and inter-generational mobility

Concluding remarks
Tables and figures

Outline

Introduction

Mobility concepts

Welfare implications of mobility

Basic setup
Only inequality aversion
Inequality and risk aversion
Inequality and risk aversion and origin independence Integrating intra- and inter-generational mobility

Concluding remarks

Tables and figures

Motivation

- much of mobility measurement concerned with the issue of whether one (at least bivariate) distribution has more/less mobility than another

Motivation

- much of mobility measurement concerned with the issue of whether one (at least bivariate) distribution has more/less mobility than another
- we know and understand much less about whether or not more or less mobility is socially desirable

Motivation

- much of mobility measurement concerned with the issue of whether one (at least bivariate) distribution has more/less mobility than another
- we know and understand much less about whether or not more or less mobility is socially desirable
- we will consider both intra- and inter-generational mobility

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL: http://www.sciencedirect.com/science/article/pii/ B9780444594280000114, esp. section 2

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL: http://www.sciencedirect.com/science/article/pii/ B9780444594280000114, esp. section 2
- P. Gottschalk and E. Spolaore (2002). "On the Evaluation of Economic Mobility". In: Review of Economic Studies 69, pp. 191-208

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL:
http://www.sciencedirect.com/science/article/pii/
B9780444594280000114, esp. section 2
- P. Gottschalk and E. Spolaore (2002). "On the Evaluation of Economic Mobility". In: Review of Economic Studies 69, pp. 191-208
- Anthony B Atkinson (1983). "The measurement of economic mobility". In: Social Justice and Public Policy. Ed. by A. B. Atkinson. Cambridge, MA: MIT Press. Chap. 3, pp. 61-76

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL:
http://www.sciencedirect.com/science/article/pii/ B9780444594280000114, esp. section 2
- P. Gottschalk and E. Spolaore (2002). "On the Evaluation of Economic Mobility". In: Review of Economic Studies 69, pp. 191-208
- Anthony B Atkinson (1983). "The measurement of economic mobility". In: Social Justice and Public Policy. Ed. by A. B. Atkinson. Cambridge, MA: MIT Press. Chap. 3, pp. 61-76
- A. B. Atkinson and F. Bourguignon (1982). "The Comparison of Multi-Dimensioned Distributions of Economic Status". In: Review of Economic Studies 49.2, pp. 183-201

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL:
http://www.sciencedirect.com/science/article/pii/ B9780444594280000114, esp. section 2
- P. Gottschalk and E. Spolaore (2002). "On the Evaluation of Economic Mobility". In: Review of Economic Studies 69, pp. 191-208
- Anthony B Atkinson (1983). "The measurement of economic mobility". In: Social Justice and Public Policy. Ed. by A. B. Atkinson. Cambridge, MA: MIT Press. Chap. 3, pp. 61-76
- A. B. Atkinson and F. Bourguignon (1982). "The Comparison of Multi-Dimensioned Distributions of Economic Status". In: Review of Economic Studies 49.2, pp. 183-201
- A. Markandya (1984). "The Welfare Measurement of Changes in Economic Mobility". In: Economica 51, pp. 457-471

Reading list

- Markus Jäntti and Stephen Jenkins (2015). "Income mobility". In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI: doi:10.1016/B978-0-444-59428-0.00011-4. URL:
http://www.sciencedirect.com/science/article/pii/
B9780444594280000114, esp. section 2
- P. Gottschalk and E. Spolaore (2002). "On the Evaluation of Economic Mobility". In: Review of Economic Studies 69, pp. 191-208
- Anthony B Atkinson (1983). "The measurement of economic mobility". In: Social Justice and Public Policy. Ed. by A. B. Atkinson. Cambridge, MA: MIT Press. Chap. 3, pp. 61-76
- A. B. Atkinson and F. Bourguignon (1982). "The Comparison of Multi-Dimensioned Distributions of Economic Status". In: Review of Economic Studies 49.2, pp. 183-201
- A. Markandya (1984). "The Welfare Measurement of Changes in Economic Mobility". In: Economica 51, pp. 457-471
- Gary S Fields and Efe A Ok (1999). "The Measurement of Income Mobility: An Introduction to the Literature". In: Handbook of Income Inequality Measurement. Ed. by Jacques Silber. Recent Economic Thought. Boston: Kluwer Academic Publishers. Chap. 19, pp. 557-598

Notation

- restrict interest to two "periods", 1 and 2

Notation

- restrict interest to two "periods", 1 and 2
- let $Y_{j}, j=1,2$ be the variable of interest, "income", in the two periods $\left(Y_{j} \geq 0\right)$

Notation

- restrict interest to two "periods", 1 and 2
- let $Y_{j}, j=1,2$ be the variable of interest, "income", in the two periods $\left(Y_{j} \geq 0\right)$
- we initially work with the bivariate distribution $F\left(Y_{1}, Y_{2}\right) ; F$ is "well-behaved" (all moments exist and are finite, the marginal distributions have inverse distribution functions and so on)

Notation

- restrict interest to two "periods", 1 and 2
- let $Y_{j}, j=1,2$ be the variable of interest, "income", in the two periods $\left(Y_{j} \geq 0\right)$
- we initially work with the bivariate distribution $F\left(Y_{1}, Y_{2}\right) ; F$ is "well-behaved" (all moments exist and are finite, the marginal distributions have inverse distribution functions and so on)
- we will be concerned with the problem of comparing mobility across two "populations", A and B (each of which has F_{A}, F_{B}

Notation

- restrict interest to two "periods", 1 and 2
- let $Y_{j}, j=1,2$ be the variable of interest, "income", in the two periods $\left(Y_{j} \geq 0\right)$
- we initially work with the bivariate distribution $F\left(Y_{1}, Y_{2}\right) ; F$ is "well-behaved" (all moments exist and are finite, the marginal distributions have inverse distribution functions and so on)
- we will be concerned with the problem of comparing mobility across two "populations", A and B (each of which has F_{A}, F_{B}
- let $M(F)$ be a (statistical) measure of mobility; our concern is not to assess if

$$
M\left(F_{A}\right) \precsim M\left(F_{B}\right) \quad \text { or } \quad M\left(F_{A}\right) \succsim M\left(F_{B}\right)
$$

Notation

- restrict interest to two "periods", 1 and 2
- let $Y_{j}, j=1,2$ be the variable of interest, "income", in the two periods $\left(Y_{j} \geq 0\right)$
- we initially work with the bivariate distribution $F\left(Y_{1}, Y_{2}\right) ; F$ is "well-behaved" (all moments exist and are finite, the marginal distributions have inverse distribution functions and so on)
- we will be concerned with the problem of comparing mobility across two "populations", A and B (each of which has F_{A}, F_{B}
- let $M(F)$ be a (statistical) measure of mobility; our concern is not to assess if

$$
M\left(F_{A}\right) \precsim M\left(F_{B}\right) \quad \text { or } \quad M\left(F_{A}\right) \succsim M\left(F_{B}\right)
$$

- instead, we are concerned with assessing if, given a welfare function(al) W,

$$
W\left(F_{A}\right) \precsim W\left(F_{B}\right) \quad \text { or } \quad W\left(F_{A}\right) \succsim W\left(F_{B}\right)
$$

Remarks

- the "periods" could at this stage be different time periods (intra-generational mobility), or they could be two generations within the same family or dynasty (inter-generational mobility)

Remarks

- the "periods" could at this stage be different time periods (intra-generational mobility), or they could be two generations within the same family or dynasty (inter-generational mobility)
- "income" could be some income variable, or consumption, or wealth) much of the literature is concerned with permanent income); that choice will be taken as given in what follows

Remarks

- the "periods" could at this stage be different time periods (intra-generational mobility), or they could be two generations within the same family or dynasty (inter-generational mobility)
- "income" could be some income variable, or consumption, or wealth) much of the literature is concerned with permanent income); that choice will be taken as given in what follows
- focussing on only two periods may seem too restrictive, but helps fix ideas

Remarks

- the "periods" could at this stage be different time periods (intra-generational mobility), or they could be two generations within the same family or dynasty (inter-generational mobility)
- "income" could be some income variable, or consumption, or wealth) much of the literature is concerned with permanent income); that choice will be taken as given in what follows
- focussing on only two periods may seem too restrictive, but helps fix ideas
- we shall mostly look at discrete distributions for analytical tractability

Outline

Introduction

Mobility concepts

```
Welfare implications of mobility
    Basic setup
    Only inequality aversion
    Inequality and risk aversion
    Inequality and risk aversion and origin independence
    Integrating intra- and inter-generational mobility
```

Concluding remarks

Tables and figures

Mobility concepts

. . . the mobility literature does not provide a unified discourse of analysis. This might be because the very notion of income mobility is not well-defined; different studies concentrate on different aspects of this multi-faceted concept. At any rate, it seems safe to say that a considerable degree of confusion confronts a newcomer to the field (Fields and Ok, 1999, p. 557).

Mobility concepts

- focus on the distribution of income in two "periods" (e.g., two years for intra-, generations for inter-generational mobility)

Mobility concepts

- focus on the distribution of income in two "periods" (e.g., two years for intra-, generations for inter-generational mobility)
- income distribution of $Y=\left(Y_{1}, Y_{2}\right)^{\prime}$ with joint density $f\left(y_{1}, y_{2}\right) ; f_{1}$ and f_{2} being the period-specific marginal distributions

Mobility concepts

- focus on the distribution of income in two "periods" (e.g., two years for intra-, generations for inter-generational mobility)
- income distribution of $Y=\left(Y_{1}, Y_{2}\right)^{\prime}$ with joint density $f\left(y_{1}, y_{2}\right) ; f_{1}$ and f_{2} being the period-specific marginal distributions
- mobility can be thought of as transformation linking the marginal distribution f_{1} with marginal distribution f_{2}

Mobility concepts

- focus on the distribution of income in two "periods" (e.g., two years for intra-, generations for inter-generational mobility)
- income distribution of $Y=\left(Y_{1}, Y_{2}\right)^{\prime}$ with joint density $f\left(y_{1}, y_{2}\right) ; f_{1}$ and f_{2} being the period-specific marginal distributions
- mobility can be thought of as transformation linking the marginal distribution f_{1} with marginal distribution f_{2}
- sometimes, study of a single (longitudinal) population can be informative...

Mobility concepts

- focus on the distribution of income in two "periods" (e.g., two years for intra-, generations for inter-generational mobility)
- income distribution of $Y=\left(Y_{1}, Y_{2}\right)^{\prime}$ with joint density $f\left(y_{1}, y_{2}\right) ; f_{1}$ and f_{2} being the period-specific marginal distributions
- mobility can be thought of as transformation linking the marginal distribution f_{1} with marginal distribution f_{2}
- sometimes, study of a single (longitudinal) population can be informative...
- but as a rule, mobility is about comparing two populations A and B (two countries, two different periods, etc)

Mobility concepts

- concepts:

Mobility concepts

- concepts:
- positional change

Mobility concepts

- concepts:
- positional change
- individual income growth

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction
- income risk

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction
- income risk
- social desirability of mobility

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction
- income risk
- social desirability of mobility
- may differ across within/between

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction
- income risk
- social desirability of mobility
- may differ across within/between
- may differ across concepts

Mobility concepts

- concepts:
- positional change
- individual income growth
- mobility as inequality reduction
- income risk
- social desirability of mobility
- may differ across within/between
- may differ across concepts
- relationship to equality of opportunity

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)
- for every positional change in one direction there must be a corresponding change in the opposite direction

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)
- for every positional change in one direction there must be a corresponding change in the opposite direction
- "no mobility" occurs when no rank changes take place

$$
\left(p_{i j} \equiv 1 \forall i=j, p_{i j} \equiv 0 \forall i \neq j\right)
$$

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)
- for every positional change in one direction there must be a corresponding change in the opposite direction
- "no mobility" occurs when no rank changes take place

$$
\left(p_{i j} \equiv 1 \forall i=j, p_{i j} \equiv 0 \forall i \neq j\right)
$$

- "full" mobility:

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)
- for every positional change in one direction there must be a corresponding change in the opposite direction
- "no mobility" occurs when no rank changes take place

$$
\left(p_{i j} \equiv 1 \forall i=j, p_{i j} \equiv 0 \forall i \neq j\right)
$$

- "full" mobility:
- origin independence ($p_{i j}=p_{k l}=1 / n$; each row of the transition matrix has identical entries)

Mobility as positional change

- most easily thought of as defined in terms of not the distribution of income but its inverse (summarize positions not by incomes but by the rank associated with an income)
- abstract from the shape of (and changes in) the marginal distribution ("exchange" as opposed to "structural" mobility)
- for every positional change in one direction there must be a corresponding change in the opposite direction
- "no mobility" occurs when no rank changes take place

$$
\left(p_{i j} \equiv 1 \forall i=j, p_{i j} \equiv 0 \forall i \neq j\right)
$$

- "full" mobility:
- origin independence ($p_{i j}=p_{k l}=1 / n$; each row of the transition matrix has identical entries)
- rank reversal ($p_{i j}>0 \quad i=1, \ldots, n, j=n, \ldots, 1$; all entries in transition matrix on the anti-diagonal)

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:
- no standardization of the distributions

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:
- no standardization of the distributions
- all can be upwardly or downwardly mobile

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:
- no standardization of the distributions
- all can be upwardly or downwardly mobile
- immobility: $y_{i 1}=y_{2 i} \forall i$

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:
- no standardization of the distributions
- all can be upwardly or downwardly mobile
- immobility: $y_{i 1}=y_{2 i} \forall i$
- mobility: is greater if $d_{i}=y_{2 i}-y_{1 i}$ greater, all else equal

Mobility as individual income growth

- aggregation of individual income changes (gains or losses)
- no distinction between exchange and structural mobility:
- no standardization of the distributions
- all can be upwardly or downwardly mobile
- immobility: $y_{i 1}=y_{2 i} \forall i$
- mobility: is greater if $d_{i}=y_{2 i}-y_{1 i}$ greater, all else equal
- measures: directional growth (gains vs. losses) as opposed to non-directional growth

Mobility as inequality reduction

- comparison of inequality of marginal with "long-term" distribution; defined in terms of $\frac{1}{2}\left(y_{1 i}+y_{2 i}\right)$

Mobility as inequality reduction

- comparison of inequality of marginal with "long-term" distribution; defined in terms of $\frac{1}{2}\left(y_{1 i}+y_{2 i}\right)$
- no mobility: income of each person in every period is equal to their longer-term income

Mobility as inequality reduction

- comparison of inequality of marginal with "long-term" distribution; defined in terms of $\frac{1}{2}\left(y_{1 i}+y_{2 i}\right)$
- no mobility: income of each person in every period is equal to their longer-term income
- maximum mobility: no inequality in longer-term incomes despite inequality in per-period incomes

Mobility as inequality reduction

- comparison of inequality of marginal with "long-term" distribution; defined in terms of $\frac{1}{2}\left(y_{1 i}+y_{2 i}\right)$
- no mobility: income of each person in every period is equal to their longer-term income
- maximum mobility: no inequality in longer-term incomes despite inequality in per-period incomes
- directional mobility not relevant

Mobility as inequality reduction

- comparison of inequality of marginal with "long-term" distribution; defined in terms of $\frac{1}{2}\left(y_{1 i}+y_{2 i}\right)$
- no mobility: income of each person in every period is equal to their longer-term income
- maximum mobility: no inequality in longer-term incomes despite inequality in per-period incomes
- directional mobility not relevant
- related to positional change

Mobility as income risk

- period-specific income is sum of a 'permanent' component (the longer-term average) and a 'transitory' component (the period-specific deviation from the average)

Mobility as income risk

- period-specific income is sum of a 'permanent' component (the longer-term average) and a 'transitory' component (the period-specific deviation from the average)
- transitory components represent unexpected idiosyncratic shocks to income (long-term income interpreted as "permanent" income)

Mobility as income risk

- period-specific income is sum of a 'permanent' component (the longer-term average) and a 'transitory' component (the period-specific deviation from the average)
- transitory components represent unexpected idiosyncratic shocks to income (long-term income interpreted as "permanent" income)
- the greater their dispersion across individuals each period, the greater is income risk for this population

Mobility as income risk

- period-specific income is sum of a 'permanent' component (the longer-term average) and a 'transitory' component (the period-specific deviation from the average)
- transitory components represent unexpected idiosyncratic shocks to income (long-term income interpreted as "permanent" income)
- the greater their dispersion across individuals each period, the greater is income risk for this population
- inequality reduction from longitudinal averaging now re-interpreted as a measure of income risk (and has different normative implications)

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)
- differs in the intra- and intergenerational cases

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)
- differs in the intra- and intergenerational cases
- positional change: mobility [often] good in inter- but not necessarily in intra-case

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)
- differs in the intra- and intergenerational cases
- positional change: mobility [often] good in inter- but not necessarily in intra-case
- income growth: gains good, losses bad

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)
- differs in the intra- and intergenerational cases
- positional change: mobility [often] good in inter- but not necessarily in intra-case
- income growth: gains good, losses bad
- inequality reduction: good (but for instrumental, not intrinsic, reasons)

Is income mobilty socially desirable?

- relation to (in)equality of opportunity (but that relationship is complex)
- differs in the intra- and intergenerational cases
- positional change: mobility [often] good in inter- but not necessarily in intra-case
- income growth: gains good, losses bad
- inequality reduction: good (but for instrumental, not intrinsic, reasons)
- income risk: mobility bad

Outline

Introduction

Mobility concepts
Welfare implications of mobility
Basic setup
Only inequality aversion
Inequality and risk aversion
Inequality and risk aversion and origin independence Integrating intra- and inter-generational mobility

Concluding remarks

Tables and figures

Income mobility and social welfare

- the social welfare foundations of mobility measurement is small, with contributions including Atkinson (1981), Atkinson and Bourguignon (1982), Markandya (1984), and Gottschalk and Spolaore (2002)

Income mobility and social welfare

- the social welfare foundations of mobility measurement is small, with contributions including Atkinson (1981), Atkinson and Bourguignon (1982), Markandya (1984), and Gottschalk and Spolaore (2002)
- social welfare, W, is the expected value (average) of the utility-of-income functions of individuals.

Income mobility and social welfare

- the social welfare foundations of mobility measurement is small, with contributions including Atkinson (1981), Atkinson and Bourguignon (1982), Markandya (1984), and Gottschalk and Spolaore (2002)
- social welfare, W, is the expected value (average) of the utility-of-income functions of individuals.
- in two-period case, the utility-of-income function is $U\left(Y_{1}, Y_{2}\right)$, and weighted by the joint probability density $f\left(y_{1}, y_{2}\right)$:

$$
\begin{equation*}
W=\int_{0}^{a_{2}} \int_{0}^{a_{1}} U\left(y_{1}, y_{2}\right) f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{1}
\end{equation*}
$$

where $U\left(Y_{1}, Y_{2}\right)$ is differentiable and a_{1} and a_{2} are the maximum incomes in periods 1 and 2.

Income mobility and social welfare

- the social welfare foundations of mobility measurement is small, with contributions including Atkinson (1981), Atkinson and Bourguignon (1982), Markandya (1984), and Gottschalk and Spolaore (2002)
- social welfare, W, is the expected value (average) of the utility-of-income functions of individuals.
- in two-period case, the utility-of-income function is $U\left(Y_{1}, Y_{2}\right)$, and weighted by the joint probability density $f\left(y_{1}, y_{2}\right)$:

$$
\begin{equation*}
W=\int_{0}^{a_{2}} \int_{0}^{a_{1}} U\left(y_{1}, y_{2}\right) f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{1}
\end{equation*}
$$

where $U\left(Y_{1}, Y_{2}\right)$ is differentiable and a_{1} and a_{2} are the maximum incomes in periods 1 and 2.

- increases in income in either period assumed desirable (so positive income growth raises utility): $U_{1} \geq 0$ and $U_{2} \geq 0$.

Income mobility and social welfare

- mostly focus is on case where marginal distributions identical (so close to positional mobility analysis)

Income mobility and social welfare

- mostly focus is on case where marginal distributions identical (so close to positional mobility analysis)
- if U additively separable (so $U_{12}=0$), mobility is irrelevant and only marginal distributions matter

Income mobility and social welfare

- mostly focus is on case where marginal distributions identical (so close to positional mobility analysis)
- if U additively separable (so $U_{12}=0$), mobility is irrelevant and only marginal distributions matter
- if $U\left(Y_{1}, Y_{2}\right)$ is a concave transformation of the sum of the per-period utilities, then $U_{12}<0$

Transition matrices and social welfare

Markandya (1984)

- focus on a discrete distribution of income with identical marginal distributions in both periods, so

Transition matrices and social welfare

Markandya (1984)

- focus on a discrete distribution of income with identical marginal distributions in both periods, so
- $f_{1 i} \equiv f_{2 i} \quad i=1, \ldots, n$

Transition matrices and social welfare

Markandya (1984)

- focus on a discrete distribution of income with identical marginal distributions in both periods, so
- $f_{1 i} \equiv f_{2 i} \quad i=1, \ldots, n$
- $\mathbf{f}_{1}^{\prime} \mathbf{P}=\mathbf{f}_{2}$

Transition matrices and social welfare

Markandya (1984)

- focus on a discrete distribution of income with identical marginal distributions in both periods, so
- $f_{1 i} \equiv f_{2 i} \quad i=1, \ldots, n$
- $\mathbf{f}_{1}^{\prime} \mathbf{P}=\mathbf{f}_{2}$
- consider the problem of choosing the transition matrix \mathbf{P} that maximizes welfare, given the fixed marginal distribution and a social evaluation function U :

$$
\begin{align*}
\max _{\mathbf{P}} W= & \sum_{i} \sum_{j} U\left(Y_{1 i}, Y_{2 i}\right) p_{i j} f_{1 i} \\
& \text { subject to } \\
& \sum_{i} f_{1 i} p_{i j}=f_{2 j}=f_{1 j}, \quad j=1, \ldots, n \tag{2}\\
& \sum_{j} p_{i j}=1, \quad i=1, \ldots, n
\end{align*}
$$

Transition matrices and social welfare

Markandya (1984)

- the crucial "fact" for this problem is the sign of the cross partial derivative, U_{12} :

Transition matrices and social welfare

Markandya (1984)

- the crucial "fact" for this problem is the sign of the cross partial derivative, U_{12} :
- for positive ($U_{12}>0$), welfare is maximized by perfect immobility, i.e. choosing the identity matrix $\mathbf{P}=\mathbf{I}$

Transition matrices and social welfare

Markandya (1984)

- the crucial "fact" for this problem is the sign of the cross partial derivative, U_{12} :
- for positive ($U_{12}>0$), welfare is maximized by perfect immobility, i.e. choosing the identity matrix $\mathbf{P}=\mathbf{I}$
- for negative ($U_{12}<0$), welfare is maximized by perfect rank reversals (all elements on the anti-diagonal; this solution may not be feasible but transformations that approach it increase welfare)

Transition matrices and social welfare

Markandya (1984)

- the crucial "fact" for this problem is the sign of the cross partial derivative, U_{12} :
- for positive ($U_{12}>0$), welfare is maximized by perfect immobility, i.e. choosing the identity matrix $\mathbf{P}=\mathbf{I}$
- for negative $\left(U_{12}<0\right)$, welfare is maximized by perfect rank reversals (all elements on the anti-diagonal; this solution may not be feasible but transformations that approach it increase welfare)
- note that "origin independence" plays no role here

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility
- consider a two different discrete distributions $\left(\mathbf{f}_{1}^{A}, \mathbf{P}^{A}, \mathbf{f}_{2}^{A}\right)$ and $\left(\mathbf{f}_{1}^{B}, \mathbf{P}^{B}, \mathbf{f}_{2}^{B}\right)$; the move from \mathbf{P}^{A} to \mathbf{P}^{B} induces both structural and exchange mobility

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility
- consider a two different discrete distributions $\left(\mathbf{f}_{1}^{A}, \mathbf{P}^{A}, \mathbf{f}_{2}^{A}\right)$ and $\left(\mathbf{f}_{1}^{B}, \mathbf{P}^{B}, \mathbf{f}_{2}^{B}\right)$; the move from \mathbf{P}^{A} to \mathbf{P}^{B} induces both structural and exchange mobility
- one approach would be purely statistical or mathematical;

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility
- consider a two different discrete distributions $\left(\mathbf{f}_{1}^{A}, \mathbf{P}^{A}, \mathbf{f}_{2}^{A}\right)$ and $\left(\mathbf{f}_{1}^{B}, \mathbf{P}^{B}, \mathbf{f}_{2}^{B}\right)$; the move from \mathbf{P}^{A} to \mathbf{P}^{B} induces both structural and exchange mobility
- one approach would be purely statistical or mathematical;
- subject to a specific distance measure, find $\widetilde{\mathbf{P}}$ that is "closest" to \mathbf{P}^{A} subject to $\widetilde{\mathbf{P}}$ being consistent with the marginal distributions

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility
- consider a two different discrete distributions $\left(\mathbf{f}_{1}^{A}, \mathbf{P}^{A}, \mathbf{f}_{2}^{A}\right)$ and $\left(\mathbf{f}_{1}^{B}, \mathbf{P}^{B}, \mathbf{f}_{2}^{B}\right)$; the move from \mathbf{P}^{A} to \mathbf{P}^{B} induces both structural and exchange mobility
- one approach would be purely statistical or mathematical;
- subject to a specific distance measure, find $\widetilde{\mathbf{P}}$ that is "closest" to \mathbf{P}^{A} subject to $\widetilde{\mathbf{P}}$ being consistent with the marginal distributions
- then $\mathbf{P}^{A}-\widetilde{\mathbf{P}}$ is a measure of exchange mobility; $\widetilde{\mathbf{P}}-\mathbf{P}^{B} \mathrm{a}$ measure of structural mobility

Exchange and structural mobility

- it is useful to distinguish between changes in mobility that are driven by changes in the marginal distributions ("structural") and those that are driven by the mapping of f_{1} to f_{2} ("exchange")
- the welfare-based measurement approach allows such a decomposition of mobility
- consider a two different discrete distributions ($\left.\mathbf{f}_{1}^{A}, \mathbf{P}^{A}, \mathbf{f}_{2}^{A}\right)$ and $\left(\mathbf{f}_{1}^{B}, \mathbf{P}^{B}, \mathbf{f}_{2}^{B}\right)$; the move from \mathbf{P}^{A} to \mathbf{P}^{B} induces both structural and exchange mobility
- one approach would be purely statistical or mathematical;
- subject to a specific distance measure, find $\widetilde{\mathbf{P}}$ that is "closest" to \mathbf{P}^{A} subject to $\widetilde{\mathbf{P}}$ being consistent with the marginal distributions
- then $\mathbf{P}^{A}-\widetilde{\mathbf{P}}$ is a measure of exchange mobility; $\widetilde{\mathbf{P}}-\mathbf{P}^{B}$ a measure of structural mobility
- an alternative is to rely on the social evaluation U to decompose mobility

Exchange and structural mobility - welfare-based

- for each transition matrix \mathbf{P}^{A} there is an equilibrium distribution $\tilde{\mathbf{f}}^{A}$ such that

$$
\begin{equation*}
\tilde{f}^{A^{\prime}} \mathbf{P}^{A}=\tilde{\mathbf{f}}^{A} . \tag{3}
\end{equation*}
$$

Exchange and structural mobility - welfare-based

- for each transition matrix \mathbf{P}^{A} there is an equilibrium distribution $\tilde{\mathbf{f}}^{A}$ such that

$$
\begin{equation*}
\tilde{f}^{A^{\prime}} \mathbf{P}^{A}=\tilde{\mathbf{f}}^{A} \tag{3}
\end{equation*}
$$

- a matrix $\widetilde{\mathbf{P}}$ is "exchange equivalent" to \mathbf{P}^{A} if

$$
\begin{equation*}
\tilde{f}^{\prime} \widetilde{P b}=\tilde{\mathbf{f}}^{A} \tag{4}
\end{equation*}
$$

Exchange and structural mobility - welfare-based

- for each transition matrix \mathbf{P}^{A} there is an equilibrium distribution $\tilde{\mathbf{f}}^{A}$ such that

$$
\begin{equation*}
\tilde{f}^{A^{\prime}} \mathbf{P}^{A}=\tilde{\mathbf{f}}^{A} \tag{3}
\end{equation*}
$$

- a matrix $\widetilde{\mathbf{P}}$ is "exchange equivalent" to \mathbf{P}^{A} if

$$
\begin{equation*}
\tilde{f}^{\prime} \widetilde{P b}=\tilde{\mathbf{f}}^{A} \tag{4}
\end{equation*}
$$

- the change in welfare associated with $\left(\tilde{\mathbf{f}}^{A}, \mathbf{P}^{A}\right)$ to that with $\left(\tilde{\mathbf{f}}^{B}, \mathbf{P}^{B}\right)$ then considers welfare change induced by $\mathbf{P}^{A} \rightarrow \widetilde{\mathbf{P}}$ as a measure of exchange mobility; $\widetilde{\mathbf{P}} \rightarrow \mathbf{P}^{B}$ a measure of structural mobility

Exchange and structural mobility - welfare-based

- for each transition matrix \mathbf{P}^{A} there is an equilibrium distribution $\tilde{\mathbf{f}}^{A}$ such that

$$
\begin{equation*}
\tilde{f}^{A^{\prime}} \mathbf{P}^{A}=\tilde{\mathbf{f}}^{A} \tag{3}
\end{equation*}
$$

- a matrix $\widetilde{\mathbf{P}}$ is "exchange equivalent" to \mathbf{P}^{A} if

$$
\begin{equation*}
\tilde{f}^{\prime} \widetilde{P b}=\tilde{\mathbf{f}}^{A} \tag{4}
\end{equation*}
$$

- the change in welfare associated with $\left(\tilde{\mathbf{f}}^{A}, \mathbf{P}^{A}\right)$ to that with $\left(\tilde{\mathbf{f}}^{B}, \mathbf{P}^{B}\right)$ then considers welfare change induced by $\mathbf{P}^{A} \rightarrow \widetilde{\mathbf{P}}$ as a measure of exchange mobility; $\widetilde{\mathbf{P}} \rightarrow \mathbf{P}^{B}$ a measure of structural mobility
- note that $\tilde{f}^{k}, k=A, B$ is a hypothetical steady-state distribution, not the actual

Exchange and structural mobility - an example

- to examine this more closely, consider $n=2$ and focus on the case of identical marginal distributions in the two time periods:

$$
\begin{align*}
\mathbf{P}= & {\left[\begin{array}{cc}
p_{1} & 1-p_{1} \\
1-p_{2} & p_{2}
\end{array}\right] } \tag{5}\\
& 1>p_{i}>0, i=1,2 ; \quad \mathbf{f}=\left(f_{1}, f_{2}\right)^{\prime}=\left(f_{1}, 1-f_{1}\right)^{\prime}
\end{align*}
$$

Exchange and structural mobility - an example

- to examine this more closely, consider $n=2$ and focus on the case of identical marginal distributions in the two time periods:

$$
\begin{align*}
\mathbf{P}= & {\left[\begin{array}{cc}
p_{1} & 1-p_{1} \\
1-p_{2} & p_{2}
\end{array}\right] } \tag{5}\\
& 1>p_{i}>0, i=1,2 ; \quad \mathbf{f}=\left(f_{1}, f_{2}\right)^{\prime}=\left(f_{1}, 1-f_{1}\right)^{\prime}
\end{align*}
$$

- the welfare function (expected/average utility) for this economy is

$$
\begin{align*}
W= & U\left(Y_{1}, Y_{2}\right) p_{1} f_{1}+U\left(Y_{1}, Y_{2}\right)\left(1-p_{1}\right) f_{1}+ \tag{6}\\
& U\left(Y_{2}, Y_{1}\right)\left(1-p_{2}\right)\left(1-f_{1}\right)+U\left(Y_{2}, Y_{2}\right) p_{2}\left(1-f_{1}\right)
\end{align*}
$$

Exchange and structural mobility - an example

- this can re-written as

$$
W=\left[\left\{U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right)\right\}-\left\{U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right)\right\}\right] p_{1} f_{1}+C
$$

(C does not depend on p_{1} or p_{2})

Exchange and structural mobility - an example

- this can re-written as

$$
\begin{equation*}
W=\left[\left\{U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right)\right\}-\left\{U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right)\right\}\right] p_{1} f_{1}+C \tag{7}
\end{equation*}
$$

(C does not depend on p_{1} or p_{2})

- to maximize welfare wrt. p_{1} we choose a low value when [] is negative (and high when it is positive); the sign of [] equals the sign of the cross-partial derivative (as $Y_{1}<Y_{2}$)

Exchange and structural mobility - an example

- the key here is

$$
\begin{equation*}
U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right) \lesseqgtr U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right) \tag{8}
\end{equation*}
$$

Exchange and structural mobility - an example

- the key here is

$$
\begin{equation*}
U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right) \lesseqgtr U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right) \tag{8}
\end{equation*}
$$

- for a negative cross-partial derivative $\left(U_{12}<0\right), W$ is negative

Exchange and structural mobility - an example

- the key here is

$$
\begin{equation*}
U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right) \lesseqgtr U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right) \tag{8}
\end{equation*}
$$

- for a negative cross-partial derivative $\left(U_{12}<0\right), W$ is negative
- the decline in utility from going from high income in both periods to low income in the second is less than the increase in utility from going from low in both periods to high in the second

Exchange and structural mobility - an example

- the key here is

$$
\begin{equation*}
U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right) \lesseqgtr U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right) \tag{8}
\end{equation*}
$$

- for a negative cross-partial derivative $\left(U_{12}<0\right), W$ is negative
- the decline in utility from going from high income in both periods to low income in the second is less than the increase in utility from going from low in both periods to high in the second
- in which case we have a social preference for mobility

Exchange and structural mobility - an example

- the key here is

$$
\begin{equation*}
U\left(Y_{2}, Y_{2}\right)-U\left(Y_{2}, Y_{1}\right) \lesseqgtr U\left(Y_{1}, Y_{2}\right)-U\left(Y_{1}, Y_{1}\right) \tag{8}
\end{equation*}
$$

- for a negative cross-partial derivative $\left(U_{12}<0\right), W$ is negative
- the decline in utility from going from high income in both periods to low income in the second is less than the increase in utility from going from low in both periods to high in the second
- in which case we have a social preference for mobility
- $p_{1}=p_{2}=0$ has here been ruled out on feasibility grounds so complete rank reversal is not a solution

Exchange and structural mobility - graphical representation

Exchange and structural mobility - graphical representation

$$
n_{n}\left(=\underline{1-2 f_{1}}\right)
$$

Exchange and structural mobility - graphical representation

$$
n_{n}\left(=\underline{1-2 f_{1}}\right)
$$

Exchange and structural mobility - graphical representation

$$
n_{n}\left(=\underline{1-2 f_{1}}\right)
$$

Exchange and structural mobility - graphical representation

$$
p_{1}\left(=2-\frac{1}{f_{1}}\right)
$$

- points a and b associated with \mathbf{P}^{a} and \mathbf{P}^{b}

$$
n_{0}\left(-1-2 t_{t}\right)+\cdots \cdots \cdots=
$$

Exchange and structural mobility - graphical representation

$$
p_{1}\left(=2-\frac{1}{f_{1}}\right)
$$

- points a and b associated with \mathbf{P}^{a} and \mathbf{P}^{b}
- move along f_{1}^{a} to \tilde{a} closer to b is the change in mobility with no structural change

$$
n_{0}\left(=\frac{1-2 f_{1}}{}\right)
$$

Exchange and structural mobility - graphical representation

Exchange and structural mobility - decomposition

Exchange and structural mobility - decomposition

Exchange and structural mobility - decomposition

Decomposition I

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{\text {a }}-W^{a}$
Structural mobility $=W^{b}-W^{\text {ã }}$

Exchange and structural mobility - decomposition

Decomposition I

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{\text {a }}-W^{a}$
Structural mobility $=W^{b}-W^{\text {ã }}$

Exchange and structural mobility - decomposition

Decomposition I

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{a ̃}-W^{a}$
Structural mobility $=W^{b}-W^{\text {ã }}$

Decomposition II

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{b}-W^{\tilde{b}}$
Structural mobility $=W^{\tilde{b}}-W^{a}$

Exchange and structural mobility - decomposition

Decomposition I

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{\tilde{a}}-W^{a}$
Structural mobility $=W^{b}-W^{\text {á }}$

Decomposition II

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{b}-W^{\tilde{b}}$
Structural mobility $=W^{\tilde{b}}-W^{a}$

Remarks

Exchange and structural mobility - decomposition

Decomposition I

Decomposition II

Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{a}-W^{a}$
Structural mobility $=W^{b}-W^{\text {a }}$
Total change in welfare $=W^{b}-W^{a}$
Exchange mobility $=W^{b}-W^{\text {b }}$
Structural mobility $=W^{\tilde{b}}-W^{a}$

Remarks

- one might also take point A (perfect immobility) as the reference for for decomposing, but that would make no use of welfare information.

Welfare dominance in more general bivariate distributions
 Atkinson and Bourguignon (1982)

- the problem is still to compare two distributions, f^{A} and f^{B} with

$$
\Delta f=f^{B}-f^{A} \text { and } \Delta F=F^{B}-F^{A}
$$

Welfare dominance in more general bivariate distributions
 Atkinson and Bourguignon (1982)

- the problem is still to compare two distributions, f^{A} and f^{B} with

$$
\Delta f=f^{B}-f^{A} \text { and } \Delta F=F^{B}-F^{A}
$$

- keeping to the two-period case, the difference in welfare is

$$
\begin{equation*}
\Delta W=\int_{0}^{a_{2}} \int_{0}^{a_{1}} U\left(y_{1}, y_{2}\right) \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{9}
\end{equation*}
$$

Welfare dominance in more general bivariate distributions
 Atkinson and Bourguignon (1982)

- the problem is still to compare two distributions, f^{A} and f^{B} with

$$
\Delta f=f^{B}-f^{A} \text { and } \Delta F=F^{B}-F^{A}
$$

- keeping to the two-period case, the difference in welfare is

$$
\begin{equation*}
\Delta W=\int_{0}^{a_{2}} \int_{0}^{a_{1}} U\left(y_{1}, y_{2}\right) \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{9}
\end{equation*}
$$

- we want to know under what conditions $\Delta W>0$

Welfare dominance in more general bivariate distributions

Atkinson and Bourguignon (1982)

- the problem is still to compare two distributions, f^{A} and f^{B} with

$$
\Delta f=f^{B}-f^{A} \text { and } \Delta F=F^{B}-F^{A}
$$

- keeping to the two-period case, the difference in welfare is

$$
\begin{equation*}
\Delta W=\int_{0}^{a_{2}} \int_{0}^{a_{1}} U\left(y_{1}, y_{2}\right) \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{9}
\end{equation*}
$$

- we want to know under what conditions $\Delta W>0$
- restrict interest to the case $U_{12}<0$

Welfare dominance in more general bivariate distributions

- equation 9 can be re-expressed as

$$
\begin{aligned}
\Delta W= & \underbrace{U\left(a_{1}, a_{2}\right) \int_{0}^{a_{2}} \int_{0}^{a_{1}} \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}_{=0} \\
& -\int_{0}^{a_{1}} U_{1}\left(y_{1}, a_{2}\right) \Delta F_{1}\left(y_{1}\right) d y_{1}-\int_{0}^{a_{2}} U_{2}\left(a_{1}, y_{2}\right) \Delta F_{2}\left(y_{2}\right) d y_{2} \\
& +\int_{0}^{a_{2}} \int_{0}^{a_{1}} U_{12}\left(y_{1}, y_{2}\right) \Delta F\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
\end{aligned}
$$

Welfare dominance in more general bivariate distributions

- equation 9 can be re-expressed as

$$
\begin{align*}
\Delta W= & \underbrace{U\left(a_{1}, a_{2}\right) \int_{0}^{a_{2}} \int_{0}^{a_{1}} \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}_{=0} \\
& -\int_{0}^{a_{1}} U_{1}\left(y_{1}, a_{2}\right) \Delta F_{1}\left(y_{1}\right) d y_{1}-\int_{0}^{a_{2}} U_{2}\left(a_{1}, y_{2}\right) \Delta F_{2}\left(y_{2}\right) d y_{2} \\
& +\int_{0}^{a_{2}} \int_{0}^{a_{1}} U_{12}\left(y_{1}, y_{2}\right) \Delta F\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{10}
\end{align*}
$$

- for all U we are considering, a sufficient condition for $\Delta W>0$ is that

$$
\Delta F\left(y_{1}, y_{2}\right) \leq 0
$$

Welfare dominance in more general bivariate distributions

- equation 9 can be re-expressed as

$$
\begin{align*}
\Delta W= & \underbrace{U\left(a_{1}, a_{2}\right) \int_{0}^{a_{2}} \int_{0}^{a_{1}} \Delta f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}_{=0} \\
& -\int_{0}^{a_{1}} U_{1}\left(y_{1}, a_{2}\right) \Delta F_{1}\left(y_{1}\right) d y_{1}-\int_{0}^{a_{2}} U_{2}\left(a_{1}, y_{2}\right) \Delta F_{2}\left(y_{2}\right) d y_{2} \\
& +\int_{0}^{a_{2}} \int_{0}^{a_{1}} U_{12}\left(y_{1}, y_{2}\right) \Delta F\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{10}
\end{align*}
$$

- for all U we are considering, a sufficient condition for $\Delta W>0$ is that

$$
\Delta F\left(y_{1}, y_{2}\right) \leq 0
$$

- Atkinson and Bourguignon (1982) consider other classes of U and derive higher-order dominance conditions

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

- the two parameters have the following interpretation (Gottschalk and Spolaore, 2002, p. 295):

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

- the two parameters have the following interpretation (Gottschalk and Spolaore, 2002, p. 295):
- $\epsilon>0$ summarizes aversion to inequality of multi-period utility,

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

- the two parameters have the following interpretation (Gottschalk and Spolaore, 2002, p. 295):
- $\epsilon>0$ summarizes aversion to inequality of multi-period utility,
- $\rho>0$ summarizes the degree of aversion to inter-temporal fluctuations in income

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

- the two parameters have the following interpretation (Gottschalk and Spolaore, 2002, p. 295):
- $\epsilon>0$ summarizes aversion to inequality of multi-period utility,
- $\rho>0$ summarizes the degree of aversion to inter-temporal fluctuations in income
- $U_{12}<0$ corresponds to $\epsilon>\rho$, i.e. multi-period inequality aversion offsets aversion to inter-temporal fluctuations (and reversals are socially valued)

A closer look at U

- Atkinson and Bourguignon (1982) examine restricted class of utility functions with homothetic preferences
- consider the following evaluation function

$$
\begin{equation*}
U\left(Y_{1}, Y_{2}\right)=\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)} \tag{11}
\end{equation*}
$$

- the two parameters have the following interpretation (Gottschalk and Spolaore, 2002, p. 295):
- $\epsilon>0$ summarizes aversion to inequality of multi-period utility,
- $\rho>0$ summarizes the degree of aversion to inter-temporal fluctuations in income
- $U_{12}<0$ corresponds to $\epsilon>\rho$, i.e. multi-period inequality aversion offsets aversion to inter-temporal fluctuations (and reversals are socially valued)
- when $\rho=0$ and perfect substitution of income between periods, one is only interested in the reduction of multi-period inequality

Mobility dominance

- an example that would generate a welfare improvement is a 'correlation-reducing transformation' which leaves the marginal distributions unchanged but reduces the correlation between Y_{1} and Y_{2} (for $\eta, h, k>0$):
$\left\{\begin{array}{ccc}y_{1} & y_{1}+h \\ y_{2} & \text { density reduced by } \eta & \text { density increased by } \eta \\ y_{2}+k & \text { density increased by } \eta & \text { density reduced by } \eta\end{array}\right\}$

Mobility dominance

- an example that would generate a welfare improvement is a 'correlation-reducing transformation' which leaves the marginal distributions unchanged but reduces the correlation between Y_{1} and Y_{2} (for $\eta, h, k>0$):
$\left\{\begin{array}{ccc}y_{1} & y_{1}+h \\ y_{2} & \text { density reduced by } \eta & \text { density increased by } \eta \\ y_{2}+k & \text { density increased by } \eta & \text { density reduced by } \eta\end{array}\right\}$
- mobility dominance powerful in theory but not used much in practice - results apply to simplified situations (identical margins, homothetic preferences, positional mobility)

Mobility dominance

- an example that would generate a welfare improvement is a 'correlation-reducing transformation' which leaves the marginal distributions unchanged but reduces the correlation between Y_{1} and Y_{2} (for $\eta, h, k>0$):
$\left\{\begin{array}{ccc}y_{1} & y_{1}+h \\ y_{2} & \text { density reduced by } \eta & \text { density increased by } \eta \\ y_{2}+k & \text { density increased by } \eta & \text { density reduced by } \eta\end{array}\right\}$
- mobility dominance powerful in theory but not used much in practice - results apply to simplified situations (identical margins, homothetic preferences, positional mobility)
- Dardanoni (1993) provides an alternative approach to dominance (stochastic dominance results for mobility processes summarised by transition matrices with the same steady-state income distribution)

Mobility dominance - graphical illustration

Mobility dominance - examples

\rightarrow Go to US transition matrices

Mobility dominance - examples

- \rightarrow Go to US transition matrices
\rightarrow Go to IG mobility dominance Germany, the UK, and USA compared

Welfare dominance with origin independence

 Gottschalk and Spolaore (2002)- origin independence is an important benchmark in non-welfare-based mobility measurement

Welfare dominance with origin independence

 Gottschalk and Spolaore (2002)- origin independence is an important benchmark in non-welfare-based mobility measurement
- origin independence has no role in the welfare-based approach

Welfare dominance with origin independence

Gottschalk and Spolaore (2002)

- origin independence is an important benchmark in non-welfare-based mobility measurement
- origin independence has no role in the welfare-based approach
- Gottschalk and Spolaore (2002) introduce origin independence by modifying the evaluation function U

Welfare dominance with origin independence

Gottschalk and Spolaore (2002)

- origin independence is an important benchmark in non-welfare-based mobility measurement
- origin independence has no role in the welfare-based approach
- Gottschalk and Spolaore (2002) introduce origin independence by modifying the evaluation function U
- in particular, let the certainty equivalent of second-period income be

$$
\begin{equation*}
\widetilde{Y}_{2}=\left(E_{1}\left[Y_{2}^{1-\gamma}\right]\right)^{1 /(1-\gamma)} \tag{12}
\end{equation*}
$$

Welfare dominance with origin independence

Gottschalk and Spolaore (2002)

- origin independence is an important benchmark in non-welfare-based mobility measurement
- origin independence has no role in the welfare-based approach
- Gottschalk and Spolaore (2002) introduce origin independence by modifying the evaluation function U
- in particular, let the certainty equivalent of second-period income be

$$
\begin{equation*}
\widetilde{Y}_{2}=\left(\mathrm{E}_{1}\left[Y_{2}^{1-\gamma}\right]\right)^{1 /(1-\gamma)} \tag{12}
\end{equation*}
$$

- the welfare function, using the expectations operator, is then

$$
\begin{equation*}
\left.\hat{W}=\left\{\mathrm{E}_{0}\left[Y_{1}^{1-\rho}+\left(\mathrm{E}_{1}\left[Y_{2}^{1-\gamma}\right]\right)^{1 /(1-\gamma)}\right)^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)}\right\}^{1 /(1-\epsilon)} \tag{13}
\end{equation*}
$$

Welfare dominance with origin independence

- Gottschalk and Spolaore (2002) prove that time independence is value if and only if

$$
\epsilon \geq \gamma \text { and } \rho \geq \gamma
$$

i.e., origin independence only matters in the ex ante sense that individuals, looking forward, value a sure thing relative to a lottery and that valuation is high enough to dominate aversion to both multiperiod utility (ϵ) and intertemporal variation in income (ρ)

Welfare dominance with origin independence

- Gottschalk and Spolaore (2002) prove that time independence is value if and only if

$$
\epsilon \geq \gamma \text { and } \rho \geq \gamma
$$

i.e., origin independence only matters in the ex ante sense that individuals, looking forward, value a sure thing relative to a lottery and that valuation is high enough to dominate aversion to both multiperiod utility (ϵ) and intertemporal variation in income (ρ)

- moreover, in the 2×2 example, setting $p_{1}=p_{2}=p$, they show that the welfare-maximizing p depends on the relationship between ϵ and ρ

$$
p \lesseqgtr 1 / 2 \text { if } \rho \lesseqgtr \epsilon
$$

Measurement of welfare loss

Welfare measures and extended Atkinson indices
Welfare
Index
No mobility preference:

$$
W_{s}=\left\{\mathrm{E}_{0}\left[Y_{1}^{1-\rho}+Y_{12}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)}\right\}^{1 /(1-\epsilon)} \quad A_{s}=1-\frac{W_{s}}{Y}
$$

Reversals improve welfare:
$W_{r}=\left\{\mathrm{E}_{0}\left[Y_{1}^{1-\rho}+Y_{2}^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)}\right\}^{1 /(1-\epsilon)}$

$$
A_{r}=1-\frac{W_{r}}{Y}
$$

Origin independence improves welfare:

$$
\left.W_{o}=\left\{\mathrm{E}_{0}\left[Y_{1}^{1-\rho}+\left(\mathrm{E}_{1}\left[Y_{2}^{1-\gamma}\right]\right)^{1 /(1-\gamma)}\right)^{1-\rho}\right]^{(1-\epsilon) /(1-\rho)}\right\}^{1 /(1-\epsilon)} \quad A_{o}=1-\frac{W_{o}}{Y}
$$

Note: Y_{12} is income in period 2 under the assumption of no mobility, i.e., $Y_{12}=F_{2}^{-1}\left[F_{1}\left(Y_{1}\right)\right]$.

Measurement of welfare loss - empirical illustration

Decomposition of welfare gains from mobility

| | $\underbrace{A_{o}-A_{s}}_{\text {Overall diff }}$ | $=$ | $\underbrace{A_{o}-A_{r}}_{\text {diff from origin independence }}$ |
| :--- | :---: | :---: | :---: |$+\underbrace{A_{r}-A_{0}}_{\text {diff from reversals }}$

Source: Gottschalk and Spolaore (2002), Table 1, p 202

Intra- or inter-generational mobility

- hitherto, analysis thought to be applicable to both intraand inter-generational mobility

Intra- or inter-generational mobility

- hitherto, analysis thought to be applicable to both intraand inter-generational mobility
- IMHO, the Gottschalk and Spolaore (2002) framework (that introduces origin independence!) harder to justify in intergenerational case

Intra- or inter-generational mobility

- hitherto, analysis thought to be applicable to both intraand inter-generational mobility
- IMHO, the Gottschalk and Spolaore (2002) framework (that introduces origin independence!) harder to justify in intergenerational case
- the "plasticity" of the framework hides the fact that in intergenerational analysis, individuals experience (welfare-reducing) income fluctuations within generations

Intra- or inter-generational mobility

- hitherto, analysis thought to be applicable to both intraand inter-generational mobility
- IMHO, the Gottschalk and Spolaore (2002) framework (that introduces origin independence!) harder to justify in intergenerational case
- the "plasticity" of the framework hides the fact that in intergenerational analysis, individuals experience (welfare-reducing) income fluctuations within generations
- next, we'll look at a simple way of integrating intra- and inter-generational mobility based on Atkinson (2008)

Intra- and inter-generational mobility

Inter- and intragenerational mobility

- focus for now on the 2-generation case, but allow each generation to have annual income that fluctuates around the long-run average such that

$$
\begin{equation*}
Y_{j}=\prod_{t_{1}}^{T} \tilde{y}_{j t}^{1 / T} \text { and } \ln Y_{j}=\frac{1}{T} \sum_{t=1}^{T} y_{j t} \quad j=F, S \tag{14}
\end{equation*}
$$

Inter- and intragenerational mobility

- focus for now on the 2-generation case, but allow each generation to have annual income that fluctuates around the long-run average such that

$$
\begin{equation*}
Y_{j}=\prod_{t_{1}}^{T} \tilde{y}_{j t}^{1 / T} \text { and } \ln Y_{j}=\frac{1}{T} \sum_{t=1}^{T} y_{j t} \quad j=F, S \tag{14}
\end{equation*}
$$

- a parent's utility (or the ex ante evaluation) is

$$
\begin{equation*}
U\left(Y_{P}, Y_{O}\right)=\left[\ln Y_{P}+\delta \ln Y_{O}\right] / \Delta, \Delta=1+\delta \tag{15}
\end{equation*}
$$

Inter- and intragenerational mobility

- focus for now on the 2-generation case, but allow each generation to have annual income that fluctuates around the long-run average such that

$$
\begin{equation*}
Y_{j}=\prod_{t_{1}}^{T} \tilde{y}_{j t}^{1 / T} \text { and } \ln Y_{j}=\frac{1}{T} \sum_{t=1}^{T} y_{j t} \quad j=F, S \tag{14}
\end{equation*}
$$

- a parent's utility (or the ex ante evaluation) is

$$
\begin{equation*}
U\left(Y_{P}, Y_{O}\right)=\left[\ln Y_{P}+\delta \ln Y_{O}\right] / \Delta, \Delta=1+\delta \tag{15}
\end{equation*}
$$

- we'll measure social welfare by - $\operatorname{Var[],~so~we~need~}$

$$
\begin{align*}
\operatorname{Var}\left[U\left(Y_{P}, Y_{O}\right)\right]= & \operatorname{Var}\left[\ln Y_{P}\right]+\delta^{2} \operatorname{Var}\left[\ln Y_{O}\right]+ \\
& \delta \mathbf{2} \beta \operatorname{Var}\left[\ln Y_{P}\right]^{1 / 2} \operatorname{Var}\left[\ln Y_{O}\right]^{1 / 2} \tag{16}
\end{align*}
$$

(β is the intergenerational income correlation; δ is the discount rate)

Inter- and intragenerational mobility

- assuming a within-person correlation r_{j} and stationary transitory error variance $\sigma_{v_{j}}^{2}$, the welfare function is

$$
\begin{align*}
W=-\operatorname{Var}\left[U\left(Y_{P}, Y_{O}\right)\right]= & -\left\{\sigma_{P}^{2}\left(\frac{1}{T}+\frac{T-1}{T} r_{P}\right)+\frac{\sigma_{v_{P}}^{2}}{T}+\right. \\
& \delta^{2}\left[\sigma_{O}^{2}\left(\frac{1}{T}+\frac{T-1}{T} r_{O}\right)+\frac{\sigma_{v_{O}}^{2}}{T}\right]+ \\
& \delta 2 \beta \sqrt{\sigma_{P}^{2}\left(\frac{1}{T}+\frac{T-1}{T} r_{P}\right)+\frac{\sigma_{v_{P}}^{2}}{T} \times} \\
& \left.\sqrt{\sigma_{O}^{2}\left(\frac{1}{T}+\frac{T-1}{T} r_{O}\right)+\frac{\sigma_{V_{O}}^{2}}{T}}\right\} / \Delta^{2} \tag{17}
\end{align*}
$$

Inter- and intragenerational mobility

- assume T large and impose stationarity

$$
\left(\sigma_{P}=\sigma_{O}=\sigma ; r_{P}=r_{O}=r\right)
$$

$$
\begin{equation*}
W=-\operatorname{Var}\left[U\left(Y_{P}, Y_{O}\right)\right]=-\sigma^{2}\left[r\left(1+\delta^{2}\right)+\delta 2 \beta\right] / \Delta^{2} \tag{18}
\end{equation*}
$$

Welfare and intergenerational correlation (2-gen)

(black $=\sigma^{2}=1 ; \delta=1$; blue $=\sigma^{2}=2 ; \delta=1 ;$ red $=\sigma^{2}=2 ; \delta=1.5$)

Welfare and intergenerational correlation (3-gen)

- taking a 3-generation perspective changes this only a little

Welfare and intergenerational correlation (3-gen)

- taking a 3-generation perspective changes this only a little
- welfare is now non-linear (in fact, quadratic) in the intergenerational correlation so it is more sensitive to generational variance and discount factor

Welfare and intergenerational correlation (3-gen)

(black $=\sigma^{2}=1 ; \delta=1$; blue $=\sigma^{2}=2 ; \delta=1$; red $=\sigma^{2}=2 ; \delta=1.5$)

Intra- and intergenerational correlation - trade-off

Outline

Introduction

Mobility concepts

```
Welfare implications of mobility
    Basic setup
    Only inequality aversion
    Inequality and risk aversion
    Inequality and risk aversion and origin independence
    Integrating intra- and inter-generational mobility
```

Concluding remarks

Tables and figures

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)
- welfare implications demanding but can (and should) be studied

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)
- welfare implications demanding but can (and should) be studied
- the role of the (in period 1) uncertain lottery in generating value for time dependence underlines a difference between welfare analysis of intra- vs. intergenerational mobility:

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)
- welfare implications demanding but can (and should) be studied
- the role of the (in period 1) uncertain lottery in generating value for time dependence underlines a difference between welfare analysis of intra- vs. intergenerational mobility:
- it is not clear why society should value a sure thing for the offspring generation ("period 2") relative to the uncertain lottery

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)
- welfare implications demanding but can (and should) be studied
- the role of the (in period 1) uncertain lottery in generating value for time dependence underlines a difference between welfare analysis of intra- vs. intergenerational mobility:
- it is not clear why society should value a sure thing for the offspring generation ("period 2") relative to the uncertain lottery
- it is more clear that such valuations make sense within the same individual

Concluding comments

- focus on exchange mobility (incomes could be and often are replaced by ranks)
- welfare implications demanding but can (and should) be studied
- the role of the (in period 1) uncertain lottery in generating value for time dependence underlines a difference between welfare analysis of intra- vs. intergenerational mobility:
- it is not clear why society should value a sure thing for the offspring generation ("period 2") relative to the uncertain lottery
- it is more clear that such valuations make sense within the same individual
- integration of intra- within intergenerational analysis promising, but more complex processes likely useful
Homosecedastic transition variances? (Bingley and Cappellari, 2012)

Outline

Introduction

Mobility concepts

```
Welfare implications of mobility
    Basic setup
    Only inequality aversion
    Inequality and risk aversion
    Inequality and risk aversion and origin independence
    Integrating intra- and inter-generational mobility
```

Concluding remarks

Tables and figures

Decile transition matrices: USA, (a) 1979-1988

Note: Income refers to equivalized real annual family disposable income, distributed among all individuals (adults and children). The decile groups are ordered from poorest (1) to richest (10). Source: Hungerford (2011, Tables 2 and 3), based on PSID data.

```
- Go back
```

Origin	Destination									
	1	2	3	4	5	6	7	8	9	10
1979					1988					
1	44.3	18.3	12.4	9.2	7.1	3.0	1.8	2.0	0.7	1.3
2	18.1	25.3	21.0	11.7	7.5	5.4	4.7	3.2	1.9	1.1
3	10.6	18.2	15.3	16.8	11.6	9.0	8.8	4.9	3.1	1.7
4	7.2	8.9	14.0	14.0	14.7	15.7	12.0	5.6	6.0	2.1
5	6.1	9.2	10.9	12.8	13.3	16.9	12.3	7.5	7.7	3.4
6	4.1	5.2	8.8	10.3	11.8	10.0	14.2	16.9	12.6	6.2
7	3.5	6.5	6.9	8.6	10.4	13.4	13.3	16.8	13.4	7.2
8	3.1	4.6	3.2	7.7	12.3	9.5	12.6	15.7	17.7	13.6
9	1.2	2.2	4.8	6.3	6.9	10.2	12.2	14.7	18.0	23.5
10	2.1	1.5	2.8	2.5	4.2	7.0	8.5	12.8	18.6	40.0

Decile transition matrices: USA, (b) 1989-1998

Note: Income refers to equivalized real annual family disposable income, distributed among all individuals (adults and children). The decile groups are ordered from poorest (1) to richest (10). Source: Hungerford (2011, Tables 2 and 3), based on PSID data.

```
- Go back
```

	Destination																		
Origin	1	2	3	4	5	6	7	8	9	10									
$\mathbf{1 9 8 9}$					1998														
1	41.9	21.6	13.7	7.0	4.6	3.7	2.7	2.2	1.9	0.7									
2	20.4	22.5	15.4	11.6	11.0	8.1	4.0	4.0	1.7	1.2									
3	12.5	20.8	17.1	16.4	10.9	10.3	5.2	3.2	1.7	1.9									
4	6.9	11.6	15.5	16.9	14.5	11.4	10.1	7.7	2.3	3.1									
5	4.8	6.2	12.2	13.8	16.0	14.2	12.4	7.1	7.5	5.8									
6	3.2	3.7	9.1	11.6	16.0	14.4	15.7	11.7	7.7	6.9									
7	3.2	4.5	7.6	9.3	8.7	12.2	16.3	15.6	16.8	5.8									
8	3.0	4.7	5.2	5.4	7.9	12.1	17.2	17.0	19.3	8.3									
9	2.5	3.1	4.0	4.9	7.5	7.1	10.7	18.2	21.8	20.3									
10	1.7	1.0	0.4	3.2	3.0	6.3	6.0	13.1	19.3	46.1									

Differences in cumulative density: USA, 1979-1988 versus 1989-1998

Source: Authors' calculations from (Hungerford, 2011, Tables 2 and 3), based on PSID data.

```
- Go back
```

Destination group
$\left.\begin{array}{lrrrrrrrrrr}\text { Origin group } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (2\end{array}\right)$

Intergenerational transition matrices in disposable income among all persons for Germany, the UK and the USA

Source: Authors' calculations from Eberharter (2013, Table 3).

```
- Go back
```

A. Germany					
	1	2	3	4	5
Father					
1	34	29	14	17	7
2	15	23	32	15	16
3	12	16	22	26	24
4	9	11	18	29	33
5	7	11	19	25	39
C. USA					
Offspring					
	1	2	3	4	5
1	37	31	13	13	5
2	21	23	24	17	15
3	12	23	18	24	24
4	9	11	21	33	26
5	2	10	15	26	46

B. UK					
	1	2	3	4	5
Father					
1	48	22	14	12	5
2	22	26	21	22	10
3	11	18	25	25	21
4	6	16	25	26	25
5	4	16	16	27	36

Cumulated differences in intergenerational transition matrices in disposable income among all persons for Germany, the UK and the USA

Source: Authors' calculations from Eberharter (2013, Table 3).

A. USA - Germany					
	Offspring				
	1	2	3	4	5
Father					
1	3	5	5	1	
2	9	11	4	2	
3	9	18	6	2	
4	9	18	9	9	
5	4	13	1	2	
C. UK - Germany					
	Offspring				
	1	2	3	4	5
Father					
1	14	6	7	2	0
2	20	16	6	8	0
3	20	18	11	11	0
4	17	20	21	19	1
5	15	24	22	23	1

B. USA - UK					
	Offspring				
Father	2	3	4	5	
1	-10	-1	-1	0	0
2	-11	-5	-2	-6	0
3	-11	1	-4	-9	0
4	-8	-3	-12	-10	-1
5	-10	-11	-21	-20	-1

Transitory errors and long-run income

The variation of annual In income across over-time mean of In income - Swedish fathers and sons

(it Atkinson, A. B. and F. Bourguignon (1982). "The Comparison of Multi-Dimensioned Distributions of Economic Status". In: Review of Economic Studies 49.2, pp. 183-201.
囯 Atkinson, Anthony B (1981). "The Measurement of Economic
Mobility". In: Essays in Honor of Jan Pen. Ed. by
P. J. Eigjelshoven and L. J. van Gemerden. Utrecht: Het Spectrum.

- (1983). "The measurement of economic mobility". In: Social Justice and Public Policy. Ed. by A. B. Atkinson. Cambridge, MA: MIT Press. Chap. 3, pp. 61-76.
- (2008). "Mobility, Meritocracy and Markets". Unpublished lecture at Russell Sage Foundation, New York.
䍰 Bingley, Paul and Lorenzo Cappellari (2012). Alike in many ways: Intergenerational and sibling correlations of brothers' earnings. CESIFO Working Paper 3994.
http://www.cesifo-
group.de/DocDL/cesifo1_wp3994.pdf. Munich:
CESifo.

雷 Dardanoni，V．（1993）．＂Measuring Social Mobility＂．In：Journal of Economic Theory 61，pp．372－394．
囯 Eberharter，Veronika V（2013）．＂The Intergenerational
Dynamics of Social Inequality－Empirical Evidence from Europe and the United States＂．Paper presented at the ECINEQ Conference，Bari，July 2013，
http：／／www．ecineq．org／ecineq＿bari13／
FILESxBari13／CR2／p118．pdf．
目 Fields，Gary S and Efe A Ok（1999）．＂The Measurement of Income Mobility：An Introduction to the Literature＂．In： Handbook of Income Inequality Measurement．Ed．by Jacques Silber．Recent Economic Thought．Boston：Kluwer Academic Publishers．Chap．19，pp．557－598．
㬝 Gottschalk，P．and E．Spolaore（2002）．＂On the Evaluation of Economic Mobility＂．In：Review of Economic Studies 69， pp．191－208．
R Hungerford，T．L．（2011）．＂How Income Mobility Affects Income Inequality：US Evidence in the 1980s and 1990s＂．In：Journal of Income Distribution 20．1，pp．83－103．

雷 Jäntti, Markus and Stephen Jenkins (2015). "Income mobility".
In: Handbook of Income Distribution. Ed. by Anthony B Atkinson and François Bourguignon. Vol. 2. Elsevier. Chap. 10, pp. 807-935. DOI:
doi:10.1016/B978-0-444-59428-0.00011-4. URL:
http://www.sciencedirect.com/science/article/
pii/B9780444594280000114.
围 Markandya, A. (1984). "The Welfare Measurement of Changes in Economic Mobility". In: Economica 51, pp. 457-471.

