Measuring Inequality with Ordinal data

Frank Cowell

http://darp.lse.ac.uk/cowell.htm

Università di Verona: Alba di Canazei
Winter School

January 2015
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary

References
Outline

Motivation

Introduction and Previous work
Basics
Examples

Approach
Model
Characterisation

Inequality Measures
Main properties
Example
Reference point and sensitivity

Empirical aspects
Implementation
Performance
Application

Summary
Introduction

- Ordinal data issue widespread in inequality analysis
- Many applications proceed just as though cardinal:
 - health status: Van Doorslaer and Jones (2003)
Introduction

- Ordinal data issue widespread in inequality analysis
- Many applications proceed just as though cardinal:
 - health status: Van Doorslaer and Jones (2003)
- Small literature that takes ordinal problem seriously
 - early approaches using 1st order dominance, the median
 - but these have limitations
Introduction

• Ordinal data issue widespread in inequality analysis
• Many applications proceed just as though cardinal:
 • health status: Van Doorslaer and Jones (2003)

• Small literature that takes ordinal problem seriously
 • early approaches using 1st order dominance, the median
 • but these have limitations

• Present approach based on Cowell and Flachaire (2014)
Outline

Motivation
- Introduction and Previous work

Basics
- Examples

Approach
- Model
- Characterisation

Inequality Measures
- Main properties
- Example
- Reference point and sensitivity

Empirical aspects
- Implementation
- Performance
- Application

Summary
Income Inequality

• 3 ingredients:

 • “income”: family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
 • “income-receiving unit”: n persons
 • method of aggregation: function $X^n \rightarrow \mathbb{R}$
Income Inequality

- 3 ingredients:
 - “income”: family income, earnings, wealth \(x \in X \subseteq \mathbb{R} \).
 - “income-receiving unit”: \(n \) persons
 - method of aggregation: function \(X^n \rightarrow \mathbb{R} \)

- Usually work with \(X^\mu_n \subseteq \mathbb{R} \)
Income Inequality

- 3 ingredients:
 - **“income”**: family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
 - **“income-receiving unit”**: n persons
 - **method of aggregation**: function $X^n \rightarrow \mathbb{R}$

- Usually work with $X^n_{\mu} \subseteq \mathbb{R}$

- X^n_{μ}: Distributions obtainable from a given total income $n\mu$ using lump-sum transfers
Income Inequality

- 3 ingredients:
 - "income": family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
 - "income-receiving unit": n persons
 - method of aggregation: function $X^n \rightarrow \mathbb{R}$

- Usually work with $X^n_\mu \subseteq \mathbb{R}$

- X^n_μ: Distributions obtainable from a given total income $n\mu$ using lump-sum transfers

- Obviously can’t do that here: μ is undefined
Utility
Cardinalisation and inequality

- 3 ingredients:
 - “income”: \(u = U(x) \).
 - “income-receiving unit”: \(n \) persons (as before)
 - method of aggregation: function \(U^n \rightarrow \mathbb{R} \)
Utility
Cardinalisation and inequality

- 3 ingredients:
 - “income”: \(u = U(x) \).
 - “income-receiving unit”: \(n \) persons (as before)
 - method of aggregation: function \(\mathbb{U}^n \to \mathbb{R} \)

- Problem of cardinalisation
Utility

Cardinalisation and inequality

- 3 ingredients:
 - “income”: \(u = U(x) \).
 - “income-receiving unit”: \(n \) persons (as before)
 - method of aggregation: function \(\mathbb{U}^n \rightarrow \mathbb{R} \)

- Problem of cardinalisation

- But just assuming cardinal utility is no use
 - Already pointed out in Atkinson (1970)
 - Dalton (1920) suggested inequality of (cardinal) utility
 - But if, for all \(i \), you multiply \(u_i \) by \(\lambda \in (0, 1) \) and add \(\delta = \mu [1 - \lambda] \)...
 - ...this will automatically reduce measured inequality.
Utility
Cardinalisation and inequality

• 3 ingredients:
 • “income”: \(u = U(x) \).
 • “income-receiving unit”: \(n \) persons (as before)
 • method of aggregation: function \(\mathbb{U}^n \rightarrow \mathbb{R} \)

• Problem of cardinalisation

• But just assuming cardinal utility is no use
 • Already pointed out in Atkinson (1970)
 • Dalton (1920) suggested inequality of (cardinal) utility
 • But if, for all \(i \), you multiply \(u_i \) by \(\lambda \in (0, 1) \) and add \(\delta = \mu[1 - \lambda] \)...
 • ...this will automatically reduce measured inequality.

• Is this just a technicality?
• Can we proceed just as with regular income?
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>Introduction and Previous work</td>
</tr>
<tr>
<td>Basics</td>
</tr>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>Approach</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Characterisation</td>
</tr>
<tr>
<td>Inequality Measures</td>
</tr>
<tr>
<td>Main properties</td>
</tr>
<tr>
<td>Example</td>
</tr>
<tr>
<td>Reference point and sensitivity</td>
</tr>
<tr>
<td>Empirical aspects</td>
</tr>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>
Categorical variable
Example: Access to Services

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Gas and Electricity</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Electricity only</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Gas only</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Neither</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose we have no information about needs/usage.
- It seems clear that Case 1 is more unequal than Case 2.
Categorical variable
Example: Access to Services

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Gas and Electricity</td>
<td>25 n_k</td>
<td>0 n_k</td>
</tr>
<tr>
<td>Electricity only</td>
<td>25 n_k</td>
<td>50 n_k</td>
</tr>
<tr>
<td>Gas only</td>
<td>25 n_k</td>
<td>50 n_k</td>
</tr>
<tr>
<td>Neither</td>
<td>25 n_k</td>
<td>0 n_k</td>
</tr>
</tbody>
</table>

- Suppose we have no information about needs / usage
Categorical variable

Example: Access to Services

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Gas and Electricity</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Electricity only</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Gas only</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Neither</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

• Suppose we have no information about needs / usage

• It seems clear that Case 1 is more unequal than Case 2
Example self-reported health

- World Health Survey (WHS)
 - a general population survey
 - developed by WHO
Example self-reported health

- World Health Survey (WHS)
 - a general population survey
 - developed by WHO

- Question: Health State Descriptions
 - overall health
 - including both physical and mental health
Example self-reported health

- **World Health Survey (WHS)**
 - a general population survey
 - developed by WHO

- **Question: Health State Descriptions**
 - overall health
 - including both physical and mental health

- **In general, how would you rate your health today?**
 - Very good
 - Good
 - Moderate
 - Bad
 - Very Bad
Example self-reported health

- World Health Survey (WHS)
 - a general population survey
 - developed by WHO

- Question: Health State Descriptions
 - overall health
 - including both physical and mental health

- In general, how would you rate your health today?
 - Very good
 - Good
 - Moderate
 - Bad
 - Very Bad

- Compare distributions across countries
SRH Results: four countries

<table>
<thead>
<tr>
<th>Category</th>
<th>Austria</th>
<th>UK</th>
<th>Mexico</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>423</td>
<td>318</td>
<td>7193</td>
<td>494</td>
</tr>
<tr>
<td>Good</td>
<td>390</td>
<td>498</td>
<td>18112</td>
<td>1949</td>
</tr>
<tr>
<td>Moderate</td>
<td>200</td>
<td>278</td>
<td>11221</td>
<td>2132</td>
</tr>
<tr>
<td>Bad</td>
<td>36</td>
<td>82</td>
<td>2002</td>
<td>741</td>
</tr>
<tr>
<td>Very bad</td>
<td>4</td>
<td>17</td>
<td>218</td>
<td>228</td>
</tr>
</tbody>
</table>
SRH Results: four countries

<table>
<thead>
<tr>
<th>Category</th>
<th>Austria</th>
<th>UK</th>
<th>Mexico</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>423</td>
<td>318</td>
<td>7193</td>
<td>494</td>
</tr>
<tr>
<td>Good</td>
<td>390</td>
<td>498</td>
<td>18112</td>
<td>1949</td>
</tr>
<tr>
<td>Moderate</td>
<td>200</td>
<td>278</td>
<td>11221</td>
<td>2132</td>
</tr>
<tr>
<td>Bad</td>
<td>36</td>
<td>82</td>
<td>2002</td>
<td>741</td>
</tr>
<tr>
<td>Very bad</td>
<td>4</td>
<td>17</td>
<td>218</td>
<td>228</td>
</tr>
</tbody>
</table>

- For all countries: rank categories in order
SRH Results: four countries

<table>
<thead>
<tr>
<th></th>
<th>Austria</th>
<th>UK</th>
<th>Mexico</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number of responses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very good</td>
<td>423</td>
<td>318</td>
<td>7193</td>
<td>494</td>
</tr>
<tr>
<td>Good</td>
<td>390</td>
<td>498</td>
<td>18112</td>
<td>1949</td>
</tr>
<tr>
<td>Moderate</td>
<td>200</td>
<td>278</td>
<td>11221</td>
<td>2132</td>
</tr>
<tr>
<td>Bad</td>
<td>36</td>
<td>82</td>
<td>2002</td>
<td>741</td>
</tr>
<tr>
<td>Very bad</td>
<td>4</td>
<td>17</td>
<td>218</td>
<td>228</td>
</tr>
</tbody>
</table>

- For all countries: rank categories in order
- For each country: compute freq distributions across categories
SRH Results: four countries

<table>
<thead>
<tr>
<th>Category</th>
<th>Austria</th>
<th>UK</th>
<th>Mexico</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>423</td>
<td>318</td>
<td>7193</td>
<td>494</td>
</tr>
<tr>
<td>Good</td>
<td>390</td>
<td>498</td>
<td>18112</td>
<td>1949</td>
</tr>
<tr>
<td>Moderate</td>
<td>200</td>
<td>278</td>
<td>11221</td>
<td>2132</td>
</tr>
<tr>
<td>Bad</td>
<td>36</td>
<td>82</td>
<td>2002</td>
<td>741</td>
</tr>
<tr>
<td>Very bad</td>
<td>4</td>
<td>17</td>
<td>218</td>
<td>228</td>
</tr>
</tbody>
</table>

• For all countries: rank categories in order
• For each country: compute freq distributions across categories
• How to evaluate inequality?
SRH Inequality: Gini

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
</tr>
</thead>
</table>
| (1,2,3,4,5) | 0.111| 0.130| 0.116| 0.154| (BD, UK, Mx, At)
SRH Inequality: Gini

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.111</td>
<td>0.130</td>
<td>0.116</td>
<td>0.154</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>0.593</td>
<td>0.725</td>
<td>0.800</td>
<td>0.884</td>
</tr>
</tbody>
</table>

(BD,UK,Mx,At)
SRH Inequality: Gini

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th>Country Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.111</td>
<td>0.130</td>
<td>0.116</td>
<td>0.154</td>
<td>BD,UK,Mx,At</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>0.593</td>
<td>0.725</td>
<td>0.800</td>
<td>0.884</td>
<td>BD,Mx,UK,At</td>
</tr>
<tr>
<td>(-1000,2,3,4,5)</td>
<td>0.608</td>
<td>0.821</td>
<td>0.856</td>
<td>2.377</td>
<td>BD,Mx,UK,At</td>
</tr>
</tbody>
</table>
SRH Inequality: Coeff of Variation

- At: 0.209
- UK: 0.244
- Mx: 0.219
- BD: 0.287

(BD, UK, Mx, At)
SRH Inequality: Coeff of Variation

<table>
<thead>
<tr>
<th>Quality Level</th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th>Country Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Bad</td>
<td>0.209</td>
<td>0.244</td>
<td>0.219</td>
<td>0.287</td>
<td>(BD,UK,Mx,At)</td>
</tr>
<tr>
<td>Bad</td>
<td>1.210</td>
<td>1.638</td>
<td>2.056</td>
<td>3.088</td>
<td>(BD,Mx,UK,At)</td>
</tr>
</tbody>
</table>
SRH Inequality: Coeff of Variation

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.209</td>
<td>0.244</td>
<td>0.219</td>
<td>0.287</td>
<td>(BD,UK,Mx,At)</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>1.210</td>
<td>1.638</td>
<td>2.056</td>
<td>3.088</td>
<td>(BD,Mx,UK,At)</td>
</tr>
<tr>
<td>(-1000,2,3,4,5)</td>
<td>187.5</td>
<td>11.43</td>
<td>40.45</td>
<td>5.264</td>
<td>(At,Mx,UK,BD)</td>
</tr>
</tbody>
</table>
Outline

Motivation
- Introduction and Previous work
- Basics
- Examples

Approach
- Model
- Characterisation

Inequality Measures
- Main properties
- Example
- Reference point and sensitivity

Empirical aspects
- Implementation
- Performance
- Application

Summary

References
Status and Information

• Step 1 is to define status
 • depends on the purpose of inequality analysis
 • depends on structure of information
 • conventional inequality approach only works in narrowly defined information structure

• In some cases a person's status is self-defining
 • income
 • wealth

• In some cases defined given additional distribution-free information
 • example: if it is known that utility is log (x)

• In some cases requires information on distribution
 • GRE, TOEFL
 • “opportunity” (de Barros et al. 2008)
Status and Information

- Step 1 is to define status

• Step 1 is to define status
Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
Status and Information

Step 1 is to define status

- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure

- In some cases a person’s status is self-defining
 - income
 - wealth
Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure

- In some cases a person’s status is self-defining
 - income
 - wealth

- In some cases defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure

- In some cases a person’s status is self-defining
 - income
 - wealth

- In some cases defined given additional distribution-free information
 - example: if it is known that utility is log (x)

- In some cases requires information on distribution
 - GRE, TOEFL
 - “opportunity” (de Barros et al. 2008)
• *i*'s status uniquely defined for a given distribution of *u*
• *i*’s status uniquely defined for a given distribution of *u*

![Graph Showing Status and Distribution](image)

• disposes of the problem of cardinalisation
 • *U* and \(V = \varphi(u) \) two cardinalisations of the utility of *x*
 • for each *i*: \(u_i \) and \(v_i \) map into \(s_i \)
Status and distribution (2)

This approach works for categorical data. We just have an ordered arrangement of categories $1, 2, \ldots, k, \ldots, K$ and the numbers in each category $n_1, n_2, \ldots, n_k, \ldots, n_K$.

Merger principle
- Merge two adjacent categories that are irrelevant for i.
- Then this should leave i's status unaltered.

Principle implies that status should be additive in the numbers n_k.
- Downward-looking status: $\sum_{k=1}^{\ell} (i) = n_\ell$.
- Upward-looking status: $\sum_{k=\ell+1}^{K} (i) = n_\ell$.

See also Yitzhaki (1979).
Status and distribution (2)

- This approach works for categorical data
 - we just have an ordered arrangement of categories $1, 2, \ldots, k, \ldots, K$
 - and the numbers in each category $n_1, n_2, \ldots, n_k, \ldots, n_K$
Status and distribution (2)

- This approach works for categorical data
 - we just have an ordered arrangement of categories 1, 2, ..., k, ..., K
 - and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$

- Merger principle
 - merge two adjacent categories that are irrelevant for i
 - then this should leave i’s status unaltered

see also Yitzhaki (1979)
Status and distribution (2)

- This approach works for categorical data
 - we just have an ordered arrangement of categories 1, 2, ..., k, ..., K
 - and the numbers in each category \(n_1, n_2, ..., n_k, ..., n_K \)

- Merger principle
 - merge two adjacent categories that are irrelevant for \(i \)
 - then this should leave \(i \)'s status unaltered

- Principle implies that status should be additive in the \(n_k \)
 - downward-looking status: \(\sum_{\ell=1}^{k(i)} n_\ell \)
 - upward-looking status: \(\sum_{\ell=k(i)}^{K} n_\ell \)
 - see also Yitzhaki (1979)
Elements of the Model

- Individual’s status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility?
Elements of the Model

- Individual’s status is given by \(s \in S \subseteq \mathbb{R} \)
 - status determined from utility?

- Vector of status in a population of size \(n : s \in S^n \)
Elements of the Model

- Individual’s status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility?

- Vector of status in a population of size $n : s \in S^n$

- $e \in S$: an equality-reference point
Elements of the Model

- Individual’s status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility?

- Vector of status in a population of size $n : s \in S^n$

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta(s)$
 - η need not be increasing in each component of s
Elements of the Model

- Individual’s status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility?

- Vector of status in a population of size $n : s \in S^n$

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta(s)$
 - η need not be increasing in each component of s

- Inequality: aggregate distance from e
 - don’t need an explicit distance function
 - implicitly define through inequality ordering \succeq
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary
Basic Axioms

- **[Continuity]** \succeq is continuous on S^{n+1}
Basic Axioms

- **[Continuity]** \succeq is continuous on S^{n+1}

- **[Monotonicity]** If $s, s' \in S^n$ differ only in their ith component then (a) if $s'_i \geq e : s_i > s'_i \iff (s, e) \succ (s', e)$; (b) if $s'_i \leq e$: $\iff (s, e) \succ (s', e)$
Basic Axioms

- **[Continuity]** \(\succeq \) is continuous on \(S^{n+1} \)

- **[Monotonicity]** If \(s, s' \in S^n \) differ only in their \(i \)th component then (a) if \(s'_i \geq e : s_i > s'_i \iff (s, e) > (s', e) \); (b) if \(s'_i \leq e : \iff (s, e) > (s', e) \)

- **[Independence]** If \(s(\zeta, i), s'(\zeta, i) \in S^n \) satisfy \(s(\zeta, i), e) \sim (s'(\zeta, i), e) \) for some \(\zeta \) then \(s(\zeta, i), e) \sim (s'(\zeta, i), e) \) for all \(\zeta \)
Basic Axioms

- **[Continuity]** \(\succeq \) is continuous on \(S^{n+1} \)

- **[Monotonicity]** If \(s, s' \in S^n \) differ only in their \(i \)th component then (a) if \(s'_i \geq e : s_i > s'_i \iff (s, e) \succ (s', e) \); (b) if \(s'_i \leq e \):
 \(\iff (s, e) \succ (s', e) \)

- **[Independence]** If \(s(\varsigma, i), s'(\varsigma, i) \in S^n \)
 satisfy \((s(\varsigma, i), e) \sim (s'(\varsigma, i), e) \) for some \(\varsigma \) then
 \((s(\varsigma, i), e) \sim (s'(\varsigma, i), e) \) for all \(\varsigma \)

- **[Anonymity]** For all \(s \in S^n \) and permutation matrix \(\Pi \):
 \((\Pi s, e) \sim (s, e) \)
Standard result

Theorem

Continuity, Monotonicity, Independence, Anonymity jointly imply \succeq is representable by the continuous function $I : S^n_e \to \mathbb{R}$ where $I(s; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e)$, where $d : S \to \mathbb{R}$ is a continuous function that is strictly increasing (decreasing) in its first argument if $s_i > e$ ($s_i < e$).
Standard result

Theorem

Continuity, Monotonicity, Independence, Anonymity jointly imply \(\succeq \) is representable by the continuous function \(I : S^n_e \rightarrow \mathbb{R} \) where

\[
I(s; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e),
\]

where \(d : S \rightarrow \mathbb{R} \) is a continuous function that is strictly increasing (decreasing) in its first argument if \(s_i > e \) \((s_i < e) \).

Corollary

Inequality is total “distance” from equality. Distance \(d \) is continuous. \(d(s, e) \) is increasing in status if you move away from the reference point.
Structure Theorem

- We need more structure on the problem
We need more structure on the problem

[Scale invariance 1] For all $\lambda \in \mathbb{R}_+$: if $s, s', \lambda s, \lambda s' \in S^n$ and $e, e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, e) \sim (\lambda s', e')$.

[Scale invariance 2] For all $\lambda \in \mathbb{R}_+$: if $s, s', \lambda s, \lambda s' \in S^n$ and $e, e', \lambda e, \lambda e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, \lambda e) \sim (\lambda s', \lambda e')$.
Structure Theorem

- We need more structure on the problem

- **[Scale invariance 1]** For all \(\lambda \in \mathbb{R}^+ \): if \(s, s', \lambda s, \lambda s' \in S^n \) and \(e, e' \in S \) then \((s, e) \sim (s', e') \Rightarrow (\lambda s, e) \sim (\lambda s', e') \).

- **[Scale invariance 2]** For all \(\lambda \in \mathbb{R}^+ \): if \(s, s', \lambda s, \lambda s' \in S^n \) and \(e, e', \lambda e, \lambda e' \in S \) then \((s, e) \sim (s', e') \Rightarrow (\lambda s, \lambda e) \sim (\lambda s', \lambda e') \).

Theorem

Impose also Scale irrelevance 1. Then \(d(s, e) = A(e)s^{\alpha(e)} \)
Structure Theorem

- We need more structure on the problem

- **[Scale invariance 1]** For all $\lambda \in \mathbb{R}^+: s, s', \lambda s, \lambda s' \in S^n$ and $e, e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, e) \sim (\lambda s', e')$.

- **[Scale invariance 2]** For all $\lambda \in \mathbb{R}^+: s, s', \lambda s, \lambda s' \in S^n$ and $e, e', \lambda e, \lambda e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, \lambda e) \sim (\lambda s', \lambda e')$

Theorem

Impose also Scale irrelevance 1. Then $d(s, e) = A(e)s^{\alpha(e)}$.

Theorem

Impose instead Scale Invariance 2. Then $d(s, e) = e^\beta \phi \left(\frac{s}{e} \right)$ *where* β *is a constant and* ϕ *is arbitrary*
Structure Theorem

- We need more structure on the problem

- **[Scale invariance 1]** For all $\lambda \in \mathbb{R}^+$: if $s, s', \lambda s, \lambda s' \in S^n$ and $e, e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, e) \sim (\lambda s', e')$.

- **[Scale invariance 2]** For all $\lambda \in \mathbb{R}^+$: if $s, s', \lambda s, \lambda s' \in S^n$ and $e, e', \lambda e, \lambda e' \in S$ then $(s, e) \sim (s', e') \Rightarrow (\lambda s, \lambda e) \sim (\lambda s', \lambda e')$

Theorem

Impose also Scale irrelevance 1. Then $d(s, e) = A(e)s^{\alpha(e)}$

Theorem

Impose instead Scale Invariance 2. Then $d(s, e) = e^\beta \phi\left(\frac{s}{e}\right)$ *where* β *is a constant and* ϕ *is arbitrary*

Corollary

Inequality represented as $I^\alpha(s; e) := \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^\alpha - e^\alpha \right]$
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary
A usable inequality index?

- A class of functions available as inequality measures:
 - $\Phi(I_\alpha(s; e), e)$
 - $e = \eta(s)$, the reference point
 - $I_\alpha(s; e) := \frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^\alpha - e^\alpha \right]$
A usable inequality index?

- A *class* of functions available as inequality measures:
 - \(\Phi(I_\alpha(s; e), e) \)
 - \(e = \eta(s) \), the reference point
 - \(I_\alpha(s; e) := \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^\alpha - e^\alpha \right] \)

- Do functions \(\Phi(I_\alpha(s; e), e) \) “look like” inequality measures?
 - transfer principle?
 - reference point?
 - sensitivity to parameters

- What is the appropriate form for \(\Phi \)?
 - may depend on the reference status \(e \)
 - may depend on interpretation
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary
Four distributional scenarios (1)

<table>
<thead>
<tr>
<th>Case</th>
<th>n_k</th>
<th>s_i</th>
<th>n_k</th>
<th>s_i</th>
<th>n_k</th>
<th>s_i</th>
<th>n_k</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td></td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td></td>
<td>25</td>
<td>3/4</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
<td>50</td>
<td>1/2</td>
<td>50</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

| $\mu(s)$ | 11/16 | 5/8 | 3/4 | 11/16 |

- n_k is the number of persons in category k.
- s_i is the i-th downward-looking status.

$\mu(s)$ represents the average downward-looking status.
Four distributional scenarios (1)

<table>
<thead>
<tr>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>1/4</td>
</tr>
</tbody>
</table>

$\mu(s) = \frac{11}{16}$ \quad $= \frac{5}{8}$ \quad $= \frac{3}{4}$ \quad $= \frac{11}{16}$

- n_k is # persons in category $k \in \{B, E, G, N\}$
Four distributional scenarios (1)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
</tbody>
</table>

\[\mu(s) = \frac{11}{16} \quad \frac{5}{8} \quad \frac{3}{4} \quad \frac{11}{16} \]

- n_k is # persons in category $k \in \{B, E, G, N\}$
- $s_i = \frac{1}{n} \sum_{\ell=1}^{k(i)} n_\ell$ – *downward*-looking status
Four distributional scenarios (1')

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th></th>
<th>Case 1</th>
<th></th>
<th>Case 2</th>
<th></th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s'_i</td>
<td>n_k</td>
<td>s'_i</td>
<td>n_k</td>
<td>s'_i</td>
<td>n_k</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25 1/4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>25 1/4</td>
</tr>
<tr>
<td>E</td>
<td>50 1/2</td>
<td>25 1/2</td>
<td>50 1/2</td>
<td></td>
<td>25 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>25 3/4</td>
<td>25 3/4</td>
<td>50 1</td>
<td></td>
<td>50 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>25 1</td>
<td>25 1</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu(s)$</td>
<td>11/16</td>
<td>5/8</td>
<td>3/4</td>
<td></td>
<td>11/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n_k is the number of persons in category k, s'_i is the upward-looking status.
Four distributional scenarios (1')

<table>
<thead>
<tr>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_k</td>
<td>s_i'</td>
<td>n_k</td>
<td>s_i'</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>1/4</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1/2</td>
<td>25</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>3/4</td>
<td>25</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

\[
\mu(s) = \begin{cases}
11/16 & \text{Case 0} \\
5/8 & \text{Case 1} \\
3/4 & \text{Case 2} \\
11/16 & \text{Case 3}
\end{cases}
\]

- n_k is # persons in category $k \in \{B, E, G, N\}$
Four distributional scenarios (1')

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th></th>
<th>Case 1</th>
<th></th>
<th>Case 2</th>
<th></th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i'</td>
<td>n_k</td>
<td>s_i'</td>
<td>n_k</td>
<td>s_i'</td>
<td>n_k</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>1/4</td>
<td>0</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
<td>50</td>
<td>1/2</td>
<td>25</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>3/4</td>
<td>25</td>
<td>3/4</td>
<td>50</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\mu(s) = \frac{11}{16}$, $5/8$, $3/4$, $\frac{11}{16}$

- n_k is # persons in category $k \in \{B, E, G, N\}$

- $s_i' = \frac{1}{n} \sum_{\ell=k(i)}^{K} n_\ell$ – upward-looking status
Four distributional scenarios (2)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
<tr>
<td>$\mu(s)$</td>
<td>11/16</td>
<td>5/8</td>
<td>3/4</td>
<td>11/16</td>
</tr>
</tbody>
</table>

- Case 0 to Case 1:

 • 25 people promoted from E to B

 • if e equals to any of values taken by $\mu(s)$

 then inequality increases
Four distributional scenarios (2)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_k</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>3/4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\mu(s)$ 11/16 5/8 3/4 11/16

- Case 0 to Case 1:
 - 25 people promoted from E to B
 - if e equals to any of values taken by $\mu(s)$
 - then inequality increases
Four distributional scenarios (3)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th></th>
<th>Case 1</th>
<th></th>
<th>Case 2</th>
<th></th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
<td>50</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
<td>50</td>
<td>1/2</td>
<td>50</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\mu(s) = \frac{11}{16}, \frac{5}{8}, \frac{3}{4}, \frac{11}{16} \]

- Case 0 to Case 2:
Four distributional scenarios (3)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_k</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>3/4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>50</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| $\mu(s)$ | 11/16 | 5/8 | 3/4 | 11/16 |

- Case 0 to Case 2:
 - 25 people promoted from N to G
 - if e equals to any of values taken by $\mu(s)$
 - then inequality decreases
“Transfer Principle”?
“Transfer Principle”?

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
<tr>
<td>$\mu(s)$</td>
<td></td>
<td>11/16</td>
<td></td>
<td>5/8</td>
</tr>
</tbody>
</table>

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases
- Case 0 to Case 3: combination results in ambiguous change
“Transfer Principle”?

<table>
<thead>
<tr>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>G</td>
<td>25 1/2</td>
<td>25 1/2</td>
<td>50 1/2</td>
</tr>
<tr>
<td>N</td>
<td>25 1/4</td>
<td>25 1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\mu(s) = \frac{11}{16}, \quad \frac{5}{8}, \quad \frac{3}{4}, \quad \frac{11}{16} \]

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases
- Case 0 to Case 3: combination results in ambiguous change
“Transfer Principle”?

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
</tbody>
</table>

\[
\mu(s) = \begin{cases}
11/16 & \text{Case 0 to Case 1: inequality increases} \\
5/8 & \text{Case 0 to Case 2: inequality decreases} \\
3/4 \\
11/16
\end{cases}
\]
“Transfer Principle”?

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_k</td>
<td>s_i</td>
<td>n_k</td>
<td>s_i</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
</tbody>
</table>

$\mu(s)$

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases
- Case 0 to Case 3: combination results in ambiguous change
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary

References
Reference point
Reference point

- **Mean status:** $e = \eta(s) = \mu(s)$
 - for continuous distributions will equal 0.5
 - for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis
Reference point

- **Mean status:** \(e = \eta (s) = \mu (s) \)
 - for continuous distributions will equal 0.5
 - for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

- **Median status:** \(e = \eta (s) = \text{med}(s) \)
 - not well-defined: any value in interval \(M(s) \)
 - \(M(s) = [\frac{1}{2}, 1) \) in cases 0 and 2
 - \(M(s) = [\frac{1}{2}, \frac{3}{4}) \) in cases 1 and 3
Reference point

- **Mean status:** $e = \eta(s) = \mu(s)$
 - for continuous distributions will equal 0.5
 - for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

- **Median status:** $e = \eta(s) = \text{med}(s)$
 - not well-defined: any value in interval $M(s)$
 - $M(s) = [\frac{1}{2}, 1)$ in cases 0 and 2
 - $M(s) = [\frac{1}{2}, \frac{3}{4})$ in cases 1 and 3

- **Max status:** $e = 1$
 - for constant e this is only value that makes sense
Reference point

- **Mean status:** \(e = \eta(s) = \mu(s) \)
 - for continuous distributions will equal 0.5
 - for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

- **Median status:** \(e = \eta(s) = \text{med}(s) \)
 - not well-defined: any value in interval \(M(s) \)
 - \(M(s) = [1/2, 1) \) in cases 0 and 2
 - \(M(s) = [1/2, 3/4) \) in cases 1 and 3

- **Max status:** \(e = 1 \)
 - for constant \(e \) this is only value that makes sense

- **Min status:** \(e = 0 \)
 - counterpart for peer-exclusive case
Sensitivity

- α captures the sensitivity of measured inequality
• α captures the sensitivity of measured inequality

• If α is high $I_\alpha (s; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^{\alpha} - e^{\alpha} \right]$, sensitive to high status-inequality
Sensitivity

- α captures the sensitivity of measured inequality.

- If α is high, $I_\alpha(s; e) = \frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^{\alpha} - e^{\alpha} \right]$, sensitive to high status-inequality.

- If $\alpha = 0$, then $I_0(s; e) = -\frac{1}{n} \sum_{i=1}^{n} \log s_i + \log e$.
Motivation

Approach

Inequality Measures

Empirical aspects

Summary

References

Sensitivity

- α captures the sensitivity of measured inequality

- If α is high $I_\alpha(s; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^\alpha - e^\alpha \right]$, sensitive to high status-inequality

- If $\alpha = 0$ then $I_0(s; e) = -\frac{1}{n} \sum_{i=1}^{n} \log s_i + \log e$,

- If $e = \mu(s)$ and $\alpha = 1$ then $\frac{1}{n} \sum_{i=1}^{n} s_i \log s_i - e \log e$
Behaviour of $I_0(s; e)$

<table>
<thead>
<tr>
<th>Case</th>
<th>$\mu(s)$</th>
<th>$\text{med}_1(s)$</th>
<th>$\text{med}_2(s)$</th>
<th>$I_0(s; \mu(s))$</th>
<th>$I_0(s; \text{med}_1(s))$</th>
<th>$I_0(s; \text{med}_2(s))$</th>
<th>$I_0(s; 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 0</td>
<td>$11/16$</td>
<td>$3/4$</td>
<td>$1/2$</td>
<td>0.1451</td>
<td>0.2321</td>
<td>-0.1732</td>
<td>0.5198</td>
</tr>
<tr>
<td>Case 1</td>
<td>$5/8$</td>
<td>$5/8$</td>
<td>$1/2$</td>
<td>0.1217</td>
<td>0.1217</td>
<td>-0.1013</td>
<td>0.5917</td>
</tr>
<tr>
<td>Case 2</td>
<td>$3/4$</td>
<td>$5/8$</td>
<td>$1/2$</td>
<td>0.0588</td>
<td>0.0588</td>
<td>-0.3465</td>
<td>0.3465</td>
</tr>
<tr>
<td>Case 3</td>
<td>$11/16$</td>
<td>$5/8$</td>
<td>$1/2$</td>
<td>0.1217</td>
<td>0.0438</td>
<td>-0.2746</td>
<td>0.4184</td>
</tr>
</tbody>
</table>

- $I_0(s; \mu(s))$, $I_0(s; \text{med}_1(s))$: inequality decreases for Case 0 to 1, or Case 2 to 3.
- Movement changes both the $\mu(s)$ and med$_1(s)$ ref points.
- $I_0(s; \text{med}_2(s)) < 0$ for all cases in example!
- But $I_0(s; 1)$ seems sensible.
Behaviour of $I_0(s; e)$

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s)$</td>
<td>$11/16$</td>
<td>$5/8$</td>
<td>$3/4$</td>
<td>$11/16$</td>
</tr>
<tr>
<td>$med_1(s)$</td>
<td>$3/4$</td>
<td>$5/8$</td>
<td>$3/4$</td>
<td>$5/8$</td>
</tr>
<tr>
<td>$med_2(s)$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>$I_0(s; \mu(s))$</td>
<td>0.1451</td>
<td>0.1217</td>
<td>0.0588</td>
<td>0.0438</td>
</tr>
<tr>
<td>$I_0(s; med_1(s))$</td>
<td>0.2321</td>
<td>0.1217</td>
<td>0.0588</td>
<td>-0.0515</td>
</tr>
<tr>
<td>$I_0(s; med_2(s))$</td>
<td>-0.1732</td>
<td>-0.1013</td>
<td>-0.3465</td>
<td>-0.2746</td>
</tr>
<tr>
<td>$I_0(s; 1)$</td>
<td>0.5198</td>
<td>0.5917</td>
<td>0.3465</td>
<td>0.4184</td>
</tr>
</tbody>
</table>

- $I_0(s; \mu(s)), I_0(s; med_1(s))$: inequality *decreases* for
 - Case 0 to 1, or Case 2 to 3
 - movement changes both the $\mu(s)$ and $med_1(s)$ ref points
Behaviour of $I_0(s; e)$

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s)$</td>
<td>$\frac{11}{16}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{11}{16}$</td>
</tr>
<tr>
<td>$\text{med}_1(s)$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{5}{8}$</td>
</tr>
<tr>
<td>$\text{med}_2(s)$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$I_0(s; \mu(s))$</td>
<td>0.1451</td>
<td>0.1217</td>
<td>0.0588</td>
<td>0.0438</td>
</tr>
<tr>
<td>$I_0(s; \text{med}_1(s))$</td>
<td>0.2321</td>
<td>0.1217</td>
<td>0.0588</td>
<td>-0.0515</td>
</tr>
<tr>
<td>$I_0(s; \text{med}_2(s))$</td>
<td>-0.1732</td>
<td>-0.1013</td>
<td>-0.3465</td>
<td>-0.2746</td>
</tr>
<tr>
<td>$I_0(s; 1)$</td>
<td>0.5198</td>
<td>0.5917</td>
<td>0.3465</td>
<td>0.4184</td>
</tr>
</tbody>
</table>

- $I_0(s; \mu(s)), I_0(s; \text{med}_1(s))$: inequality *decreases* for
 - Case 0 to 1, or Case 2 to 3
 - movement changes both the $\mu(s)$ and $\text{med}_1(s)$ ref points

- $I_0(s; \text{med}_2(s)) < 0$ for *all* cases in example!
Behaviour of $I_0(s; e)$

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s)$</td>
<td>11/16</td>
<td>5/8</td>
<td>3/4</td>
<td>11/16</td>
</tr>
<tr>
<td>$\text{med}_1(s)$</td>
<td>3/4</td>
<td>5/8</td>
<td>3/4</td>
<td>5/8</td>
</tr>
<tr>
<td>$\text{med}_2(s)$</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>$I_0(s; \mu(s))$</td>
<td>0.1451</td>
<td>0.1217</td>
<td>0.0588</td>
<td>0.0438</td>
</tr>
<tr>
<td>$I_0(s; \text{med}_1(s))$</td>
<td>0.2321</td>
<td>0.1217</td>
<td>0.0588</td>
<td>-0.0515</td>
</tr>
<tr>
<td>$I_0(s; \text{med}_2(s))$</td>
<td>-0.1732</td>
<td>-0.1013</td>
<td>-0.3465</td>
<td>-0.2746</td>
</tr>
<tr>
<td>$I_0(s; 1)$</td>
<td>0.5198</td>
<td>0.5917</td>
<td>0.3465</td>
<td>0.4184</td>
</tr>
</tbody>
</table>

- $I_0(s; \mu(s)), I_0(s; \text{med}_1(s))$: inequality *decreases* for
 - Case 0 to 1, or Case 2 to 3
 - movement changes both the $\mu(s)$ and $\text{med}_1(s)$ ref points

- $I_0(s; \text{med}_2(s)) < 0$ for *all* cases in example!

- But $I_0(s; 1)$ seems sensible
Inequality measure

- For ordinal data, peer-inclusive status
Inequality measure

- For ordinal data, peer-inclusive status

\[I_\alpha(s, 1) = \begin{cases}
\frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} s_i^\alpha - 1 \right], & \text{if } \alpha \neq 0, \alpha < 1 \\
- \frac{1}{n} \sum_{i=1}^{n} \log s_i. & \text{if } \alpha = 0
\end{cases} \]
Outline

Motivation
- Introduction and Previous work
- Basics
- Examples

Approach
- Model
- Characterisation

Inequality Measures
- Main properties
- Example
- Reference point and sensitivity

Empirical aspects
- Implementation
- Performance
- Application

Summary
Implementation

- Description of sample

\[
x_i = \begin{cases}
1 & \text{with sample proportion } p_1 \\
2 & \text{with sample proportion } p_2 \\
\vdots \\
K & \text{with sample proportion } p_K
\end{cases}
\]
Implementation

- Description of sample

\[
x_i = \begin{cases}
1 & \text{with sample proportion } p_1 \\
2 & \text{with sample proportion } p_2 \\
\vdots \\
K & \text{with sample proportion } p_K
\end{cases}
\]

- Point estimate of the index:

\[
I_\alpha = \begin{cases}
\frac{1}{\alpha(\alpha-1)} \left[\sum_{i=1}^{K} p_i \left[\sum_{j=1}^{i} p_j \right]^\alpha \right] - 1 & \text{if } \alpha \neq 0,1 \\
- \sum_{i=1}^{K} p_i \log \left[\sum_{j=1}^{i} p_j \right] & \text{if } \alpha = 0
\end{cases}
\]

- function of \(K \) parameter estimates \((p_1, p_2, \ldots, p_K)\) following a multinomial
Asymptotics

• From the CLT I_α is asymptotically Normally distributed

• Estimator of cov matrix of $(p_1, p_2, ..., p_k)$ is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & \dots & -p_1p_k \\ \vdots & \ddots & \vdots \\ -p_1p_k & \dots & \frac{1}{n} \end{bmatrix}$

• $\hat{\text{Var}}(I_\alpha) = D \Sigma D^\top$ with $D = [\frac{\partial I_\alpha}{\partial p_1}; \frac{\partial I_\alpha}{\partial p_2}; \dots; \frac{\partial I_\alpha}{\partial p_k}]$.

• $\frac{\partial I_\alpha}{\partial p_l} = \frac{1}{\alpha} \left(\frac{\alpha-1}{\sum_{i=1}^l p_i} + \alpha \sum_{i=l+1}^K p_i \left(\sum_{j=1}^K p_j \right)^{-1} \right)$, $\alpha \neq 0$

• $\frac{\partial I_0}{\partial p_l} = -\log \left(\sum_{j=1}^n p_j - \sum_{i=l+1}^K p_i \left(\sum_{j=1}^K p_j \right)^{-1} \right)$
Asymptotics

- From the CLT I_α is asymptotically Normally distributed
Asymptotics

- From the CLT I_α is asymptotically Normally distributed

- Estimator of cov matrix of (p_1, p_2, \ldots, p_k) is

$$
\Sigma = \frac{1}{n} \begin{bmatrix}
 p_1(1-p_1) & -p_1p_2 & \cdots & -p_1p_k \\
 -p_2p_1 & p_2(1-p_2) & \cdots & -p_2p_k \\
 \vdots & \vdots & \ddots & \vdots \\
 -p_{Kp} & -p_{Kp_2} & \cdots & p_K(1-p_K)
\end{bmatrix}
$$
Asymptotics

- From the CLT I_α is asymptotically Normally distributed

- Estimator of cov matrix of (p_1, p_2, \ldots, p_k) is

\[
\Sigma = \frac{1}{n} \begin{bmatrix}
p_1(1-p_1) & -p_1p_2 & \cdots & -p_1p_K \\
-p_2p_1 & p_2(1-p_2) & \cdots & -p_2p_K \\
\vdots & \vdots & \ddots & \vdots \\
-p_Kp_1 & -p_Kp_2 & \cdots & p_K(1-p_K)
\end{bmatrix}
\]

- $\hat{\text{Var}}(I_\alpha) = D\Sigma D^\top$ with $D = \left[\frac{\partial I_\alpha}{\partial p_1}; \frac{\partial I_\alpha}{\partial p_2}; \ldots; \frac{\partial I_\alpha}{\partial p_K} \right]

- $\frac{\partial I_\alpha}{\partial p_l} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^l p_i \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_i \left[\sum_{j=1}^i p_j \right]^{\alpha-1} \right), \alpha \neq 0

- $\frac{\partial I_0}{\partial p_l} = -\log \left[\sum_{j=1}^l p_j \right] - \sum_{i=l}^{K-1} p_i \left[\sum_{j=1}^i p_j \right]^{-1}$
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>Introduction and Previous work</td>
</tr>
<tr>
<td>Basics</td>
</tr>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>Approach</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Characterisation</td>
</tr>
<tr>
<td>Inequality Measures</td>
</tr>
<tr>
<td>Main properties</td>
</tr>
<tr>
<td>Example</td>
</tr>
<tr>
<td>Reference point and sensitivity</td>
</tr>
<tr>
<td>Empirical aspects</td>
</tr>
<tr>
<td>Implementation</td>
</tr>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>
Confidence Intervals

- **Asymptotic CI**

 \[I_{\alpha} - c_{0.975} \hat{\text{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \hat{\text{Var}}(I_{\alpha})^{1/2} \]

 - \(c_{0.975} \) from the Student distribution \(T(n-1) \)

- **Bootstrap CIs**

 - Generate resamples, \(b = 1, \ldots, B \)

 - For each resample, compute the inequality index

 - Obtain \(B \) bootstrap statistics, \(I_b \alpha \)

 - Also \(B \) bootstrap \(t \)-statistics

\[t_b \alpha = \frac{I_b \alpha - I_{\alpha}}{\hat{\text{Var}}(I_b \alpha)^{1/2}} \]

- **Percentile Bootstrap CI**

 \[I_{\alpha} - c_{b_{0.025}} \hat{\text{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{b_{0.975}} \hat{\text{Var}}(I_{\alpha})^{1/2} \]

 - \(c_{b_{0.025}} \) and \(c_{b_{0.975}} \) are from EDF of bootstrap statistics

- **Studentized Bootstrap CI**

 \[I_{\alpha} - c_{\star_{0.025}} \hat{\text{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c_{\star_{0.975}} \hat{\text{Var}}(I_{\alpha})^{1/2} \]

 - \(c_{\star_{0.025}} \) and \(c_{\star_{0.975}} \) are from EDF of the bootstrap \(t \)-statistics
Confidence Intervals

- 3 variants of CIs: Asymptotic, Percentile Bootstrap, Studentized Bootstrap
- \(CI_{asym} = [I_\alpha - c_{0.975} \hat{\text{Var}}(I_\alpha)^{1/2} ; I_\alpha + c_{0.975} \hat{\text{Var}}(I_\alpha)^{1/2}] \)
 - \(c_{0.975} \) from the Student distribution \(T(n-1) \)
 - do not always perform well in finite samples
Confidence Intervals

- 3 variants of CIs: **Asymptotic**, **Percentile Bootstrap**, **Studentized Bootstrap**

- \(CI_{\text{asym}} = [I_\alpha - c_{0.975} \hat{\text{Var}}(I_\alpha)^{1/2} ; I_\alpha + c_{0.975} \hat{\text{Var}}(I_\alpha)^{1/2}] \)
 - \(c_{0.975} \) from the Student distribution \(T(n - 1) \)
 - do not always perform well in finite samples

- Bootstraps: generate resamples, \(b = 1, \ldots, B \)
 - for each resample \(b \) compute the inequality index
 - obtain \(B \) bootstrap statistics, \(I^b_\alpha \)
 - also \(B \) bootstrap \(t \)-statistics \(t^b_\alpha = (I^b_\alpha - I_\alpha) / \hat{\text{Var}}(I^b_\alpha)^{1/2} \)
Confidence Intervals

- 3 variants of CIs: Asymptotic, Percentile Bootstrap, Studentized Bootstrap
- \(CI_{asy} = [I_\alpha - c_{0.975} \sqrt{\text{Var}(I_\alpha)}^{1/2} ; I_\alpha + c_{0.975} \sqrt{\text{Var}(I_\alpha)}^{1/2}] \)
 - \(c_{0.975} \) from the Student distribution \(T(n-1) \)
 - do not always perform well in finite samples

- Bootstraps: generate resamples, \(b = 1, \ldots, B \)
 - for each resample \(b \) compute the inequality index
 - obtain \(B \) bootstrap statistics, \(I_\alpha^b \)
 - also \(B \) bootstrap \(t \)-statistics \(t_\alpha^b = (I_\alpha^b - I_\alpha) / \sqrt{\text{Var}(I_\alpha^b)}^{1/2} \)

- \(CI_{perc} = [c_{0.025}^b ; c_{0.975}^b] \)
 - \(c_{0.025}^b \) and \(c_{0.975}^b \) are from EDF of bootstrap statistics
Confidence Intervals

3 variants of CIs: Asymptotic, Percentile Bootstrap, Studentized

• \(C_{\text{asym}} = [I_{\alpha - 0.975 \hat{\text{Var}}(I_{\alpha})^{1/2}}; I_{\alpha + 0.975 \hat{\text{Var}}(I_{\alpha})^{1/2}}] \)

• \(C_{\text{perc}} = [c_{b, 0.025}^b; c_{b, 0.975}^b] \)

• \(C_{\text{stud}} = [I_{\alpha - c_b^* 0.975 \hat{\text{Var}}(I_{\alpha})^{1/2}}; I_{\alpha + c_b^* 0.975 \hat{\text{Var}}(I_{\alpha})^{1/2}}] \)

Confidence Intervals

- Asymptotic
- Percentile Bootstrap
- Studentized

3 variants of CIs: Asymptotic, Percentile Bootstrap, Studentized

• Bootstraps: generate resamples, \(b = 1, \ldots, B \), for each resample compute the inequality index

• for each resample \(b \) compute the inequality index

• also B bootstrap t-statistics, \(t_b^b = (I_b^b - I_{\alpha}) / \hat{\text{Var}}(I_{\alpha})^{1/2} \)

• do not always perform well in finite samples

• \(c_{0.025}^* \) and \(c_{0.975}^* \) are from EDF of bootstrap t-statistics

• \(c_{b, 0.025}^b \) and \(c_{b, 0.975}^b \) are from EDF of bootstrap statistics

• \(c_{b, 0.025}^b \) and \(c_{b, 0.975}^b \) are from EDF of bootstrap statistics

• \(c_{0.025}^* \) and \(c_{0.975}^* \) are from EDF of bootstrap t-statistics
Performance Test
Performance Test

• Take an example with 3 ordered categories \((K = 3)\)
Performance Test

- Take an example with 3 ordered categories ($K = 3$)

- Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$
Performance Test

- Take an example with 3 ordered categories ($K = 3$)

- Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$

- Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?
 - if we are using 95% CIs of I_α
 - coverage error rate should be close to nominal rate, 0.05
Performance Test

• Take an example with 3 ordered categories \((K = 3)\)

• Samples are drawn from a multinomial distribution with probabilities \(\pi = (0.3, 0.5, 0.2)\)

• Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?
 • if we are using 95% CIs of \(I_\alpha\)
 • coverage error rate should be close to nominal rate, 0.05

• Check coverage error rate of CIs as sample size increases
 • \(\alpha = -1, 0, 0.5, 0.99\)
 • 199 bootstraps
 • 10 000 replications to compute error rates
 • \(n = 20, 50, 100, 200, 500, 1000\)
Estimation Methods Compared

<table>
<thead>
<tr>
<th>Method</th>
<th>α</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic B</td>
<td>n = 20</td>
<td>0.0606</td>
<td>0.0417</td>
<td>0.0598</td>
<td>0.0491</td>
</tr>
<tr>
<td></td>
<td>n = 500</td>
<td>0.0523</td>
<td>0.0492</td>
<td>0.0521</td>
<td>0.0523</td>
</tr>
<tr>
<td></td>
<td>n = 1000</td>
<td>0.0485</td>
<td>0.0540</td>
<td>0.0552</td>
<td>0.0549</td>
</tr>
<tr>
<td>Percentile B</td>
<td>n = 20</td>
<td>0.0384</td>
<td>0.0981</td>
<td>0.0912</td>
<td>0.1023</td>
</tr>
<tr>
<td></td>
<td>n = 500</td>
<td>0.0509</td>
<td>0.0513</td>
<td>0.0552</td>
<td>0.0554</td>
</tr>
<tr>
<td></td>
<td>n = 1000</td>
<td>0.0482</td>
<td>0.0556</td>
<td>0.0547</td>
<td>0.0551</td>
</tr>
<tr>
<td>Studentized B</td>
<td>n = 20</td>
<td>0.1275</td>
<td>0.0843</td>
<td>0.1041</td>
<td>0.1377</td>
</tr>
<tr>
<td></td>
<td>n = 500</td>
<td>0.0518</td>
<td>0.0478</td>
<td>0.0429</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td>n = 1000</td>
<td>0.0473</td>
<td>0.0522</td>
<td>0.0493</td>
<td>0.0503</td>
</tr>
</tbody>
</table>

- Asymptotic CIs perform OK in finite sample
- Percentile bootstrap performs well for $n > 50$
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index is undefined for $\alpha = 1$)
Estimation Methods Compared

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic B</td>
<td>$n = 20$</td>
<td>0.0606</td>
<td>0.0417</td>
<td>0.0598</td>
<td>0.0491</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0523</td>
<td>0.0492</td>
<td>0.0521</td>
<td>0.0523</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0485</td>
<td>0.0540</td>
<td>0.0552</td>
<td>0.0549</td>
</tr>
<tr>
<td>Percentile B</td>
<td>$n = 20$</td>
<td>0.0384</td>
<td>0.0981</td>
<td>0.0912</td>
<td>0.1023</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0509</td>
<td>0.0513</td>
<td>0.0552</td>
<td>0.0554</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0482</td>
<td>0.0556</td>
<td>0.0547</td>
<td>0.0551</td>
</tr>
<tr>
<td>Studentized B</td>
<td>$n = 20$</td>
<td>0.1275</td>
<td>0.0843</td>
<td>0.1041</td>
<td>0.1377</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0518</td>
<td>0.0478</td>
<td>0.0429</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0473</td>
<td>0.0522</td>
<td>0.0493</td>
<td>0.0503</td>
</tr>
</tbody>
</table>

- Asymptotic CIs perform OK in finite sample
Estimation Methods Compared

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic B</td>
<td>$n = 20$</td>
<td>0.0606</td>
<td>0.0417</td>
<td>0.0598</td>
<td>0.0491</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0523</td>
<td>0.0492</td>
<td>0.0521</td>
<td>0.0523</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0485</td>
<td>0.0540</td>
<td>0.0552</td>
<td>0.0549</td>
</tr>
<tr>
<td>Percentile B</td>
<td>$n = 20$</td>
<td>0.0384</td>
<td>0.0981</td>
<td>0.0912</td>
<td>0.1023</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0509</td>
<td>0.0513</td>
<td>0.0552</td>
<td>0.0554</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0482</td>
<td>0.0556</td>
<td>0.0547</td>
<td>0.0551</td>
</tr>
<tr>
<td>Studentized B</td>
<td>$n = 20$</td>
<td>0.1275</td>
<td>0.0843</td>
<td>0.1041</td>
<td>0.1377</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0518</td>
<td>0.0478</td>
<td>0.0429</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0473</td>
<td>0.0522</td>
<td>0.0493</td>
<td>0.0503</td>
</tr>
</tbody>
</table>

- Asymptotic CIs perform OK in finite sample
- Percentile bootstrap performs well for $n > 50$
Estimation Methods Compared

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic B</td>
<td>$n = 20$</td>
<td>0.0606</td>
<td>0.0417</td>
<td>0.0598</td>
<td>0.0491</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0523</td>
<td>0.0492</td>
<td>0.0521</td>
<td>0.0523</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0485</td>
<td>0.0540</td>
<td>0.0552</td>
<td>0.0549</td>
</tr>
<tr>
<td>Percentile B</td>
<td>$n = 20$</td>
<td>0.0384</td>
<td>0.0981</td>
<td>0.0912</td>
<td>0.1023</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0509</td>
<td>0.0513</td>
<td>0.0552</td>
<td>0.0554</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0482</td>
<td>0.0556</td>
<td>0.0547</td>
<td>0.0551</td>
</tr>
<tr>
<td>Studentized B</td>
<td>$n = 20$</td>
<td>0.1275</td>
<td>0.0843</td>
<td>0.1041</td>
<td>0.1377</td>
</tr>
<tr>
<td></td>
<td>$n = 500$</td>
<td>0.0518</td>
<td>0.0478</td>
<td>0.0429</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td>$n = 1000$</td>
<td>0.0473</td>
<td>0.0522</td>
<td>0.0493</td>
<td>0.0503</td>
</tr>
</tbody>
</table>

- Asymptotic CIs perform OK in finite sample
- Percentile bootstrap performs well for $n > 50$
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index is undefined for $\alpha = 1$)
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples
Approach
 Model
 Characterisation
Inequality Measures
 Main properties
 Example
 Reference point and sensitivity
Empirical aspects
 Implementation
 Performance
 Application
Summary
World Values Survey

Life satisfaction question:
All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are "completely dissatisfied" and 10 means you are "completely satisfied" where would you put your satisfaction with your life as a whole? (code one number):
Completely dissatisfied – 1 2 3 4 5 6 7 8 9 10 – Completely satisfied

Health question:
All in all, how would you describe your state of health these days? Would you say it is (read out):
1 Very good, 2 Good, 3 Fair, 4 Poor.
World Values Survey

- Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are “completely dissatisfied” and 10 means you are “completely satisfied” where would you put your satisfaction with your life as a whole? (code one number):

Completely dissatisfied – 1 2 3 4 5 6 7 8 9 10 – Completely satisfied
World Values Survey

- Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are “completely dissatisfied” and 10 means you are “completely satisfied” where would you put your satisfaction with your life as a whole? (code one number):

Completely dissatisfied – 1 2 3 4 5 6 7 8 9 10 – Completely satisfied

- Health question:

All in all, how would you describe your state of health these days? Would you say it is (read out):

1 Very good, 2 Good, 3 Fair, 4 Poor.
GDP and Life satisfaction

- Cross-country comparison of life satisfaction and GDP/head
 - happiness-income paradox (Easterlin 1974, Clark and Senik 2011)
 - weak relation happiness-income internationally? (Easterlin 1995, Easterlin et al. 2010)
 - or a strong relationship? (Hagerty and Veenhoven 2003, Deaton 2008, Stevenson and Wolfers 2008a, Inglehart et al. 2008)
GDP and Life satisfaction

- Cross-country comparison of life satisfaction and GDP/head
 - happiness-income paradox (Easterlin 1974, Clark and Senik 2011)
 - weak relation happiness-income internationally? (Easterlin 1995, Easterlin et al. 2010)
 - or a strong relationship? (Hagerty and Veenhoven 2003, Deaton 2008, Stevenson and Wolfers 2008a, Inglehart et al. 2008)

- How should we quantify life satisfaction?
 - simple linearity of Likert scale? or exponential scale?
 - Ng (1997), Ferrer-i-Carbonell and Frijters (2004), Kristofferson (2011)
GDP and Life satisfaction

- Cross-country comparison of life satisfaction and GDP/head
 - happiness-income paradox (Easterlin 1974, Clark and Senik 2011)
 - weak relation happiness-income internationally? (Easterlin 1995, Easterlin et al. 2010)
 - or a strong relationship? (Hagerty and Veenhoven 2003, Deaton 2008, Stevenson and Wolfers 2008a, Inglehart et al. 2008)

- How should we quantify life satisfaction?
 - simple linearity of Likert scale? or exponential scale?
 - Ng (1997), Ferrer-i-Carbonell and Frijters (2004), Kristoffersen (2011)

- Is inequality of life satisfaction related to GDP/head?
 - Use I_0 and other members of the same family
GDP and Life satisfaction (Linear)
GDP and Life satisfaction (Exponential)
GDP and Inequality of Life satisfaction
Income inequality and Inequality of Life satisfaction

Inequality of income (Gini) vs. Inequality of life satisfaction for various countries.

Countries included:
- Argentina
- Australia
- Burkina Faso
- Bulgaria
- Brazil
- Canada
- Switzerland
- Chile
- China
- Colombia
- Cyprus
- Egypt
- Spain
- Ethiopia
- Ethiopia
- Georgia
- Germany
- Ghana
- Greece
- Guatemala
- Hong Kong
- Indonesia
- Iran
- Iraq
- Italy
- Jordan
- Japan
- Korea, Republic of
- Kuwait
- Latvia
- Lebanon
- Lithuania
- Luxembourg
- Malaysia
- Malta
- Mauritius
- Mexico
- Moldova
- Morocco
- Netherland
- Norway
- New Zealand
- Nigeria
- Pakistan
- Poland
- Romania
- Russia
- Rwanda
- Serbia
- Slovenia
- Slovakia
- South Africa
- Spain
- Sri Lanka
- Sweden
- Switzerland
- Trinidad & Tobago
- Tunisia
- Turkey
- Ukraine
- Uruguay
- United States
- United Kingdom
- Vietnam
- Yemen
- Zambia
- Zimbabwe
Health status

- Health is HRS
Health status

- Health is HRS

- Cross-country comparison of health and GDP
 - a significant positive relationship? (Deaton 2008)
Health status

- Health is HRS

- Cross-country comparison of health and GDP
 - a significant positive relationship? (Deaton 2008)

- Cross-country comparison of inequality of health and Inequality of life satisfaction
 - use same inequality index as for life satisfaction
GDP and Inequality of health

![Graph showing the relationship between per capita GDP in 2005 and inequality of health across various countries.](image-url)
Income inequality and health inequality

Inequality of income (Gini)

Inequality of health
Inequality of life satisfaction and health inequality
Application: overview

• Satisfaction / GDP results sensitive to the cardinal interpretation
 - linear: positive relation below $15,000, flat after that (Layard 2003)
 - exponential: no relation
• OLS estimate of I_0 (life satisfaction) on the GDP per capita: small and negative
• Happiness-income relationship is weak in cross-country comparisons
• No clear relationship between I_0 (health) on GDP per capita
• OLS estimate of I_0 (health) on I_0 (life satisfaction): produces a slope coefficient not significantly different from zero
• Health-life satisfaction relationship is not significant
Application: overview

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: positive relation below $15,000, flat after that (Layard 2003)
 - exponential: no relation
Application: overview

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: positive relation below $15,000, flat after that (Layard 2003)
 - exponential: no relation

- OLS estimate of I_0(life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
Application: overview

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: positive relation below $15,000, flat after that (Layard 2003)
 - exponential: no relation
- OLS estimate of $I_0(\text{life satisfaction})$ on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
- No clear relationship between $I_0(\text{health})$ on GDP per capita
Application: overview

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: positive relation below $15,000, flat after that (Layard 2003)
 - exponential: no relation

- OLS estimate of I_0(life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons

- No clear relationship between I_0(health) on GDP per capita

- OLS estimate of I_0(health) on I_0(life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant
Summary

- Inequality with ordinal data is a widespread phenomenon
Summary

- Inequality with ordinal data is a widespread phenomenon
- Conventional I-measures may make no sense
Summary

• Inequality with ordinal data is a widespread phenomenon

• Conventional I-measures may make no sense

• Cowell and Flachaire (2014) approach:
 • separates out the issue of status from that of inequality-aggregation
 • allows you to choose “reference status”
 • gives a family of measures
Summary

- Inequality with ordinal data is a widespread phenomenon
- Conventional I-measures may make no sense
- Cowell and Flachaire (2014) approach:
 - separates out the issue of status from that of inequality-aggregation
 - allows you to choose “reference status”
 - gives a family of measures
- Nice properties empirically
Summary_
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples
Approach
 Model
 Characterisation
Inequality Measures
 Main properties
 Example
 Reference point and sensitivity
Empirical aspects
 Implementation
 Performance
 Application
Summary

Proofs

Empirical argument
Median: definition and in our cases

- \(\text{med}(s) \) defined as \(e \in S \) such that \(\#(s_i \leq e) \geq \frac{n}{2}, \#(s_i \geq e) \geq \frac{n}{2} \)
Median: definition and in our cases

- \(\text{med}(s) \) defined as \(e \in S \) such that \(\#(s_i \leq e) \geq \frac{n}{2}, \#(s_i \geq e) \geq \frac{n}{2} \)

<table>
<thead>
<tr>
<th></th>
<th>Case 0</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n_k)</td>
<td>(s_i)</td>
<td>(n_k)</td>
<td>(s_i)</td>
</tr>
<tr>
<td>(B)</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>(E)</td>
<td>50</td>
<td>1</td>
<td>25</td>
<td>3/4</td>
</tr>
<tr>
<td>(G)</td>
<td>25</td>
<td>1/2</td>
<td>25</td>
<td>1/2</td>
</tr>
<tr>
<td>(N)</td>
<td>25</td>
<td>1/4</td>
<td>25</td>
<td>1/4</td>
</tr>
<tr>
<td>(M(s))</td>
<td>([1/2, 1))</td>
<td>([1/2, 3/4))</td>
<td>([1/2, 1))</td>
<td>([1/2, 3/4))</td>
</tr>
</tbody>
</table>

- \(\text{med}(s) \) could be any value in interval \(M(s) \)
Median example 1

- Three ordered categories
- Same proportion of individuals in each category
Median example 1

- Three ordered categories
- Same proportion of individuals in each category
- The status vector is \(s = \left(\frac{1}{3}, \frac{2}{3}, 1 \right) \)
Median example 1

- Three ordered categories
- Same proportion of individuals in each category
- The status vector is \(s = (\frac{1}{3}, \frac{2}{3}, 1) \)
- conventional definition is \(\text{med}(s) = m := \frac{2}{3} \):
 - \(\frac{2}{3} \) of the population has a status less or equal to \(m \)
 - \(\frac{2}{3} \) of the population has a status greater than or equal to \(m \)
Median example 1

- Three ordered categories
- Same proportion of individuals in each category
- The status vector is \(s = (\frac{1}{3}, \frac{2}{3}, 1) \)
- Conventional definition is \(\text{med}(s) = m := \frac{2}{3} \):
 - \(\frac{2}{3} \) of the population has a status less or equal to \(m \)
 - \(\frac{2}{3} \) of the population has a status greater than or equal to \(m \)
- Median as “half-way” point is misleading
Median example 2

- Two ordered categories (B better than A)
- Three distributions
 1. $n_A = 500$, $n_B = 500$
 2. $n_A = 499$, $n_B = 501$
 3. $n_A = 999$, $n_B = 1$
Median example 2

- Two ordered categories (B better than A)
- Three distributions
 1. $n_A = 500, n_B = 500$
 2. $n_A = 499, n_B = 501$
 3. $n_A = 999, n_B = 1$
- Status and median in each case:
 1. $s = (0.5, 1), \text{med}(s) = 0.5$
 2. $s = (0.499, 1), \text{med}(s) = 1$
 3. $s = (0.999, 1), \text{med}(s) = 0.999$
Median example 2

- Two ordered categories (B better than A)
- Three distributions
 1. \(n_A = 500, \; n_B = 500 \)
 2. \(n_A = 499, \; n_B = 501 \)
 3. \(n_A = 999, \; n_B = 1 \)

- Status and median in each case:
 1. \(s = (0.5, 1), \; \text{med}(s) = 0.5 \)
 2. \(s = (0.499, 1), \; \text{med}(s) = 1 \)
 3. \(s = (0.999, 1), \; \text{med}(s) = 0.999 \)

- Compare:
 - distributions 1 and 2 have very different medians
 - distributions 2 and 3 have almost the same median!
Median example 2

- Two ordered categories (B better than A)
- Three distributions
 1. \(n_A = 500, \ n_B = 500 \)
 2. \(n_A = 499, \ n_B = 501 \)
 3. \(n_A = 999, \ n_B = 1 \)
- Status and median in each case:
 1. \(s = (0.5, 1), \ med(s) = 0.5 \)
 2. \(s = (0.499, 1), \ med(s) = 1 \)
 3. \(s = (0.999, 1), \ med(s) = 0.999 \)
- Compare:
 - distributions 1 and 2 have very different medians
 - distributions 2 and 3 have almost the same median!
SRH Inequality: Gini (median norm’d)

(1,2,3,4,5) At 0.107 UK 0.135 Mx 0.123 BD 0.140 (BD,UK,Mx,At)*
SRH Inequality: Gini (median norm’d)

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.107</td>
<td>0.135</td>
<td>0.123</td>
<td>0.140</td>
<td>(BD,UK,Mx,At)</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>0.006</td>
<td>0.011</td>
<td>0.017</td>
<td>0.029</td>
<td>(BD,Mx,UK,At)</td>
</tr>
</tbody>
</table>
SRH Inequality: Gini (median norm’d)

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.107</td>
<td>0.135</td>
<td>0.123</td>
<td>0.140</td>
<td>(BD,UK,Mx,At)*</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>0.006</td>
<td>0.011</td>
<td>0.017</td>
<td>0.029</td>
<td>(BD,Mx,UK,At)*</td>
</tr>
<tr>
<td>(-1000,2,3,4,5)</td>
<td>7.39</td>
<td>-0.315</td>
<td>-1.844</td>
<td>-0.188</td>
<td>(At,Mx,UK,BD)</td>
</tr>
</tbody>
</table>
SRH Inequality: C of V (median norm’d)

(1,2,3,4,5) 0.202 0.253 0.232 0.260 (BD,UK,Mx,At) *

(1,2,3,4,1000) 0.012 0.024 0.044 0.101 (BD,Mx,UK,At) *

(-1000,2,3,4,5) 2276 -4.39 -87.2 -0.42 (At,BD,UK,Mx)
SRH Inequality: C of V (median norm’d)

(1,2,3,4,5) 0.202 0.253 0.232 0.260 (BD,UK,Mx,At) *

(1,2,3,4,1000) 0.012 0.024 0.044 0.101 (BD,Mx,UK,At)*
SRH Inequality: C of V (median norm’d)

<table>
<thead>
<tr>
<th></th>
<th>At</th>
<th>UK</th>
<th>Mx</th>
<th>BD</th>
<th>Country Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2,3,4,5)</td>
<td>0.202</td>
<td>0.253</td>
<td>0.232</td>
<td>0.260</td>
<td>(BD,UK,Mx,At) *</td>
</tr>
<tr>
<td>(1,2,3,4,1000)</td>
<td>0.012</td>
<td>0.024</td>
<td>0.044</td>
<td>0.101</td>
<td>(BD,Mx,UK,At)*</td>
</tr>
<tr>
<td>(-1000,2,3,4,5)</td>
<td>2276</td>
<td>-4.39</td>
<td>-87.2</td>
<td>-0.42</td>
<td>(At,BD,UK,Mx)</td>
</tr>
</tbody>
</table>
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary

Proofs

Empirical argument
Proof of Theorem 1

• Two cases to consider
 • data are categorical: S is set of non-negative rational numbers, \mathbb{Q}_+.
 • data have cardinal significance: S can be taken as an interval in \mathbb{R}.

• In either case $(S, +, \succ)$ forms a strictly ordered group (Krantz 1964, Luce and Tukey 1964, Wakker 1988)

• From Theorem 5.3 of Fishburn (1970) Axioms jointly imply that, for a given e, \succeq is representable by a continuous function $S^{n+1} \rightarrow \mathbb{R} : \sum_{i=1}^{n} d_i(s_i, e), \forall (s, e) \in S^{n+1}$ where, for each i, $d_i : S \rightarrow \mathbb{R}$ is a continuous function.

• By monotonicity this is increasing in s_i if $s_i > e$ and vice versa.

• By anonymity the functions d_i must all be identical

• ordering \succeq is also representable any monotonic transform
Take the case where status is downward-looking and peer-inclusive

Suppose that the status of each member of category k is s

If a person is promoted from category k to category $k + 1$
 - status increases to $s + \frac{n_{k+1}}{n}$
 - status of each of the remaining $n_k - 1$ members of category k falls to $s - \frac{1}{n}$.

The resulting change in inequality is proportional to
\[
\left[d \left(s + \frac{n_{k+1}}{n}, e \right) - d \left(s, e \right) \right] + \left[n_k - 1 \right] \left[d \left(s - \frac{1}{n}, e \right) - d \left(s, e \right) \right]
\]

If d is differentiable then this expression is approximately
\[
d' \left(s, e \right) \left(\frac{n_{k+1}}{n} - \frac{n_{k-1}}{n} \right) + d' \left(s, e \right)
\]
 which equals $\frac{1}{n} d' \left(s, e \right) \left[n_{k+1} - n_k + 1 \right]$.

If $s < e$ then monotonicity implies $d' \left(s, e \right) < 0$
 - the change in inequality is negative if $n_{k+1} \geq n_k$.

“Maximum inequality”
Outline

Motivation
 Introduction and Previous work
 Basics
 Examples

Approach
 Model
 Characterisation

Inequality Measures
 Main properties
 Example
 Reference point and sensitivity

Empirical aspects
 Implementation
 Performance
 Application

Summary
Dispersion

- Model: \(\text{LifeSatisf}_i = \alpha + \beta \text{GDP}_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma_i^2) \)
 - \(\beta \) is a significant coefficient and \(R^2 \) is large
 - strong (linear) relationship between LifeSatisf and GDP

- If LifeSatisf equation is homoskedastic:
 - no relationship between GDP and the dispersion of LifeSatisf
 - whatever is GDP, the dispersion of LifeSatisf is the same

- If LifeSatisf equation heteroskedastic dispersion of LifeSatisf may or may not be related to GDP
 - the form of the heteroskedasticity cannot be deduced from the relationship between the dependent variable and the covariate.

- If every \(i \) has different GDP, \(\sigma_i^2 \) measures the dispersion of LifeSatisf for \(i \)

- taking the measure \(I_0 \) as a measure of dispersion, the same reasoning applies

