Approad 0000 000 Inequality Measures

Empirical aspects

Summar

References

Measuring Inequality with Ordinal data

Frank Cowell

http://darp.lse.ac.uk/cowell.htm

Università di Verona: Alba di Canazei Winter School

January 2015

proach

nequality Measures

Empirical aspects

Summary

References

Outline

Motivation Introduction and Previous work **Basics** Examples Approach Model Characterisation **Inequality Measures** Main properties Sensitivity Empirical aspects Implementation Performance Application Summary

pproach 000 00 nequality Measures

Empirical aspects

Summar

References

Introduction

- Ordinal data issue widespread in inequality analysis
- Many applications proceed just as though cardinal:
 - life satisfaction / inequality of happiness: Oswald and Wu (2011), Stevenson and Wolfers (2008b), Yang (2008)
 - health status: Van Doorslaer and Jones (2003)
- Small literature that takes ordinal problem seriously
 - early approaches using 1st order dominance, the median
 - Abul Naga and Yalcin (2008,2010), Allison and Foster (2004), Zheng (2011)
 - but these have limitations
- Present approach based on Cowell and Flachaire (2014)

Approach 0000 000 nequality Measures

Empirical aspects

Summary

References

Income Inequality

- 3 ingredients:
 - "income": family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
 - "income-receiving unit": n persons
 - method of aggregation: function $X^n \to \mathbb{R}$
- Usually work with $X^n_{\mu} \subset \mathbb{R}$
- X^n_{μ} : Distributions obtainable from a given total income $n\mu$ using lump-sum transfers
- Obviously can't do that here: μ is undefined

Aotivation D● pproach 000 00 nequality Measures

Empirical aspects

Summary

References

Utility

Cardinalisation and inequality

- 3 ingredients:
 - "income": u = U(x).
 - "income-receiving unit": *n* persons (as before)
 - method of aggregation: function $\mathbb{U}^n \to \mathbb{R}$
- Problem of cardinalisation
- But just assuming cardinal utility is no use
 - Already pointed out in Atkinson (1970)
 - Dalton (1920) suggested inequality of (cardinal) utility
 - But if, for all *i*, you multiply u_i by $\lambda \in (0,1)$ and add $\delta = \mu [1 \lambda] ...$
 - ...this will automatically reduce measured inequality.
- Is this just a technicality?
- Can we proceed just as with regular income?

on

pproach 000 00 nequality Measures

Empirical aspects

Summar

References

Categorical variable Example: Access to Services

	Case 1	Case 2
	n_k	n_k
Both Gas and Electricity	25	0
Electricity only	25	50
Gas only	25	50
Neither	25	0

- Suppose we have no information about needs / usage
- It seems clear that Case 1 is more unequal than Case 2

Aotivation

oach O equality Measures 000000 00 Empirical aspects

Summar

References

Example self-reported health

- World Health Survey (WHS)
 - a general population survey
 - developed by WHO
- Question: Health State Descriptions
 - overall health
 - including both physical and mental health
- In general, how would you rate your health today?
 - Very good
 - Good
 - Moderate
 - Bad
 - Very Bad
- Compare distributions across countries

oroach 00 0 equality Measures 000000 00 Empirical aspects

Summary

References

SRH Results: four countries

	Austria	UK	Mexico	Bangladesh
		number of	responses	
Very good	423	318	7193	494
Good	390	498	18112	1949
Moderate	200	278	11221	2132
Bad	36	82	2002	741
Very bad	4	17	218	228

• For all countries: rank categories in order

- For each country: compute freq distributions across categories
- How to evaluate inequality?

proach 000 00 nequality Measures

Empirical aspects

Summar

References

SRH Inequality: Gini

Inec 000 ity Measures

Empirical aspects

Summary

References

SRH Inequality: Coeff of Variation

proach 000 equality Measures

Empirical aspects

Summar

References

Status and Information

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases defined given additional distribution-free information
 - example: if it is known that utility is log(x)
- In some cases requires information on distribution
 - GRE, TOEFL
 - "opportunity" (de Barros et al. 2008)

Status and Distribution (1)

• *i*'s status uniquely defined for a given distribution of *u*

- disposes of the problem of cardinalisation
 - U and $V = \varphi(U)$ two cardinalisations of the utility of x
 - for each *i*: u_i and v_i map into s_i •

proach ●O equality Measures

Empirical aspects

Summary

References

Status and distribution (2)

- This approach works for categorical data
 - we just have an ordered arrangement of categories 1,2,...,k,...,K
 - and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$
- Merger principle
 - merge two adjacent categories that are irrelevant for *i*
 - then this should leave *i*'s status unaltered
- Merger principle implies that s should be additive in the n_k
 - upward-looking status: $\sum_{\ell=1}^{k(i)} n_{\ell}$
 - downward-looking status: $\sum_{\ell=k(i)}^{K} n_{\ell}$
 - see also Yitzhaki (1979)

pproach 00● 00 equality Measures

Empirical aspects

Summary

References

Elements of the Model

- Individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility?
- Vector of status in a population of size $n : \mathbf{s} \in S^n$
- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta(\mathbf{s})$
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Approach 0000 nequality Measures

Empirical aspects

Summar

References

Basic Axioms

- [Continuity] \succeq is continuous on S^n
- [Monotonicity] If $\mathbf{s}, \mathbf{s}' \in S_e^n$ differ only in their *i*th component then (a) if $s'_i \ge e : s_i > s'_i \iff \mathbf{s} \succ \mathbf{s}'$; (b) if $s'_i \le e : s'_i > s_i \iff \mathbf{s} \succ \mathbf{s}'$
- **[Independence]** For $\mathbf{s}, \mathbf{s}' \in S_e^n$, if $\mathbf{s} \sim \mathbf{s}'$ and $s_i = s'_i$ for some i then $\mathbf{s}(\varsigma, i) \sim \mathbf{s}'(\varsigma, i)$ for all $\varsigma \in [s_{i-1}, s_{i+1}] \cap [s'_{i-1}, s'_{i+1}]$
- [Anonymity] For all $s \in S^n$ and permutation matrix P, Ps $\sim s$.

Approach 0000 nequality Measures

Empirical aspects

Summar

References

Standard result

Theorem

Continuity, Monotonicity, Independence, Anonymity jointly imply \succeq is representable by the continuous function $I: S_e^n \to \mathbb{R}$ where $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^n d(s_i, e), e)$, where $d: S \to \mathbb{R}$ is a continuous function that is strictly increasing (decreasing) in its first argument if $s_i > e$ ($s_i < e$).

Corollary

Inequality is total "distance" from equality. Distance d is continuous. d(s,e) is increasing in status if you move away from the reference point.

oproach 000 nequality Measures

Empirical aspects

Summary

References

Structure Theorem

- We need more structure on the problem
- [Scale invariance 1] For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}', \lambda \mathbf{s}, \lambda \mathbf{s}' \in S^n$ and $e, e' \in S$ then $(\mathbf{s}, e) \sim (\mathbf{s}', e') \Rightarrow (\lambda \mathbf{s}, e) \sim (\lambda \mathbf{s}', e')$.
- [Scale invariance 2] For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}', \lambda \mathbf{s}, \lambda \mathbf{s}' \in S^n$ and $e, e', \lambda e, \lambda e' \in S$ then $(\mathbf{s}, e) \sim (\mathbf{s}', e') \Rightarrow (\lambda \mathbf{s}, \lambda e) \sim (\lambda \mathbf{s}', \lambda e')$

Theorem

Impose also Scale irrelevance 1. Then $d(s,e) = A(e) s^{\alpha(e)}$

Theorem

Impose instead Scale Invariance 2. Then $d(s,e) = e^{\beta}\phi\left(\frac{s}{e}\right)$ where β is a constant and ϕ is arbitrary

Corollary

Inequality represented as $I_{\alpha}(\mathbf{s}; e) := \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_{i}^{\alpha} - e^{\alpha} \right]$

equality Measures 000000 00 Empirical aspects

Summary

References

A usable inequality index?

- A *class* of functions available as inequality measures:
 - $\Phi(I_{\alpha}(\mathbf{s};e),e)$
 - $e = \eta (\mathbf{s})$, the reference point
 - $I_{\alpha}(\mathbf{s};e) := \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_{i}^{\alpha} e^{\alpha} \right]$
- Do functions $\Phi(I_{\alpha}(\mathbf{s}; e), e)$ "look like" inequality measures?
 - transfer principle?
 - reference point?
 - sensitivity to parameters
- What is the appropriate form for Φ?
 - may depend on the reference status e
 - may depend on interpretation

oach O equality Measures

Empirical aspects

Summary

References

Four distributional scenarios (1)

	Ca	Case 0		Case 1		Case 2		Case 3	
	n_k	Si	n_k	Si	n_k	s_i	n_k	Si	
В	0		25	1	0		25	1	
Ε	50	1	25	3/4	50	1	25	3/4	
G	25	1/2	25	1/2	50	1/2	50	1/2	
Ν	25	1/4	25	1/4	0		0		
$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16	

• n_k is # persons in category $k \in \{B, E, G, N\}$

•
$$s_i = \frac{1}{n} \sum_{\ell=1}^{k(i)} n_\ell$$
 – *downward*-looking status

roach 00 equality Measures ⊃●0000 ⊃0 Empirical aspects

Summary

References

Four distributional scenarios

	Ca	Case 0		Case 1		Case 2		ise 3
	n_k	s'_i	n_k	s'_i	n_k	s'_i	n_k	s'_i
В	0		25	1/4	0		25	1/4
Ε	50	1/2	25	1/2	50	1/2	25	1/2
G	25	3/4	25	3/4	50	1	50	1
Ν	25	1	25	1	0		0	
$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16

• n_k is # persons in category $k \in \{B, E, G, N\}$

•
$$s'_i = \frac{1}{n} \sum_{\ell=k(i)}^{K} n_\ell - upward$$
-looking status

oach O equality Measures

Empirical aspects

Summary

References

Four distributional scenarios (2)

	Case 0		Ca	Case 1		Case 2		Case 3	
	n_k	Si	n_k	Si	n_k	Si	n_k	Si	
В	0		25	1	0		25	1	
Ε	50	1	25	3/4	50	1	25	3/4	
G	25	1/2	25	1/2	50	1/2	50	1/2	
Ν	25	1/4	25	1/4	0		0		
$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16	

• Case 0 to Case 1:

- 25 people promoted from E to B
- if *e* equals to any of values taken by $\mu(\mathbf{s})$
- then inequality increases

roach 00 equality Measures ⊃00●00 ⊃0 Empirical aspects

Summary

References

Four distributional scenarios (3)

	Case 0		Ca	Case 1		Case 2		Case 3	
	n_k	Si	n_k	Si	n_k	Si	n_k	Si	
В	0		25	1	0		25	1	
Ε	50	1	25	3/4	50	1	25	3/4	
G	25	1/2	25	1/2	50	1/2	50	1/2	
Ν	25	1/4	25	1/4	0		0		
$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16	

- Case 0 to Case 2:
 - 25 people promoted from N to G
 - if *e* equals to any of values taken by $\mu(\mathbf{s})$
 - then inequality decreases

pproach 000 00 equality Measures

Empirical aspects

Summary

References

Transfer Principle again

	Case 0		Ca	Case 1		Case 2		ise 3
	n_k	s _i	n_k	Si	n_k	Si	n_k	Si
В	0		25	1	0		25	1
Ε	50	1	25	3/4	50	1	25	3/4
G	25	1/2	25	1/2	50	1/2	50	1/2
Ν	25	1/4	25	1/4	0		0	
$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases
- Case 0 to Case 3: combination results in ambiguous change

Empirical aspects

Summary

References

Reference point

- Mean status: $e = \eta (\mathbf{s}) = \mu(\mathbf{s})$
 - for continuous distributions will equal 0.5
 - for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis
- Median status: $e = \eta(s) = med(s)$
 - not well-defined: any value in interval $M(\mathbf{s})$
 - $M(\mathbf{s}) = [1/2, 1)$ in cases 0 and 2
 - $M(\mathbf{s}) = [1/2, 3/4)$ in cases 1 and 3
- Max status: *e* = 1
 - for constant *e* this is only value that makes sense
- Min status: e = 0
 - counterpart for peer-exclusive case

Sensitivity

- α captures the sensitivity of measured inequality
- If α is high $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} s_{i}^{\alpha} e^{\alpha}\right]$, sensitive to high status-inequality

• If
$$\alpha = 0$$
 then $I_0(\mathbf{s}; e) = -\frac{1}{n} \sum_{i=1}^n \log s_i + \log e$,

• If
$$e = \mu(\mathbf{s})$$
 and $\alpha = 1$ then $\frac{1}{n} \sum_{i=1}^{n} s_i \log s_i - e \log e$

Approach 0000 equality Measures

Empirical aspect

Summary

References

Behaviour of $I_0(\mathbf{s}; e)$

	Case 0	Case 1	Case 2	Case 3
$\mu(\mathbf{s})$	11/16	5/8	3/4	11/16
$med_1(s)$	3/4	5/8	3/4	5/8
$med_2(\mathbf{s})$	1/2	1/2	1/2	1/2
$I_{0}(\mathbf{s};\boldsymbol{\mu}\left(\mathbf{s} ight))$	0.1451	0.1217	0.0588	0.0438
$I_0(\mathbf{s}; \operatorname{med}_1(\mathbf{s}))$	0.2321	0.1217	0.0588	-0.0515
$I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	-0.1732	-0.1013	-0.3465	-0.2746
$I_0({f s};1)$	0.5198	0.5917	0.3465	0.4184

• $I_0(\mathbf{s}; \mu(\mathbf{s})), I_0(\mathbf{s}; \text{med}_1(\mathbf{s}))$: inequality *decreases* for

- Case 0 to 1, or Case 2 to 3
- movement changes both the $\mu(s)$ and med₁ (s) ref points
- $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s})) < 0$ for *all* cases in example!
- But $I_0(\mathbf{s}; 1)$ seems sensible

Approach 0000 000 Inequality Measures

Empirical aspects

Summar

References

Inequality measure

• For ordinal data, peer-inclusive status

•
$$I_{\alpha}(\mathbf{s},1) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} s_{i}^{\alpha} - 1 \right], & \text{if } \alpha \neq 0, \, \alpha < 1 \\ \\ -\frac{1}{n} \sum_{i=1}^{n} \log s_{i}. & \text{if } \alpha = 0 \end{cases}$$

,

Implementation

- Description of sample
- $x_i = \begin{cases} 1 & \text{with sample proportion } p_1 \\ 2 & \text{with sample proportion } p_2 \\ \dots \\ K & \text{with sample proportion } p_K \end{cases}$

 - Point estimate of the index:

•
$$I_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[\sum_{i=1}^{K} p_i \left[\sum_{j=1}^{i} p_j \right]^{\alpha} - 1 \right] & \text{if } \alpha \neq 0, 1 \\ \\ -\sum_{i=1}^{K} p_i \log \left[\sum_{j=1}^{i} p_j \right] & \text{if } \alpha = 0 \end{cases}$$

function of *K* parameter estimates $(p_1, p_2, ..., p_K)$ following a multinomial

oproach 000 00 Inequality Measures

Empirical aspects

Summar

References

Asymptotics

- From the CLT I_{α} is asymptotically Normally distributed
- Estimator of cov matrix of (p_1, p_2, \dots, p_k) is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_K \\ -p_2p_1 & p_2(1-p_2) & \dots & -p_2p_K \\ \vdots & \vdots & \vdots & \vdots \\ -p_Kp_1 & -p_Kp_2 & \dots & p_K(1-p_K) \end{bmatrix}$
- $\widehat{\operatorname{Var}}(I_{\alpha}) = D\Sigma D^{\top}$ with $D = \begin{bmatrix} \frac{\partial I_{\alpha}}{\partial p_{1}} ; & \frac{\partial I_{\alpha}}{\partial p_{2}} ; \dots ; & \frac{\partial I_{\alpha}}{\partial p_{K}} \end{bmatrix}$ • $\frac{\partial I_{\alpha}}{\partial p_{l}} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^{l} p_{i} \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{\alpha-1} \right), \alpha \neq 0$ • $\frac{\partial I_{0}}{\partial p_{l}} = -\log \left[\sum_{j=1}^{l} p_{j} \right] - \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{-1}$

oproach 000 00 nequality Measures

Empirical aspects

Summary

References

Confidence Intervals

- 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, <u>Studentized</u> Bootstrap
- $CI_{asym} = [I_{\alpha} c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$
 - $c_{0.975}$ from the Student distribution T(n-1)
 - do not always perform well in finite samples
- Bootstraps: generate resamples, $b = 1, \dots, B$
 - for each resample *b* compute the inequality index
 - obtain *B* bootstrap statistics, I_{α}^{b}
 - also *B* bootstrap *t*-statistics $t_{\alpha}^{b} = (I_{\alpha}^{b} I_{\alpha})/\widehat{\operatorname{Var}}(I_{\alpha}^{b})^{1/2}$
- $CI_{perc} = [c_{0.025}^b; c_{0.975}^b]$
 - $c_{0.025}^b$ and $c_{0.975}^b$ are from EDF of bootstrap statistics
- $CI_{stud} = [I_{\alpha} c_{0.975}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} c_{0.025}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$
 - $c_{0.025}^*$ and $c_{0.975}^*$ are from EDF of the bootstrap *t*-statistics

nequality Measures

Empirical aspects

Summary

References

Performance Test

- Take an example with 3 ordered categories (K = 3)
- Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$
- Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?
 - if we are using 95% CIs of I_{α}
 - coverage error rate should be close to nominal rate, 0.05
- Check coverage error rate of CIs as sample size increases
 - $\alpha = -1, 0, 0.5, 0.99$
 - 199 bootstraps
 - 10 000 replications to compute error rates
 - n = 20, 50, 100, 200, 500, 1000

proach 00 0 equality Measures

Empirical aspects

Summary

References

Estimation Methods Compared

	α	-1	0	0.5	0.99
Asymptotic B	n = 20	0.0606	0.0417	0.0598	0.0491
	n = 500	0.0523	0.0492	0.0521	0.0523
	n = 1000	0.0485	0.0540	0.0552	0.0549
Percentile B	n = 20	0.0384	0.0981	0.0912	0.1023
	n = 500	0.0509	0.0513	0.0552	0.0554
	n = 1000	0.0482	0.0556	0.0547	0.0551
Studentized B	n = 20	0.1275	0.0843	0.1041	0.1377
	n = 500	0.0518	0.0478	0.0429	0.0465
	n = 1000	0.0473	0.0522	0.0493	0.0503

- Asymptotic CIs perform OK in finite sample
- Percentile bootstrap performs well for n > 50
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index is undefined for $\alpha = 1$)

nequality Measures

Empirical aspect

Summary

References

World values survey

• Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are "completely dissatisfied" and 10 means you are "completely satisfied" where would you put your satisfaction with your life as a whole? (code one number):

Completely dissatisfied -1 2 3 4 5 6 7 8 9 10 - Completely satisfied

• Health question:

All in all, how would you describe your state of health these days? Would you say it is (read out):

1 Very good, 2 Good, 3 Fair, 4 Poor.

oach O equality Measures 000000 00 Empirical aspects

Summary

References

GDP and Life satisfaction

- Cross-country comparison of life satisfaction and GDP/head
 - happiness-income paradox (Easterlin 1974, Clark and Senik 2011)
 - weak relation happiness-income internationally? (Easterlin 1995, Easterlin et al. 2010)
 - or a strong relationship? (Hagerty and Veenhoven 2003, Deaton 2008, Stevenson and Wolfers 2008a, Inglehart et al. 2008)
- How should we quantify life satisfaction?
 - simple linearity of Likert scale? or exponential scale?
 - Ng (1997), Ferrer-i-Carbonell and Frijters (2004), Kristoffersen (2011)
- Is inequality of life satisfaction related to GDP/head?
 - Use I_0 and other members of the same family

oach O equality Measures 000000 00 Empirical aspect

Summary

References

GDP and Life satisfaction (Linear)

roach 00 equality Measures 000000 00 Empirical aspects

Summar

References

GDP and Life satisfaction (Exponential)

oach O equality Measures

Empirical aspect

Summary

References

GDP and Inequality of Life satisfaction

pproach 000 00 nequality Measures

Empirical aspec

Summary

References

Health status

- Health is HRS
- Cross-country comparison of health and GDP
 - a significant positive relationship? (Deaton 2008)
- Cross-country comparison of inequality of health and Inequality of life satisfaction
 - use same inequality index as for life satisfaction

pproach 000 00 nequality Measures

Empirical aspect

Summary

References

Inequality of health and GDP

pproach 000 00 nequality Measures

Empirical aspects

Summa

References

Inequality of health

oroach 00 0 equality Measures

Empirical aspect

Summary

References

Application: overview

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: positive relation below \$15 000, flat after that (Layard 2003)
 - exponential: no relation
- OLS estimate of I_0 (life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
- No clear relationship between I_0 (health) on GDP per capita
- OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant

Motivation			
00			
00000			

Summary

- Inequality with ordinal data is a widespread phenomenon
- Conventional I-measures may make no sense
- Cowell and Flachaire (2014) approach:
 - separates out the issue of status from that of inequality-aggregation
 - allows you to choose "reference status"
 - gives a family of measures
- Nice properties empirically

Approach 0000 000 nequality Measures

Empirical aspects

Summar

References

Bibliography I

- Abul Naga, R. H. and T. Yalcin (2008). Inequality measurement for ordered response health data. Journal of Health Economics 27, 1614–1625.
- Abul Naga, R. H. and T. Yalcin (2010). Median independent inequality orderings. Technical report, University of Aberdeen Business School.
- Allison, R. A. and J. E. Foster (2004). Measuring health inequality using qualitative data. Journal of Health Economics 23, 505–552.
- Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory 2, 244-263.
- Clark, A. E. and C. Senik (2011). Will GDP growth increase happiness in developing countries? In J. Slemrod (Ed.), Measure For Measure: How well do we Measure Development? AFD Publications.
- Cowell, F. A. and E. Flachaire (2014). Inequality with ordinal data. Public Economics Programme Discussion Paper 16, London School of Economics, http://darp.lse.ac.uk/pdf/IneqOrdinal.pdf.
- Dalton, H. (1920). Measurement of the inequality of incomes. The Economic Journal 30, 348-361.
- de Barros, R. P., F. Ferreira, J. Chanduvi, and J. Vega (2008). Measuring Inequality of Opportunities in Latin America and the Caribbean. Palgrave Macmillan.
- Deaton, A. (2008). Income, health and well-being around the world: Evidence from the Gallup World Poll. Journal of Economic Perspectives 22, 53–72.
- Easterlin, R. A. (1974). Does economic growth improve the human lot? Some empirical evidence. In P. A. David and M. W. Reder (Eds.), Nations and Households in Economic Growth: Essays in Honor of Moses Abramovitz. New York: Academic Press.

Approach 0000 000 nequality Measures

Empirical aspects

Summar

References

Bibliography II

- Easterlin, R. A. (1995). Will raising the incomes of all increase the happiness of all? Journal of Economic Behavior & Organization 27, 35–47.
- Easterlin, R. A., L. Angelescu McVey, M. Switek, O. Sawangfa, and J. Smith Zweig (2010). The happiness-income paradox revisited. Proceedings of the National Academy of Sciences of the United States of America 107, 22463–22468.
- Ferrer-i-Carbonell, A. and P. Frijters (2004). How important is methodology for the estimates of the determinants of happiness? *The Economic Journal 114*, 641–659.
- Hagerty, M. R. and R. Veenhoven (2003). Wealth and happiness revisited: Growing wealth of nations does go with greater happiness. Social Indicators Research 64, 1–27.
- Inglehart, R., R. Foa, C. Peterson, and C. Welzel (2008). Development, freedom, and rising happiness: A global perspective (1981-2007). Perspectives on Psychological Science 3, 264–285.
- Kristoffersen, I. (2011). The subjective wellbeing scale: How reasonable is the cardinality assumption? Discussion Paper 15, University of Western Australia Department of Economics.
- Layard, R. (2003). Happiness: Has social science a clue. Lionel Robbins Memorial Lectures 2002/3, London School of Economics, march 3-5. http://cep.lse.ac.uk/events/lectures/layard/RL030303.pdf.
- Ng, Y. K. (1997). A case for happiness, cardinalism, and interpersonal comparability. The Economic Journal 107, 1848-58.
- Oswald, A. J. and S. Wu (2011, November). Well-being across America. The Review of Economics and Statistics 93(4), 1118–1134.
- Stevenson, B. and J. Wolfers (2008a). Economic growth and subjective well-being: Reassessing the Easterlin paradox. NBER working paper no. 14282.

Approach 0000 000 nequality Measures

Empirical aspects

Summar

References

Bibliography III

Stevenson, B. and J. Wolfers (2008b). Happiness inequality in the United States. The Journal of Legal Studies 37, S33-S79.

- Van Doorslaer, E. and A. M. Jones (2003). Inequalities in self-reported health: Validation of a new approach to measurement. *Journal of Health Economics* 22, 61–87.
- Yang, Y. (2008). Social inequalities in happiness in the United States, 1972 to 2004: An age-period-cohort analysis. American Sociological Review 73, 204–226.

Yitzhaki, S. (1979). Relative deprivation and the Gini coefficient. Quarterly Journal of Economics 93, 321-324.

Zheng, B. (2011). A new approach to measure socioeconomic inequality in health. Journal Of Economic Inequality 9, 555–577.