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Abstract

We present a procedure for finding a solution of a linear complementarity system.
The procedure is based on the theory of the simplex method and generates iterative
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1 Introduction

Let us consider the following Linear Complementarity System

LCS







Ax+By ≥ b,
x ≥ 0, y ≥ 0,
〈x, y〉 = 0,

where A,B ∈ R
m×n, b ∈ R

m and 〈·, ·〉 denotes the scalar product in R
n.

The system LCS is the feasible region of the Linear Problem with Complementarity

Constraints (LPCC for short) which we have considered in [4]:

P

{

min(〈c, x〉+ 〈d, y〉)
(x, y) ∈ K0 := {(x, y) ∈ R

2n : Ax+By ≥ b, x ≥ 0, y ≥ 0, 〈x, y〉 = 0},

where c, d ∈ R
n.

A crucial aspect of the iterative method proposed in [4] to solve P consists in finding

a first feasible solution, namely a solution of LCS; nevertheless, the problem of solving

a linear complementarity system is an interesting problem in itself (to this purpose, see

[1, 2]).

With the aim of finding a solution of LCS, let us consider an objective function which

is bounded from below on the set

K := {(x, y) ∈ R
2n : Ax+By ≥ b, x ≥ 0, y ≥ 0},

as for example ℓ(x, y) =
∑n

i=1
(xi + yi).

Now, let us introduce the following linear problem in the standard form, whose feasible

set is obtained by dropping the complementarity constraint from P:

RCP







min ℓ(x, y)
Ax+By ± t = b,
x ≥ 0, y ≥ 0, t ≥ 0

where t ∈ R
m and b ≥ 0. In order to have b ≥ 0, as in the standard form, ±t is necessary.

Let us observe that, if the function 〈c, x〉 + 〈d, y〉 is bounded from below on K, we

may consider in RCP ℓ(x, y) = 〈c, x〉+ 〈d, y〉.

We suppose that all the vertices of the feasible region of RLP correspond to a non-

degenerate basic solution. Under these assumptions, in Section 2 we will describe a

procedure for finding a feasible solution of LCS. To better illustrate such a procedure,

some numerical examples will be proposed in Section 3.

2 Description of the Procedure

Solve RCP and let (x̄, ȳ, t̄) be one of its optimal basic solutions. If 〈x̄, ȳ〉 = 0, (x̄, ȳ) is

a solution of LCS and the procedure ends. If 〈x̄, ȳ〉 > 0, let (z̄D, z̄N) be the partition of
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z̄ := (x̄, ȳ, t̄) into basic and nonbasic components and (D,N) the corresponding partition

into basic and nonbasic matrices of (A,B, Ĩm), where |Ĩm| = Im (suppose, without any

loss of generality, that the basic components are the first m). We have:

z̄ = (z̄D = D−1b−D−1Nz̄N , z̄N = 0).

Denote by (βi0), i = 1, . . . ,m, the m−vector D−1b, and by (βij), i = 1, . . . ,m, j =

1, . . . , 2n, the (m × 2n) matrix D−1N . For any k ∈ IN := {m + 1, . . . ,m + 2n} let zsupk

defined as in the simplex algorithm [3]:

zsupk :=















+∞ if βik ≤ 0, i = 1, . . . ,m

min
βik>0

{βi0

βik

}

, otherwise.
(1)

Recall that zsupk is the maximum value that can be assumed by the k-th nonbasic

component of zN and preserving the feasibility of the solution. Under the assumption

that the feasible set of RCP is bounded, we have zsupk < +∞, ∀k ∈ IN ; moreover, if z̄ is

a nondegenerate basic solution, then zsupk > 0, ∀k ∈ IN .

Define the following vector ẑ ∈ R
m+2n:











ẑj = z̄j, ∀j = 1, . . . ,m

(ẑm+1, ẑm+2, . . . , ẑm+2n) = (λ1z
sup
m+1, . . . , λ2nz

sup
m+2n) =

2n
∑

s=1

λsz
m+s (2)

with λs ≥ 0 and
∑

2n

s=1
λs < 1, and

zm+1 = (zsupm+1, 0, . . . , 0), z
m+2 = (0, zsupm+2, . . . , 0), . . . , z

m+2n = (0, 0, . . . , zsupm+2n),

Proposition 2.1. The vector ẑ = (x̂, ŷ, t̂) defined in (2) is such that 〈x̂, ŷ〉 > 0.

Proof. The thesis is immediate if we observe that the null components in the solution

z̄ = (x̄, ȳ, t̄) are now positive in the vector ẑ = (x̂, ŷ, t̂), while all the other components

are equal to those of z̄.

Let H0 be the (unique) hyperplane passing though the 2n points zm+s, s = 1, . . . , 2n. We

have

H0 =

{

(zm+1, zm+2, . . . , zm+2n) ∈ R
2n :

zm+1

zsupm+1

+
zm+2

zsupm+2

+ . . .+
zm+2n

zsupm+2n

= 1

}

.

Proposition 2.2. If (zm+1, zm+2, . . . , zm+2n) belongs to the set

H−
≥0

=

{

(zm+1, zm+2, . . . , zm+2n) ∈ R
2n
+ :

zm+1

zsupm+1

+
zm+2

zsupm+2

+ . . .+
zm+2n

zsupm+2n

< 1

}

and (x, y, t) is the corresponding feasible solution to RCP, then 〈x, y〉 > 0.
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Proof. If (zm+1, zm+2, . . . , zm+2n) ∈ H−
≥0

, then by setting zm+s

z
sup
m+s

= λs, s = 1, . . . , 2n, we

have

(zm+1, zm+2, . . . , zm+2n) = (λ1z
sup
m+1, . . . , λ2nz

sup
m+2n) =

2n
∑

s=1

λsz
m+s

and

λs ≥ 0 s = 1, . . . , 2n, and
2n
∑

s=1

λs =
2n
∑

s=1

zm+s

zsupm+s

< 1.

From Proposition 2.1 and (2) the thesis follows.

Therefore, from Proposition 2.2, if we add the inequality

zm+1

zsupm+1

+
zm+2

zsupm+2

+ . . .+
zm+2n

zsupm+2n

≥ 1 (3)

as a constraint in the feasible region of RCP, such inequality is a cut of the feasible set

K0 which does not exclude any solution of P fulfilling the complementarity condition

〈x, y〉 = 0. We add the inequality (3) to the feasible region of RCP and let RCP1 the

problem so obtained from RCP. Then we reapply the described procedure to problem

RCP1.

Remark 2.1. We have obtained the above results under the assumption that the feasible

set of RCP is bounded. If this is not the case, in (1) at least one of the value zsupk could

be equal to +∞. Suppose that this happens for the first p’s, with m+ 1 ≤ p < m+ 2n.

Then the cut (3) is replaced by

zm+p+1

zsupm+p+1

+ . . .+
zm+2n

zsupm+2n

≥ 1. (4)

If p = m+ 2n, i.e., all the values zsupk are equal to +∞, then RCP is a problem such

that






inf ℓ(x, y) = −∞
Ax+By − t = b,
x ≥ 0, y ≥ 0, t ≥ 0

and this contradicts the fact that ℓ(x, y) is bounded from below on K.

The other assumption made on RCP is that all its basic solutions are nondegenerate.

If (x̄, ȳ, t̄) is a degenerate basic solution of RCP, we have to apply one of the classic method

for handling with degeneration; for instance, the lexicographic rule or the ε−perturbation.

In such a way, in (1) we obtain zsupk > 0 ∀k ∈ IN .

Remark 2.2. At each step of the procedure, the cut (3) or (4) excludes a subset of

K that contains no solutions (x, y) such that 〈x, y〉 = 0. The procedure ends when

one of the optimizations of RCP gives as optimal solution a vector (x̄, ȳ, t̄) such that

〈x̄, ȳ〉 = 0. Hence, if this optimization is performed with the original objective function,
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i.e. 〈c, x〉 + 〈d, y〉, then (x̄, ȳ) is also an optimal solution of P; in fact, K0 is evidently

a proper subset of the feasible set K reduced by the cut. Otherwise, if the objective

function of RCP is ℓ(x, y) =
∑n

i=1
(xi + yi), the procedure stops having found a feasible

solution of P.

3 Examples

In this section, we propose some examples to clarify the procedure described in Section

2. The examples of problem P are with n = 1 because in such a way a geometric

representation in R
2 is possible.

Example 1

Let us consider the following example of problem P with n = 1, m = 4:







































min(−2x− y)
x − 2y ≤ 4
x ≤ 8
x + 2y ≤ 18
−x + 2y ≤ 10
x ≥ 0, y ≥ 0
〈x, y〉 = 0

If we introduce the relaxed problem, obtained by dropping the complementarity con-

dition, its feasible region is represented in Figure 1, together with two level sets (in red)

of the objective function corresponding to its maximum and minimum values.

x

y

(a)

(b)

A

4 8

2

5

7

Figure 1































min(−2x− y)
x − 2y ≤ 4
x ≤ 8
x + 2y ≤ 18
−x + 2y ≤ 10
x ≥ 0, y ≥ 0
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The standard form is






























min(−2x− y)
x − 2y + t1 = 4
x + t2 = 8
x + 2y + t3 = 18
−x + 2y + t4 = 10
x ≥ 0, y ≥ 0

The first and last tableau of the simplex iterations are [3]

−2 −1 0 0 0 0

1 −2 1 0 0 0 4
1 0 0 1 0 0 8
1 2 0 0 1 0 18
−1 2 0 0 0 1 10

x y t1 t2 t3 t4

0 0 0 3/2 1/2 0

1 0 0 2/2 0 0 8
0 1 0 −1/2 1/2 0 5
0 0 1 −4/2 2/2 0 6
0 0 0 4/2 −2/2 1 8

x y t1 t2 t3 t4

From the latter tableau we have that the optimal solution is

(x, y, t1, t2, t3, t4) = (8, 5, 6, 0, 0, 8)

where the partition in basic and nonbasic components is

zD = (x, y, t1, t4) and zN = (t2, t3).

The solution corresponds to the vertex A = (8, 5) in Figure 1. Clearly, the comple-

mentarity condition is not fulfilled.

From the latter tableau we can get the information which takes us to the first cut.

The two variables that can enter into the basis are t2 and t3. Their maximum values,

allowing to stay in the feasible region, by applying (1), are

zsupt2
= min(8, 4) = 4 and zsupt3

= min(10, 6) = 6.

These two values define the inequality (see (3))

t2
4
+

t3
6
≥ 1 or equivalently 3t1 + 2t2 ≥ 12.

We can easily get the equivalent form in terms of the original variables by using the

equations in the standard form t2 = 8− x and t3 = 18− x− 2y and we get 5x+4y ≤ 48.

If we add the inequality 5x+ 4y ≤ 48 to the feasible set of P, constraints (a) and (b)

in Figure 1, namely x ≤ 8 and x+2y ≤ 18 became redundant; therefore we have the new

problem:
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Figure 2























min(−2x− y)
x − 2y ≤ 4
−x + 2y ≤ 10
5x + 4y ≤ 48
x ≥ 0, y ≥ 0

From Figure 2 we may say that the optimal solution is now (8, 2). The standard form

is the following, together with the corresponding simplex tableau























min(−2x− y)
x − 2y + t1 = 4
−x + 2y + t4 = 10
5x + 4y + t5 = 48
x ≥ 0, y ≥ 0

−2 −1 0 0 0

1 −2 1 0 0 4
−1 2 0 1 0 10
5 4 0 0 1 48

x y t1 t4 t5

The tableau related to the optimal solution can be directly obtained by considering

that correspondingly to solution (8, 2) we have the basic variables x, y, t4. With the

suitable matrix for the basis change we get the tableau

0 0 3/14 0 5/14

1 0 4/14 0 2/14 8
0 0 14/14 1 0 14
0 1 −5/14 0 1/14 2

x y t1 t4 t5

The optimal solution is then

(x, y, t1, t4, t5) = (8, 2, 0, 14, 0)

where the partition in basic and nonbasic components is

zD = (x, y, t4) and zN = (t1, t5).

From the tableau we can get the information for the second cut.
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The two variables that can enter into the basis are t1 and t5. Their maximum values,

allowing to stay in the feasible region, by applying (1), are

zsupt1
= min(28, 14) = 14 and zsupt5

= min(56, 28) = 28.

These two values define the inequality (see (3))

t1
14

+
t5
28

≥ 1 or equivalently 2t1 + t5 ≥ 28.

We can easily get the equivalent form in terms of the original variables by using the

equations in the standard form t1 = 4− x+ 2y and t5 = 48− 5x− 4y and we get x ≤ 4.

The constraints (c) and (d) in Figure 2 become redundant and the new problem is

x

y

(f)

(e)

4

5

7

Figure 3















min(−2x− y)
−x + 2y ≤ 10
x ≤ 4
x ≥ 0, y ≥ 0

From Figure 3 we may say that the optimal solution is now (4, 7). The standard form

is the following, together with the corresponding simplex tableau














min(−2x− y)
−x + 2y + t4 = 10
x + t6 = 4
x ≥ 0, y ≥ 0

−2 −1 0 0

−1 2 1 0 10
1 0 0 1 4

x y t4 t6

The tableau corresponding to the optimal solution can be directly obtained by con-

sidering that correspondingly to solution (4, 7) we have the basic variables x, y. With the

suitable matrix for the basis change we get the tableau

0 0 1/2 5/2 4

1 0 0 1 4
0 1 1/2 1/2 7

x y t4 t6
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The optimal solution is then

(x, y, t4, t6) = (4, 7, 0, 0)

where the partition in basic and nonbasic components is

zD = (x, y) and zN = (t4, t6).

From the tableau we can get the information for the third cut.

The two variables that can enter into the basis are t4 and t6. Their maximum values,

allowing to stay in the feasible region, by applying (1), are

zsupt4
= 14 and zsupt6

= min(4, 14) = 4.

These two values define the inequality (see (3))

t4
14

+
t6
4
≥ 1 or equivalently 2t4 + 7t6 ≥ 28.

We can easily get the equivalent form in terms of the original variables by using the

equations in the standard form

t4 = 10 + x− 2y and t6 = 4− x

and we get

5x+ 4y ≤ 20.

The constraints (e) and (f) in Figure 3 become redundant and the new problem is

x

y

4

5 





min(−2x− y)
5x + 4y ≤ 20
x ≥ 0, y ≥ 0

The new optimal solution is now (4, 0), that satisfies the complementarity condition

and hence is a feasible solution of P. Observe that (4, 0) is also the optimal solution of

the given problem (see Remark 2.2).
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Example 2

Let us consider the following example of problem P with n = 1, m = 3:






























min(−x− y)
x + 4y ≥ 4
2x + y ≥ 2
2x − y ≥ −4
x ≥ 0, y ≥ 0
〈x, y〉 = 0.

If we introduce the relaxed problem, obtained by dropping the complementarity con-

dition, its feasible region is represented in Figure 4.

x

y

4

2

4

A
4

2

4

A

4/7

6/7

Figure 4

Obvioulsy, the objective function (−x− y) is not bounded from below on the feasible

region; therefore, we substitute it with (x+y) and we obtain the following linear problem

in the standard form






















min (x+ y)
x + 4y − t1 = 4
2x + y − t2 = 2
−2x + y + t3 = 4
x, y ≥ 0, ti ≥ 0, i = 1, 2, 3.

The application of the simplex algorithm determines the optimal solution

(x, y, t1, t2, t3) =

(

4

7
,
6

7
, 0, 0,

30

7

)

where the partition in basic and nonbasic components is

zD = (x, y, t3) and zN = (t1, t2).

The solution corresponds to the vertex A = (4
7
, 6
7
) in Figure 4.
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Clearly, the complementarity condition is not fulfilled. The corresponding simplex

tableau is:
0 0 1/7 3/7 0

1 0 1/7 −4/7 0 4/7
0 1 −2/7 1/7 0 6/7
0 0 4/7 −9/7 1 30/7

x y t1 t2 t3

and the application of (1) determines

zsupt1
= min(4, 15/2) = 4 and zsupt2

= 6.

These two values define the inequality (see (3))

t1
4
+

t2
6
≥ 1 or equivalently 3t1 + 2t2 ≥ 12.

Taking into account that

t1 = x+ 4y − 4 and t2 = 2x+ y − 2,

we obtain the cut x+ 2y ≥ 4 of the feasible set:

x

y

4

2

4

If we add the inequality x+2y ≥ 4 to the feasible set of P, x+4y ≥ 4 and 2x+ y ≥ 2

became redundant; therefore we have the new problem:














min(x+ y)
2x − y ≥ −4
x + 2y ≥ 4
x ≥ 0, y ≥ 0.

A further application of the simplex algorithm finds the optimal solution (x, y) = (2, 0)

which satisfies the complementarity condition and hence is a feasible solution of P.
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Example 3

In this example we want to illustrate the case where at least one of the values zsupk

defined in (1) is equal to +∞. So, let us consider the following example of problem P

with n = 1, m = 3:






























min(x+ 2y)
−x + 2y ≥ −1
x + y ≥ 2
2x − y ≥ −4
x ≥ 0, y ≥ 0
〈x, y〉 = 0.

The standard form is:






















min (x+ 2y)
x − 2y + t1 = 1
x + y − t2 = 2

−2x + y + t3 = 4
x, y ≥ 0, ti ≥ 0, i = 1, 2, 3.

The optimal solution of the problem is

(x, y, t1, t2, t3) =

(

5

3
,
1

3
, 0, 0, 7

)

with corresponding partition in basic and nonbasic components

zD = (x, y, t3) and zN = (t1, t2).

The solution corresponds to the vertex A = (5/3, 1/3) in Figure 5.

x

y

2

4

A

2

A

5/3

1/3

Figure 5

Clearly, the complementarity condition is not fulfilled.
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The corresponding simplex tableau is

0 0 1/3 4/3 0

1 0 1/3 −2/3 0 5/3
0 1 −1/3 −1/3 0 1/3
0 0 1 −1 1 7

x y t1 t2 t3

The application of (1) allows us to determine

zsupt1
= min

(

5/3

1/3
, 7

)

= min(5, 7) = 5 and zsupt2
= +∞

which define the inequality t1 ≥ 5 (see (4)).

We obtain the equivalent form in terms of the original variables by using the equation

t1 = 1− x+ 2y:

−x+ 2y ≥ 4.

The two constraints −x + 2y ≥ −1 and x + y ≥ 2 become redundant and the new

problem is

x

y

2

4















min(x+ 2y)
−x + 2y ≥ 4
2x − y ≥ −4
x ≥ 0, y ≥ 0

The optimal solution is now (x, y) = (0, 2), that satisfies the complementarity condi-

tion and hence is a feasible solution of P, and also the optimal one.
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