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Abstract. We provide a general HJM framework for forward contracts written on abstract market

indices with arbitrary fixing and payment adjustments. We allow for indices on any asset class, featuring

collateralization in arbitrary currency denominations. The framework is pivotal for describing portfolios

of interest rate products which are denominated in multiple currencies. The benchmark transition

has created significant discrepancies among the market conventions of different currency areas: our

framework simultaneously covers forward-looking risky IBOR rates, such as EURIBOR, and backward-

looking rates based on overnight rates, such as SOFR. In view of this, we provide a thorough study

of cross-currency markets in the presence of collateral, where the cash flows of the contract and the

margin account can be denominated in arbitrary combinations of currencies. We finally consider cross-

currency swap contracts as an example of a contract simultaneously depending on all the risk factors

that we describe within our framework.

1. Introduction

Benchmark reforms have introduced significant discrepancies among interest rate option markets

of different currency areas. In the US market, for example, caps and floors are currently written on

a compounded version of the secured overnight financing rate (SOFR), whereas in the EUR area the

unsecured EURIBOR rate is still the market standard underlying. This poses a significant challenge

when considering a portfolio of interest rate derivatives which are denominated in multiple currencies.

This is a typical situation arising, for example, when computing risk measures at the portfolio level, or

in the context of xVA (x-Value Adjustment) calculations, where all the trades between the bank and the

counterparty must be jointly simulated in order to account for netting agreements. A model suitable

for these portfolio-wide calculations should then be able to simultaneously describe forward-looking

credit-sensitive rates on the one hand, and forward-looking and backward-looking overnight-based

interest rates on the other hand.

To solve this issue, in this paper we provide a general HJM framework to describe forward contracts

written on abstract market indices. Our setting allows indices with arbitrary fixing and payment

adjustments and indices on any asset class, so to accommodate the benchmark transition. Moreover, it

allows for multiple currencies, meaning that the cash flows from the contract and the collateralization

may be denominated in arbitrary combinations of currencies. Thus we simultaneously extend the

literature on multiple-curve valuation with collateral, on interest rate and on cross-currency modelling,

and we define the bases for analysing the benchmark transition.

We first provide a sound foundation for our valuation formulas by extending the work of Gnoatto

and Seiffert [2021] on cross-currency valuation with collateral. In particular, we consider a general

2010 Mathematics Subject Classification. 91G30, 91B24, 91B70. JEL Classification E43, G12.
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setting where the market drivers are Itô semimartingales. Going beyond the diffusive setting, we

allow the presence of market incompleteness. In doing so, we extend the martingale approach of

Bielecki and Rutkowski [2015] to incomplete markets and reconciled with Piterbarg [2012] and Moreni

and Pallavicini [2017], among others. This is achieved by postulating the martingale property of the

discounted gains from trading in the contingent claim and without resorting to replication backward

stochatic differential equations. Our framework inherits one important feature of Gnoatto and Seiffert

[2021] as initially stated in Bielecki and Rutkowski [2015]: the martingale measure of the “domestic”

risk-neutral measure, say Qk0 , has not a unique numéraire. On the contrary, under Qk0 each risky

asset, including collateralized derivatives, is discounted by means of an asset-specific cash account.

The measure Qk0 is then a “multi-numéraire” martingale measure. This means in particular that

the cash account growing at the overnight rate is not the numéraire of Qk0 , as it is often stated in

the existing literature. We obtain valuation formulas for contingent claims denominated under an

arbitrary currency k0 with cash flows paid or received in currency k2 and with collateral amounts

being exchanged in currency k3. Equipped with these formulas, we systematically treat zero-coupon

bonds under arbitrary configurations of the collateral currency and contractual cash flows. This in

turns allows to properly define a multitude of forward measures in view of term-structure modeling.

In the second part of the paper, we set the market “in motion” by mean of a Heath-Jarrow-Morton

framework Heath et al. [1992]. In doing this, we generalize the existing literature in at least two

directions. On the one hand, we extend the general multiple-curve HJM framework of Cuchiero et al.

[2016] to a multiple-currency setting, thus setting the cross-currency market “in motion” by means of

general Itô semimartingales. On the other hand, we consider abstract indices as the target modeling

quantities, in opposition to Cuchiero et al. [2016], where only IBOR rates are modelled. By working

with abstract indices, we indeed encompass the case of classical IBOR rates, of new backward-looking

indices based on overnight rates, such as SOFR, and other quantities such as inflation or commodity

prices. This allows to accommodate the situation where we simultaneously consider a market with

standard forward-looking rates (e.g., EURIBOR for the EUR area or TIBOR for the JPY area) and

backward-looking rates (e.g., SOFR-based rates for the USD area). This is important in the current

market setting since benchmark reforms have introduced a significant level of asymmetry between

interest rate markets of different monetary areas. Our framework is then pivotal for the management

of large portfolios of interest rates products which are denominated in different currencies and are

subject to different market conventions. This is a typical situation which is faced when computing

xVA at the portfolio level by Monte Carlo simulations. We also mention that our work extends the

cross-currency HJM framework of Fujii et al. [2011] to a general semimartingale setting.

In view of the above-mentioned markets asymmetries, we treat cross-currency swap contracts as

test-bed for our framework. These contracts allow us indeed to demonstrate the relevance of all the

modeling quantities that we consider in the paper. In particular, we describe cross-currency swap

contracts by means of our proposed abstract indices, meaning that we can cover, for example, the

situation of a legacy EURUSD cross-currency contract created before the LIBOR transition exchanging

USD LIBOR against EURIBOR. According to the US LIBOR act, market participant can indeed

choose the LIBOR fallback rate that they deem more appropriate. Hence for the USD leg the agents

may agree on the fallback proposed the by International Swaps and Derivatives Association (ISDA)

which is based on SOFR, or they may choose an alternative benchmark such as AMERIBOR. Our

framework is general enough to cover all the possible situations, so it represents the ideal setup for

the valuation of a portfolio that typically combines legacy trades and new positions.
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In the remaining part of the introduction we review the most important market features that

motivate the present work together with the existing literature.

1.1. Violations of the covered interest rate parity. Consider a domestic agent d endowed with

an initial capital N d. At time t ≥ 0 the agent faces two investment alternatives. A first possibility

would be to invest the initial capital for an horizon δ by lending on the d-unsecured market, thus

earning the d-IBOR rate Ld
t (t, t + δ). Alternatively, the agent could enter at time t into a f -foreign

exchange forward with length δ and rate X d,f
t (t+ δ). In this case, at time t he/she would convert the

amount N d at the spot exchange rate X d,f
t and lend the amount in foreign currency on the foreign

unsecured market, where he/she would earn the unsecured f -IBOR rate Lf
t (t, t+ δ). After the time δ,

the agent would then reconvert the amount by means of the foreign exchange forward rate X d,f
t (t+ δ)

agreed at time t. The combination of such an FX spot and an FX forward transaction is termed FX

swap. We say that the covered interest rate parity holds if the two strategies described deliver the

same amount in domestic currency at the end of the period δ. In particular, if the covered interest

rate parity were to hold, then we would obtain the classical relation that links the market quote of

the FX forward with the unsecured spot rates of the two currencies, namely

(1.1) X d,f
t (t+ δ) = X d,f

t

1 + δLd
t (t, t+ δ)

1 + δL
f
t (t, t+ δ)

.

Market data on FX swaps and FX forwards show however the systematic violations of (1.1).

We can similarly discuss the valuation of cross-currency swaps. These are long-term transactions

which involve an exchange of cash flows between two agents, here denoted with d for domestic and f

for foreign, over a schedule of dates, say T0, T1, . . . , Tn. Since the cash flows are indexed on the floating

rates1 of two currencies, cross-currency swaps can be seen as a long-short position on two floating-rate

bonds denominated in two different currencies. In particular, at time T0 the two agents lend to each

other the notional amounts N d and N f in domestic and foreign currency, respectively. Then, at each

time Ti, i = 1, . . . , n, the agents receive floating-rate interests for the notionals lent. In addition, at

time TN the notionals are swapped back. If the covered interest rate parity were to hold, then the

sum of the value of the two legs at time t ≤ T0 should be zero in the absence of any adjustment. More

precisely, taking the perspective of the domestic d agent, we should observe that

(1.2)

0 =N d

(
−Bd(t, T0) +

N∑

i=1

(Ti − Ti−1)L
d
t (Ti−1, Ti)B

d(t, Ti) +Bd(t, TN )

)

−X d,f
t N f

(
−Bf (t, T0) +

N∑

i=1

(Ti − Ti−1)L
f
t (Ti−1, Ti)B

f (t, Ti) +Bf (t, TN )

)
,

where Bd(t, ·) and Bf (t, ·) denote risk-free zero-coupon bonds in domestic and foreign currency, re-

spectively.

However, when looking at market data, one observes that the covered interest parity is systematically

violated. More precisely, the relations (1.1) and (1.2) were approximately satisfied before the 2007

financial crisis. Since then, persistent violations have been observed, with the consequence that cross-

currency forward values can not be reconstructed from unsecured funding rates. In particular, the

relations (1.1) and (1.2) must be adjusted by introducing the so-called cross-currency basis swap spread.

For cross-currency swaps against USD, for example, the market practice involves to introduce a spread

over the floating rate for the non-USD leg of the contract. If d corresponds to USD, then this means

1Depending on the currency pairs involved, the floating rates could be secured or unsecured.
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Figure 1. Cross-currency basis swap spread time series for the pair EUR-USD (left
panel) and for the pair GBP-USD (right panel). Each curve corresponds to a different
maturity.

that in order for relation (1.2) to hold, we must substitute Lf
t (Ti−1, Ti) with L

f
t (Ti−1, Ti) + S0(TN )

for all i = 1, . . . , N , where S0(TN ) is the cross-currency basis swap spread which is a function of the

contract’s maturity TN and is set at the stipulation of the contract. Similarly, for relation (1.1) to

hold, we must substitute Lf
t (t, t+δ) with L

f
t (t, t+δ)+S0(t+δ). We report in Figure 1 the time series

for the cross-currency basis swap spreads S0(TN ) for the currencies pairs EUR-USD and GBP-USD,

and for several maturities TN ranging from one to thirty years.

To explain this phenomenon, we need to look into the nature of the contracts under consideration.

In particular, the market quotes refer to perfectly collateralized instruments. In other words, the

published quotes assume the existence of an ideal collateralization agreement (Credit Support Annex

- CSA), in which the two agents exchange margin calls in continuous time so to perfectly annihilate any

outstanding credit exposure. On the other hand, the replication strategy involves IBOR rates. Hence,

it is subject to (at least) the liquidity risk, since the lending activity is not supported by any guarantee

(unsecured lending). In summary, there is a discrepancy between a perfectly collateralized derivative

security and a wrongly postulated replication strategy by means of unsecured borrowing/lending.

This highlights the importance of studying the cross-currency basis swap spread. This, however, has

received a limited coverage in the financial mathematics literature so far: it was analyzed in Fujii and

Takahashi [2011], McCloud [2013] and Moreni and Pallavicini [2014]. Moreover, up to our knowledge,

the only reference providing a modeling framework for this spread in a HJM setting is Fujii [2013]:

our work greatly generalizes this setting.

1.2. IBOR-OIS spread. A similar discrepancy is observed in single-currency interest-rate markets

when trying to replicate the market quotes of forward-rate agreements (FRA) with unsecured bor-

rowing/lending on IBOR zero-coupon bonds. Let Lc,k
t (T1, T2) be the (collateralized) FRA rate at

time t for the period [T1, T2], where c stays for collateralized and k denotes a generic currency. If the

replication was possible, we should get that

L
c,k
t (T1, T2) =

1

T2 − T1

(
Bk(t, T1)

Bk(t, T2)
− 1

)
,

where Bk(t, ·) denotes the unsecured (IBOR) zero-coupon bonds for the currency k. However, this

replication argument fails, as it is shown empirically in Bianchetti and Carlicchi [2013]. Moreover, it

is also observed that the forward rate can not be reconstructed from collateralized zero-coupon bonds
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Bc,k(t, ·) in the currency k, namely

L
c,k
t (T1, T2) 6= L

c,k,D
t (T1, T2) :=

1

T2 − T1

(
Bc,k(t, T1)

Bc,k(t, T2)
− 1

)
.

This discrepancy has led to the multiple-curve framework initiated by the seminal work by Henrard

[2007], and later studied by several authors, e.g. Cuchiero et al. [2016] and Cuchiero et al. [2019],

Morini [2013], Kijima et al. [2009], Kijima et al. [2009], Kenyon [2010], Henrard [2010], Mercurio [2010],

Mercurio [2013], Mercurio and Xie [2012], Moreni and Pallavicini [2014], Pallavicini and Tarenghi

[2010], Crépey et al. [2012], Grbac and Runggaldier [2015], Henrard [2014], Filipović and Trolle [2013],

Grasselli and Miglietta [2016], Grbac et al. [2016], Morino and Runggaldier [2014], Grbac et al. [2015],

Eberlein et al. [2020].

1.3. The LIBOR discontinuation is not the end of IBORs. A further element of complexity in

this picture is the ongoing reform of certain interest rate benchmarks. First of all, we need a word of

clarity: the term LIBOR refers to the London inter-bank offered rate, which is an unsecured inter-bank

rate available for several tenors, maturities and currencies. It has been administrated by the British

Bankers Association (BBA) until 2014, and by the Inter Continent Exchange (ICE) afterwards. It is

ICE who is managing its discontinuation by publishing selected tenors for the USD and GBP areas via

an unrepresentative synthetic methodology. LIBOR, however, is only an example of unsecured inter-

bank offered rate subject to a certain jurisdiction. There are indeed several other unsecured inter-bank

rates, such as EURIBOR for the EUR area or TIBOR for the JPY area. Hence, we should not take

LIBOR as a synonym for inter-bank offered rates in general, and the fact that LIBOR rates are being

discontinued does not mean that unsecured inter-bank rates are being discontinued in general. In the

following, we clarify the ongoing situation for the EUR and the USD area.

In the EUR area the reform of interest rate benchmarks led to the discontinuation of the unsecured

EONIA (Euro Overnight Index Average) which was substituted by ESTR (Euro Short Term Rate).

The calculation methodology of the EURIBOR rate has been updated by means of a three step

waterfall methodology2. There are no plans for a discontinuation of EURIBOR, meaning that for the

EUR area a multiple-curve model is still needed in order to properly describe the market of interest

rate products3. Similarly, in the JPY area there are no plans to discontinue the Tokyo Inter Bank

Offered Rate (TIBOR)4.

The situation in the USD area is more involved. Here the overnight Fed Fund rate has not been

discontinued. However, a second overnight rate has been introduced as the central building block of

the interest rate market: this is the secured overnight financing rate (SOFR) which is a repo rate where

the collateral is given by treasury bills. This means that for the USD area there are two overnight

rates, namely an unsecured one (Fed Fund) and a secured one (SOFR). In particular, it is SOFR which

is now the market standard for the remuneration of collateral. This means that, for example, a proper

valuation of swaps depending on the Fed Fund rate should be performed by means of a two-curve

setting in order to account for the spread between the Fed Fund rate and SOFR. Notice that swaps

on the Fed Fund rate used to be “old” OIS swaps in the terminology of Cuchiero et al. [2016].

With the demise of USD LIBOR, the market of interest rate swaps and interest rate options mostly

moved, in terms of liquidity, to SOFR-based instruments, where the floating rate relevant for a cer-

tain coupon is constructed by compounding SOFR over the relevant time window. However, these

2https://www.emmi-benchmarks.eu/benchmarks/euribor/reforms/
3https://www.esma.europa.eu/sites/default/files/2023-12/ESMA81-1071567537-121_EUR_RFR_WG_Final_

Statement.pdf
4https://www.jbatibor.or.jp/english/reform/

https://www.emmi-benchmarks.eu/benchmarks/euribor/reforms/
https://www.esma.europa.eu/sites/default/files/2023-12/ESMA81-1071567537-121_EUR_RFR_WG_Final_Statement.pdf
https://www.esma.europa.eu/sites/default/files/2023-12/ESMA81-1071567537-121_EUR_RFR_WG_Final_Statement.pdf
https://www.jbatibor.or.jp/english/reform/
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overnight-based instruments are not suitable for the Asset Liability Management hedging needs of

medium and smaller financial institutions. This led on the one hand to criticisms against SOFR, see

for example Cooperman et al. [2022], and on the other hand to the introduction of alternative inter-

bank rates such as AMERIBOR T30 or AMERIBOR T90 administrated by the American Financial

Exchange5 with quoted futures on the Chicago Board Options Exchange. As previously mentioned, in

the US area, interest rate option markets moved to SOFR-based instruments which have been analyzed

in several papers such as Mercurio [2018], Lyashenko and Mercurio [2019], Heitfield and Park [2019],

Andersen and Bang [2020], Macrina and Skovmand [2020], Turfus [2020], Willems [2020],Gellert and

Schlögl [2021], Rutkowski and Bickersteth [2021], Skov and Skovmand [2021], Backwell and Hayes

[2022], Brace et al. [2022], Huggins and Schäller [2022], Schlögl et al. [2023], Fontana [2023], Fontana

et al. [2023].

1.4. Summary of the requirements. Our objective is to devise a general framework for cross-

currency markets that makes it possible to jointly capture all the previously mentioned stylized facts.

The paper is structured as follows. In Section 2 we construct the cross-currency basis market which

includes general risky assets. In Section 3 we obtain valuation formulas for fully-collateralized con-

tingent claims by extending Gnoatto and Seiffert [2021]. As a preparatory step and application,

we thoroughly study zero-coupon bonds (ZCBs) as basic building blocks for term-structure models.

Section 4 presents all the measure changes that are relevant for defining our HJM framework. In

particular, we define several extended forward measures, generalizing the approach of Lyashenko and

Mercurio [2019]. In Section 5 we introduce the HJM framework for the multiple discount curves which

we need in order to account for the presence of the cross-currency basis spread. In Section 6 we

study abstract indices, allowing us to span the whole interest rate market, and, more general, any

market with quoted forwards on indices. Finally, Section 7 shows the relevance of the framework in

the context of cross-currency swaps valuation.

2. Multi-currency trading in the basic market

We follow the notation of Gnoatto and Seiffert [2021]. Let T > 0 be a fixed time horizon and

(Ω,G,G,P) be a filtered probability space with the filtration G = (Gt)t∈[0,T ] satisfying the usual

conditions. Here G0 is assumed to be trivial, and all the processes to be introduced in the sequel are

assumed to be G-adapted right-continuous with left limits (RCLL) semimartingales.

We then postulate the existence of L ∈ N economies, and we introduce the following indices ranging

from 1 to L in order to distinguish between all the possible scenarios:

(i) k0 denotes the currency of denomination of the portfolio, hence represents the domestic cur-

rency ;

(ii) k1 denotes the currency of denomination of the risky assets, the associated repo cash accounts,

and of the unsecured funding accounts;

(iii) k2 denotes the currency of denomination for the contractual cash-flows;

(iv) k3 denotes the currency of denomination of the collateral;

(v) k will be used to denote a general currency.

We set to dk1 the number of risky assets which are traded in terms of the currency with index k1.

Then Si,k1 denotes the ex-dividend price of the i-th risky asset traded in units of currency k1, and

Di,k1 is the corresponding cumulative dividend stream, for every i = 1, . . . , dk1 .

5The American Financial Exchange is an electronic exchange for direct lending and borrowing for American banks.
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The trading desk uses different sources of funding, each being represented by a suitable family of

cash accounts. In particular, for each risky asset there is an asset-specific funding account, which we

call the repo account. We denote by Bi,k1 the funding account associated to the asset Si,k1 . Positive or

negative dividends from the risky asset Si,k1 are invested in the corresponding funding account Bi,k1 .

For unsecured funding, we assume that the trading desk can fund its activity by unsecured borrowing

and lending in different currencies. We then introduce the cash accounts Bk1 := B0,k1 with unsecured

rates rk1 , for k1 = 1, . . . , L. Moreover, we use the symbol ·̂ to denote quantities which are discounted

by means of their corresponding repo account, and the symbol ·̃ for quantities which are discounted

by means of the corresponding unsecured account. For example, for the risky asset Si,k1 we write

Ŝi,k1 :=
Si,k1

Bi,k1
, and S̃i,k1 :=

Si,k1

Bk1
.

We further denote by X k0,k the price of one unit of currency k in terms of currency k0, for every

k 6= k0. Following the usual FORDOM convention, we have, e.g., that XUSD,EUR is the price in USD

of 1 EUR.

We work under the following assumptions as in Gnoatto and Seiffert [2021, Assumption 2.1].

Assumption 2.1. We assume that:

(i) For all i = 1, . . . , dk1, and all k1, the ex-dividend price processes Si,k1 are real-valued RCLL

semimartingales;

(ii) For all i = 1, . . . , dk1, and all k1, the cumulative dividend streams Di,k1 are processes of finite

variation with Di,k1
0 = 0;

(iii) For all j = 0, . . . , dk1, and all k1, the funding accounts Bj,k1 are strictly positive and contin-

uous processes of finite variation with Bj,k1
0 = 1;

(iv) For all k0 and all k 6= k0, the exchange rate processes X k0,k are positive-valued RCLL semi-

martingales.

Following Gnoatto and Seiffert [2021], we shall first characterize the absence of arbitrage in a market

consisting solely of basic traded assets. A trading portfolio in this market is defined as follows.

Definition 2.2. Let NS :=
∑L

k1=1 dk1 be the total number of traded assets in all currencies. A

dynamic portfolio consisting of risky securities and funding accounts is denoted by ϕ = (ξ, ψ), where:

(i) ξ ∈ RNS with G-predictable components, ξi,k1, representing the number of shares owned on

the risky asset Si,k1, for i = 1, . . . , dk1, and k1 = 1, . . . , L;

(ii) ψ ∈ RNS+L with G-predictable components, ψi,k1, representing the units of cash account on

Bi,k1, for i = 0, . . . , dk1, and k1 = 1, . . . , L. For i = 0 we use the shorthand ψk1 := ψ0,k1.

We denote by V (ϕ) the wealth process of the trading strategy ϕ expressed in currency k0, where

we omit the index k0 to simplify the notation. From the definition of trading strategy, it is easy to

see that

Vt(ϕ) =
L∑

k1=1

X k0,k1
t




dk1∑

i=1

ξ
i,k1
t S

i,k1
t +

dk1∑

j=0

ψ
j,k1
t B

j,k1
t


 .

The discounted wealth process is Ṽ (ϕ) := V (ϕ)

Bk0
.

We now introduce the concept of self-financing trading strategy.
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Definition 2.3. A trading strategy ϕ is self financing whenever the wealth process V (ϕ) satisfies

Vt(ϕ) =

L∑

k1=1





dk1∑

i=1

(∫

(0,t]
X k0,k1
s ξi,k1s

(
dSi,k1

s + dDi,k1
s

)

+

∫

(0,t]
ξi,k1s Si,k1

s dX k0,k1
s +

∫

(0,t]
ξi,k1s d

[
Si,k1 ,X k0,k1

]
s

)

+

dk1∑

j=0

(∫

(0,t]
X k0,k1
s ψj,k1

s dBj,k1
s +

∫

(0,t]
ψj,k1
s Bj,k1

s dX k0,k1
s

)
 .

Our first task is to provide conditions guaranteeing absence of arbitrage in the basic market con-

sisting only of risky assets and cash account positions. The concepts of admissibility and of arbitrage

opportunity that we consider are the standard ones.

Definition 2.4. A self-financing trading strategy ϕ is admissible for the trader whenever the dis-

counted wealth Ṽ (ϕ) is bounded from below by a constant. An admissible trading strategy ϕ is an

arbitrage opportunity whenever P

(
ṼT (ϕ) ≥ 0

)
= 1 and P

(
ṼT (ϕ) > 0

)
> 0, for T > 0.

A classical textbook arbitrage strategy can be constructed in a market with two risk-free assets

growing at two different rates. To preclude such trivial arbitrage opportunities, the following repo

constraint becomes crucial:

ψ
i,k1
t B

i,k1
t + ξ

i,k1
t S

i,k1
t = 0, for every t ∈ [0, T ], i = 1, . . . dk1 , and 1 ≤ k1 ≤ L.(2.1)

The repo constraint reflects the realistic situation where the holdings on every risky asset are financed

by a position on the asset-specific cash account, and it is not possible to create long-short positions

on different cash accounts to produce risk-less profits.

Lemma 2.5. Under the repo constraint (2.1), the discounted portfolio dynamics is

dṼt(ϕ) =
1

Bk0
t

L∑

k1=1

dk1∑

i=1

ξ
i,k1
t

(
dK

i,k0,k1
t − S

i,k1
t dX k0,k1

t

)
+

L∑

k1=1,k1 6=k0

ψk1
t d

(
Bk1X k0,k1

Bk0

)

t

,

where for every i = 1, . . . dk1, and k1 = 1, . . . , L, the processes

K
i,k0,k1
t :=

∫

(0,t]

(
Si,k1
s dX k0,k1

s − S
i,k1
s X k0,k1

s

B
i,k1
s

dBi,k1
s + X k0,k1

s dSi,k1
s + d

[
X k0,k1 , Si,k1

]
s
+ X k0,k1

s dDi,k1
s

)

represent the wealth, denominated in units of currency k0 and discounted by the funding account Bi,k1,

of a self-financing trading strategy that invests in the asset Si,k1.

Proof. Gnoatto and Seiffert [2021, Corollary 2.15] shows that the portfolio dynamics are of the form

dṼt(ϕ) =
L∑

k1=1

dk1∑

i=1

1

Bk0
t

ξ
i,k1
t dK

i,k0,k1
t +

L∑

k1=1

dk1∑

i=1

1

Bi,k1

(
ψ
i,k1
t B

i,k1
t + ξ

i,k1
t S

i,k1
t

)
X k0,k1
t d

(
Bi,k1

Bk0

)

t

+
L∑

k1=1

dk1∑

i=1

B
i,k1
t

Bk0
t

ψ
i,k1
t dX k0,k1

t +
L∑

k1=1

ψk1
t d

(X k0,k1Bk1

Bk0

)

t

.

Hence substituting the repo constraints (2.1) and regrouping terms, we get the result. �

The absence of arbitrage in the basic model is characterized by Gnoatto and Seiffert [2021, Propo-

sition 3.4] as follows.
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Proposition 2.6. Assume that all the strategies available are admissible and satisfy the repo constraint

(2.1). Then the multi-currency model is arbitrage free if there exists a probability measure Qk0 ∼ P on

(Ω,G), such that the processes
(∫

(0,t]

(
X k0,k1
s d

(
Si,k1

Bi,k1

)

s

+
X k0,k1
s

B
i,k1
s

dDi,k1
s + d

[
Si,k1

Bi,k1
,X k0,k1

]

s

))

0≤t≤T

and(2.2)

(
X k0,k1
t Bk1

t

Bk0
t

)

0≤t≤T

(2.3)

are (Qk0 ,G)-local martingales, for all i = 1, . . . , dk1, and all k1 = 1 . . . , L.

Thanks to Proposition 2.6 we have the recipe to construct arbitrage-free models. In the next section

we shall introduce the concept of collateralization and extend the market model with collateralized

contracts.

3. Pricing under funding costs and collateralization

The approach of Gnoatto and Seiffert [2021] is based on the assumption that it is possible to

replicate contracts with cash flow streams by means of collateralized trading strategies. However,

interest rate markets are intrinsically incomplete since interest rates are not traded assets. We then

need to adapt the approach of Gnoatto and Seiffert [2021] to the setting of martingale modeling. The

idea is that introducing a contingent claim with a given and yet-to-be-determined price process into

an arbitrage-free market model does not introduce arbitrage opportunities. Another aspect is that

the formulas of Gnoatto and Seiffert [2021] were derived under a diffusive setting, namely without

jumps. We consider a more general setting and work with semimartingales as driving processes for

the market.

The approach is as follows: starting from the trading portfolio V (ϕ), we include in the market a

collateralized contingent claim with dividend flow. The inclusion of this additional asset must be done

in a coherent manner, namely without breaking the martingale property of the market. We start with

the following assumption.

Assumption 3.1. The processes (2.2) and (2.3) and stochastic integrals with respect to (2.2) and

(2.3) are true (Qk0 ,G)-martingales.

Thanks to Lemma 2.5, Assumption 3.1 guarantees that Ṽ (ϕ) is a true (Qk0 ,G)-martingale. As a

consequence, the basic market consisting only of the primary assets is free of arbitrage opportunities.

We now proceed to extend the market by introducing the contingent claim. In particular, we define

the dividend flow of a financial contract as in Gnoatto and Seiffert [2021, Definition 2.5], where we

exclude possible cash flows occurring at time zero as these would only represent a shift in the value of

the contract.

Definition 3.2. We define a financial contract as an arbitrary RCLL process Ak2 of finite variation

representing the cumulative cash flows paid by the contract in currency k2 from time 0 until the

maturity date T . By convention, we set Ak2
0 = 0.

We now introduce collateralization. In particular, we consider the cash-collateral convention, mean-

ing that the collateral is exchanged in cash, i.e., in units of an arbitrary currency k3, and not in terms

of units of a risky security. Rehypothecation is also allowed, meaning that the trader can use the

cash he/she receives to fund the trading activity. This constitutes the most adopted convention for

variation margin.
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We represent the collateral by a right-continuous G-adapted process Ck3 which is received or posted

by the trader in units of currency k3, with k3 = 1, . . . , L. In particular, for every time instant t ∈ [0, T ],

we denote with Ck3,+
t the value of collateral that is received by the trader from the counterparty at

time t, and with Ck3,−
t the value of collateral that is posted by the trader to the counterparty at time

t. We assume that the collateral account satisfies Ck3
T = 0, meaning that the collateral is returned

to its legal owner at the terminal time T . We also assume that the agent receives or pays interest

contingent on being the poster or the receiver of collateral: the trader receives interest payments based

on the rate rc,k3,l or pays interests based on the rate rc,k3,b.

We then introduce a contingent claim with dividend process Ak2 collateralized by means of Ck3 ,

and with price process in domestic currency Sk0(Ak2 , Ck3). We work under the following assumption.

Assumption 3.3. The price of the contingent claim Sk0(Ak2 , Ck3) depends only on the yet-to-be-

paid cash-flows, i.e. Sk0
T (Ak2 , Ck3) = 0, Qk0-a.s.. Moreover, for every 0 ≤ t ≤ T , we assume that

Sk0
t (Ak2 , Ck3) is integrable with respect to (Qk0 ,Gt).

We finally define the full-discounted value process of the claim including the evolution of the mark-

to-market and the collateralization procedure.

Definition 3.4. The discounted full-value process of the collateralized contingent claim Sk0(Ak2 , Ck3)

is defined by

M̃t : = S̃k0
t (Ak2 , Ck3) +

∫

(0,t]

X k0,k2
s

Bk0
s

dAk2
s

+

∫

(0,t]

[(
rk0s − rc,k3,bs

)
(Ck3

s )+ −
(
rk0s − rc,k3,ls

)
(Ck3

s )−
] X k0,k3

s

Bk0
s

ds

−
∫

(0,t]

Ck3
s

Bk0
s

X k0,k3
s (rk0s − rk3s )ds.

(3.1)

The various terms appearing in (3.1) have the following interpretation: S̃k0
t (Ak2 , Ck3) captures

the fluctuations of the mark-to-market of the contract that is held by the trader, who also receives

dividends during the lifetime of the contract. These dividends are reinvested in the unsecured cash

account which produces
∫
(0,t]

X
k0,k2
s

B
k0
s

dAk2
s . Moreover, the transaction is collateralized. If the trader

receives (Ck3)+, then he/she reinvests this amount at the unsecured rate rk0 and pays interests to the

counterparty at the rate rc,k3,b, thus giving rise to the funding spread rk0−rc,k3,b. Similar considerations

hold for the case when the trader posts the collateral amount (Ck3)−. Finally, the last term in (3.1)

captures the fluctuations of the collateral amount due to changes in the foreign exchange rate.

The next assumption is crucial in order to preserve absence of arbitrage.

Assumption 3.5. The process M̃ and stochastic integral with respect to M̃ are true (Qk0 ,G)-

martingales.

We now denote by ϕex = (ϕ, 1) the self-financing portfolio that invests in the basic traded assets

according to ϕ, and invests additionally one unit in the claim with discounted full-value process M̃ .

The portfolio is admissible in the sense of Definition 2.4, hence self financing, meaning that

dṼt(ϕ
ex) = dṼt(ϕ) + dM̃t.

Starting from an extended portfolio ϕex, we derive in the following theorem the price formula for

the contingent claim Sk0(Ak2 , Ck3).
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Theorem 3.6. Let Assumption 3.1, 3.3, 3.5 and the repo constraint (2.1) hold. Then the price in

units of currency k0 of a contingent claim with cash flows Ak2 and with collateral Ck3 is

Sk0
t (Ak2 , Ck3) = Bk0

t EQk0

[∫

(t,T ]

X k0,k2
s

Bk0
s

dAk2
s

+

∫

(t,T ]

[(
rk0s − rc,k3,bs

)
(Ck3

s )+ −
(
rk0s − rc,k3,ls

)
(Ck3

s )−
] X k0,k3

s

Bk0
s

ds

−
∫

(t,T ]

Ck3
s

Bk0
s

X k0,k3
s (rk0s − rk3s )ds

∣∣∣∣∣Gt

]
.

Proof. Combining Assumption 3.1 and Assumption 3.5, we deduce that Ṽt(ϕ
ex) is a true (Qk0 ,G)-

martingale. From the martingale property of Ṽt(ϕ
ex) we then get that

0 = EQk0
[
ṼT (ϕ

ex)− Ṽt(ϕ
ex)
∣∣∣Gt

]
= EQk0

[
M̃T − M̃t

∣∣∣Gt

]
,

from which, by Assumption 3.3, we deduce the expression for the price of the contingent claim. �

Notice that, modulo the different sign convention, the pricing formula derived in Theorem 3.6 is

equivalent to the pricing equation (6.10) in Gnoatto and Seiffert [2021]. We stress however, that

the present derivation does not assume a diffusive setting (in fact, it does not rely on any explicit

dynamics), nor relies on the concept of replication.

We now simplify the setting by introducing the following assumption.

Assumption 3.7. We shall assume that rc,k3,b = rc,k3,l, Qk0-a.s. for all k3 = 1, . . . , L.

We then set rc,k3 := rc,k3,b = rc,k3,l, and let Bc,k3 be the collateral cash account with interest rate

rc,k3 , namely

(3.2) B
c,k3
t := exp

{∫

(0,t]
rc,k3s ds

}
.

Under Assumption 3.7, we also introduce the following spreads capturing the discrepancy between

unsecured rates and collateral rates of different currency denominations.

Definition 3.8. Let 1 ≤ k0 ≤ L. We define:

(i) The liquidity spread qk0 as the difference between the unsecured funding rate rk0 and the

collateral rate rc,k0, namely qk0 := rk0 − rc,k0;

(ii) For any k3 6= k0, the cross-currency basis spread qk0,k3 as the difference between the liquidity

spread for the currency k0 and the liquidity spread for the currency k3, namely qk0,k3 :=

qk0 − qk3.

We then introduce the collateral cash account Bc,k0,k3 with interest rate rc,k0,k3 := rc,k0 + qk0,k3 ,

namely

(3.3) B
c,k0,k3
t := exp

{∫ t

0

(
rc,k0s + qk0,k3s

)
ds

}
.

We further say that the contingent claim with discounted full-value process (3.1) is perfectly or fully

collateralized if

Ck3 =
Sk0(Ak2 , Ck3)

X k0,k3
, dP⊗ dt-a.s..(3.4)
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In this case, the dynamics of M̃ in (3.1) simplifies to

dM̃t =
dSk0

t (Ak2 , Ck3)

Bk0
t

+
X k0,k2
t

Bk0
t

dAk2
t − Sk0

t (Ak2 , Ck3)

Bk0
t

(
r
c,k0
t + q

k0,k3
t

)
dt,(3.5)

and we obtain the following corollary.

Corollary 3.9. Let Assumption 3.1, 3.3, 3.5 and the repo constraint (2.1) hold. Then the price of a

fully collateralized contingent claim with cash-flows Ak2 and collateral Ck3 is

Sk0
t (Ak2 , Ck3) = B

c,k0,k3
t EQk0

[∫

(t,T ]

X k0,k2
s

B
c,k0,k3
s

dAk2
s

∣∣∣∣∣Gt

]
.(3.6)

Proof. From Assumption 3.5, we have that

0 = EQk0

[∫

(t,T ]

Bk0
s

B
c,k0,k3
s

dM̃s

∣∣∣∣∣Gt

]

= EQk0

[∫

(t,T ]

Bk0
s

B
c,k0,k3
s

(
dSk0

s (Ak2 , Ck3)

Bk0
s

+
X k0,k2
s

Bk0
s

dAk2
s − Sk0

s (Ak2 , Ck3)

Bk0
s

(
rc,k0s + qk0,k3s

)
ds

)∣∣∣∣∣Gt

]

= EQk0

[
Sk0
T (Ak2 , Ck3)

B
c,k0,k3
T

− Sk0
t (Ak2 , Ck3)

B
c,k0,k3
t

+

∫

(t,T ]

X k0,k2
s

B
c,k0,k3
s

dAk2
s

∣∣∣∣∣Gt

]
.

From Assumption 3.3, we have that Sk0
T (Ak2 , Ck3) = 0, hence we get the claim. �

The formula obtained in Corollary 3.9 generalizes (6.23) in Gnoatto and Seiffert [2021] to incomplete

markets possibly driven by jump-diffusion processes. From (3.6) we can also obtain generalizations of

formulas (6.24)-(6.26) of Gnoatto and Seiffert [2021].

Corollary 3.10. The following pricing formulas can be derived:

(i) k0 cash-flows collateralized in currency k0: this corresponds to k2 = k3 = k0 and we obtain

Sk0
t (Ak0 , Ck0) = EQk0

[∫

(t,T ]
e−

∫ s

t
r
c,k0
u dudAk0

s

∣∣∣∣∣Gt

]
,

so we discount using the domestic collateral rate. This is the valuation formula employed in

the whole literature on single-currency multiple-curve interest rate models.

(ii) k0 cash-flows collateralized in a currency k3: this corresponds to k2 = k0, k3 6= k0 and we

obtain

Sk0
t (Ak0 , Ck3) = EQk0

[∫

(t,T ]
e
−

∫ s

t

(

r
c,k0
u +q

k0,k3
u

)

du
dAk0

s

∣∣∣∣∣Gt

]
,

so that the foreign collateralization results in the appearance of the cross-currency basis in the

discount factor.

(iii) k2 cash-flows collateralized in currency k0: this corresponds to k2 6= k0, k3 = k0 and we obtain

Sk0
t (Ak2 , Ck0) = EQk0

[∫

(t,T ]
e−

∫ s

t
r
c,k0
u duX k0,k2

s dAk2
s

∣∣∣∣∣Gt

]
.

We conclude with a remark.

Remark 3.11. For deriving the pricing formula (3.6), we assumed that Sk0
T (Ak2 , Ck3) = 0 P-a.s.. If the

contract pays a single cash-flow at the terminal time T , then one obtains the same pricing formulas by

alternatively postulating that Ak2 = 0, dP⊗ dt-a.s., and by treating Sk0
T (Ak2 , Ck3) 6= 0 as the random
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terminal payoff of the contract. For such a simple instrument the two assumptions are equivalent.

This alternative viewpoint will be relevant in the next Section 3.1 when considering forward measures:

in this case we will make use of the well-known property of zero-coupon bonds being equal to one at

maturity.

3.1. Pricing of zero-coupon bonds. We have obtained pricing formulas for contingent claims under

arbitrary currency configurations for the promised cash flows and for the collateralization agreement.

We proceed now to treat zero-coupon bonds as a special case of this setting. This will serve as basis for

term-structure models in Sections 5 and 6. We shall use the shorthand ZCB for zero-coupon bonds.

Remark 3.12. Due to the martingale properties postulated in Section 3, we find it convenient to work

directly with the process M̃ instead of working with the whole extended portfolio. The derivation of

equivalent formulas with the extended portfolio is left to the reader.

3.1.1. Domestic ZCB with domestic collateral. Let T ≥ 0 and denote the price process of a domestic

ZCB collateralized in domestic currency by
{
Bk0,k0(t, T ), 0 ≤ t ≤ T

}
. In the notation of Section 3,

this corresponds to k2 = k3 = k0. Moreover,

Sk0
t (Ak2 , Ck3) = Bk0,k0(t, T ), and Ak2

t = Ak0
t = 1{t=T}.

Since X k0,k0 = 1, dP⊗ dt-a.s., full collateralization takes from equation (3.4) the simpler form

Ck3
t = Ck0

t =
Bk0,k0(t, T )

X k0,k0
t

= Bk0,k0(t, T ).

The process M̃ in (3.5) simplifies then to

dM̃t =
dBk0,k0(t, T )

Bk0
t

+
1

Bk0
t

d1{t=T} −
Bk0,k0(t, T )

Bk0
t

r
c,k0
t dt,

and from the pricing formula (3.6) we get that

Bk0,k0(t, T ) = B
c,k0
t EQk0

[
1

B
c,k0
T

∣∣∣∣∣Gt

]
,(3.7)

with Bc,k0 the bank account defined in (3.2). Equation (3.7) represents the pricing formula for a

so-called OIS bond as in, e.g., Cuchiero et al. [2016] and Cuchiero et al. [2019]. Holdings in these

bonds are funded by holdings in the asset-specific cash account Bc,k0 .

3.1.2. Domestic ZCB with foreign collateral. Let T ≥ 0 and denote the price process of a domestic

ZCB collateralized in foreign currency by
{
Bk0,k3(t, T ), 0 ≤ t ≤ T

}
. In the notation of Section 3, this

corresponds to k2 = k0 and k3 6= k0. Moreover,

Sk0
t (Ak2 , Ck3) = Bk0,k3(t, T ), and Ak2

t = Ak0
t = 1{t=T}.

Full collateralization from equation (3.4) means that

Ck3
t =

Bk0,k3(t, T )

X k0,k3
t

,

and the process M̃ in (3.5) takes the form

dM̃t =
dBk0,k3(t, T )

Bk0
t

+
1

Bk0
t

d1{t=T} −
Bk0,k3(t, T )

Bk0
t

(rc,k0t + q
k0,k3
t )dt.
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From the pricing formula (3.6) we get that

Bk0,k3(t, T ) = B
c,k0,k3
t EQk0

[
1

B
c,k0,k3
T

∣∣∣∣∣Gt

]
,(3.8)

where Bc,k0,k3 is the bank account defined in (3.3). Notice that the currency dislocation in the

collateralization schemes results in the presence of a second term structure of zero-coupon bonds that

are funded by means of the newly introduced asset-specific cash account Bc,k0,k3 .

3.1.3. Foreign ZCB with domestic collateral. Let T ≥ 0 and denote the price process of a foreign ZCB

collateralized in domestic currency by
{
Bk2,k0(t, T ), 0 ≤ t ≤ T

}
. In the notation of Section 3, this

corresponds to k3 = k0 and k2 6= k0. Moreover,

Sk0
t (Ak2 , Ck3) = X k0,k2

t Bk2,k0(t, T ), and Ak2
t = 1{t=T}.

Full collateralization from equation (3.4) means that

Ck3
t =

X k0,k2
t Bk2,k0(t, T )

X k0,k0
t

= X k0,k2
t Bk2,k0(t, T ),

and the process M̃ in (3.5) takes the form

dM̃t =
d
(
X k0,k2
· Bk2,k0(·, T )

)
t

Bk0
t

+
X k0,k2
t

Bk0
t

d1{t=T} −
X k0,k2
t Bk2,k0(t, T )

Bk0
t

r
c,k0
t dt.

From the pricing formula (3.6) we then get that

X k0,k2
t Bk2,k0(t, T ) = B

c,k0
t EQk0

[
X k0,k2
T

B
c,k0
T

∣∣∣∣∣Gt

]
,(3.9)

with Bc,k0 the bank account defined in (3.2).

3.1.4. Domestic ZCB without collateral. Let T ≥ 0 and denote the price of a fully unsecured ZCB

in domestic currency by
{
Bk0(t, T ), 0 ≤ t ≤ T

}
. In the notation of Section 3, this corresponds to

k2 = k0 and Ck3 = 0, dP⊗ dt-a.s.. Then

Sk0
t (Ak2 , Ck3) = Bk0(t, T ), Ak2

t = Ak0
t = 1{t=T},

and the process M̃ in (3.5) simplifies significantly to

dM̃t =
dBk0(t, T )

Bk0
t

+
1

Bk0
t

d1{t=T} −
Bk0(t, T )

Bk0
t

rk0t dt,

with rk0 being the unsecured rate. From the pricing formula (3.6) we then get that

Bk0(t, T ) = Bk0
t EQk0

[
1

Bk0
T

∣∣∣∣∣Gt

]
.

This corresponds to a textbook pre-financial-crisis ZCB linked to the unsecured bank account Bk0 .

4. Measure changes

We considered so far the domestic risk-neutral measure Qk0 . This is the measure such that the

processes (2.2) and (2.3) are (local) martingales, and we have used Qk0 as the pricing measure to

obtain pricing formulas from the point of view of an agent in the economy k0. We shall introduce in

this sections new measures which naturally arise in our framework and which will be crucial for the
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HJM modelling in Sections 5 and 6. More specifically, we shall introduce spot-foreign measures and

forward measures.

4.1. Spot-foreign measures. Under Assumption 3.1, we introduce spot-foreign risk-neutral mea-

sures as follows.

Definition 4.1. Under Assumption 3.1, let 1 ≤ k2 ≤ L with k2 6= k0. We define the Qk2 (spot)-foreign

risk-neutral measure Qk2 ∼ Qk0 on (Ω,G) by

∂Qk2

∂Qk0
:=

Bk2
T X k0,k2

T

Bk0
T

Bk0
0

Bk2
0 X k0,k2

0

.

Due to the martingale property of (2.3) we have that

∂Qk2

∂Qk0

∣∣∣∣
Gt

= EQk0

[
∂Qk2

∂Qk0

∣∣∣∣Gt

]
=
Bk2

t X k0,k2
t

Bk0
t

Bk0
0

Bk2
0 X k0,k2

0

, for all t ≤ T.(4.1)

This family of measures allows to price ZCBs from different point of views, as illustrated in the

following two examples.

4.1.1. Foreign ZCB with foreign collateral under the domestic measure. We consider a k2-ZCB collat-

eralized in currency k2 from the point of view of the domestic measure Qk0 . Performing a measure

change from Qk0 to Qk2 allows to obtain the dual formula to (3.7), namely the dual formula to the

price of a domestic ZCB with domestic collateral under the domestic measure. In this case, we have

k3 = k2 and k0 6= k2. In the notation of Section 3 we then have

Sk0
t (Ak2 , Ck3) = X k0,k2

t Bk2,k2(t, T ), and Ak2
t = 1{t=T}.

Notice that full collateralization in equation (3.4) takes now the form

Ck3
t =

X k0,k2
t Bk2,k2(t, T )

X k0,k2
t

= Bk2,k2(t, T ),

and the process M̃ in (3.5) satisfies

dM̃t =
d
(
X k0,k2
· Bk2,k2(·, T )

)
t

Bk0
t

+
X k0,k2
t

Bk0
t

dAk2
t − X k0,k2

t Bk2,k2(t, T )

Bk0
t

(
r
c,k0
t + q

k0,k2
t

)
dt.

From the pricing formula (3.6) we finally get that

X k0,k2
t Bk2,k2(t, T ) = B

c,k0,k2
t EQk0

[
X k0,k2
T

B
c,k0,k2
T

∣∣∣∣∣Gt

]
,(4.2)

which provides us with the pricing formula for a k2-foreign bond collateralized in the currency k2 from

the point of view of a k0-based agent. By equation (4.1), we now perform a change of measure on the

right-hand side of (4.2) and change to the pricing measure Qk2 :

X k0,k2
t Bk2,k2(t, T ) = B

c,k0,k2
t EQk2

[
X k0,k2
T

B
c,k0,k2
T

Bk0
T

X k0,k2
T Bk2

T

∣∣∣∣∣Gt

]
X k0,k2
t Bk2

t

Bk0
t

.

Notice that

Bk0
T

B
c,k0,k2
T Bk2

T

= exp

{∫ T

0

(
rk0s − rk2s − (rc,k0s + qk0,k2s )

)
ds

}
= exp

{
−
∫ T

0
rc,k2s ds

}
=

1

B
c,k2
T

,
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hence equation (4.2) simplifies to

Bk2,k2(t, T ) = B
c,k2
t EQk2

[
1

B
c,k2
T

∣∣∣∣∣Gt

]
.

This is the formula for the same contract under the dual measure Qk2 , which is the same as the

previously obtained formula (3.7) in Section 3.1.1 for k2 = k0.

4.1.2. Foreign ZCB with domestic collateral under the foreign measure. We consider a k2-ZCB with

domestic collateral as in Section 3.1.3. With a measure change from Qk0 to Qk2 we will obtain a dual

valuation formula under the foreign measure which is consistent with equation (3.8) of Section 3.1.2,

namely with the pricing formula of a domestic ZCB with foreign collateralization.

Starting from equation (3.9), we perform a change of measure to Qk2 accordingly to equation (4.1):

X k0,k2
t Bk2,k0(t, T ) = B

c,k0
t EQk0

[
X k0,k2
T

B
c,k0
T

∣∣∣∣∣Gt

]
= B

c,k0
t EQk2

[
X k0,k2
T

B
c,k0
T

Bk0
T

Bk2
T X k0,k2

T

∣∣∣∣∣Gt

]
Bk2

t X k0,k2
t

Bk0
t

,

which leads to

Bk2,k0(t, T ) =
B

c,k0
t Bk2

t

Bk0
t

EQk2

[
Bk0

T

B
c,k0
T Bk2

T

∣∣∣∣∣Gt

]
.(4.3)

Notice that

Bk0
T

B
c,k0
T Bk2

T

= exp

{∫ T

0

(
rk0s − rc,k0s − rk2s

)
ds

}
= exp

{
−
∫ T

0

(
rc,k2s + qk2,k0s

)
ds

}
=

1

B
c,k2,k0
T (t, T )

,

hence (4.3) becomes

Bk2,k0(t, T ) = B
c,k2,k0
t EQk2

[
1

B
c,k2,k0
T

∣∣∣∣∣Gt

]
.

This corresponds to (3.8) with flipped currency indices.

4.2. Forward measures. Recall from Remark 3.11, that ZCBs are contracts with zero dividend

process and a terminal price of one unit of currency. Then, from Section 3.1, we obtain that, under

Assumption 3.1, 3.3, 3.5 and under the repo constraint (2.1), the processes
(
Bk0,k0(t, T )

B
c,k0
t

)

0≤t≤T

,

(
Bk0,k3(t, T )

B
c,k0,k3
t

)

0≤t≤T

, and

(
Bk0(t, T )

Bk0
t

)

0≤t≤T

,(4.4)

are martingales for every choice of the indices k1, k2, and k3. This shows that including ZCBs with

different funding strategies corresponds to including new risky assets together with their asset-specific

cash-accounts: each new asset is funded by an associated asset-specific cash account, hence giving rise

to further repo constraints of the form (2.1).

Furthermore, the martingales in (4.4) may serve as density processes for new probability measures.

We shall introduce some of them in the following definition: the list is not exhaustive, but covers all

the essential tools that are needed for cross-currency term-structure modeling. In particular, notice

that classical forward measure are defined up to the maturity of the corresponding ZCB. For later use,

we adopt the approach of Lyashenko and Mercurio [2019] and extend the concept of forward measure

by considering as numéraire the self-financing strategy that after the maturity of the corresponding

ZCB, say T , reinvests the notional into the corresponding cash account.

Definition 4.2. Let T ≥ 0 be fixed. We define the following forward measures:
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(i) The domestic-collateralized domestic T -forward measure QT,k0,k0 ∼ Qk0 on (Ω,G) is defined

via the Radon-Nikodym derivative

∂QT,k0,k0

∂Qk0
:=

Bk0,k0(T, T )

B
c,k0
T

B
c,k0
0

Bk0,k0(0, T )
.

In particular:

(a) For t ≤ T we have

∂QT,k0,k0

∂Qk0

∣∣∣∣
Gt

= EQk0

[
∂QT,k0,k0

∂Qk0

∣∣∣∣Gt

]
=
Bk0,k0(t, T )

B
c,k0
t

B
c,k0
0

Bk0,k0(0, T )
;

(b) For t > T , since Bk0,k0(t, T ) =
B

c,k0
t

B
c,k0
T

, we define

∂QT,k0,k0

∂Qk0

∣∣∣∣
Gt

:=
1

B
c,k0
T

B
c,k0
0

Bk0,k0(0, T )
,

hence QT,k0,k0 ≡ Qk0 on t > T .

(ii) The k3-collateralized domestic T -forward measure QT,k0,k3 ∼ Qk0 on (Ω,G) is defined via the

Radon-Nikodym derivative

∂QT,k0,k3

∂Qk0
:=

Bk0,k3(T, T )

B
c,k0,k3
T

B
c,k0,k3
0

Bk0,k3(0, T )
.(4.5)

In particular:

(a) For t ≤ T we have

∂QT,k0,k3

∂Qk0

∣∣∣∣
Gt

= EQk0

[
∂QT,k0,k3

∂Qk0

∣∣∣∣Gt

]
=
Bk0,k3(t, T )

B
c,k0,k3
t

B
c,k0,k3
0

Bk0,k3(0, T )
;

(b) For t > T , since Bk0,k3(t, T ) =
B

c,k0,k3
t

B
c,k0,k3
T

, we define

∂QT,k0,k3

∂Qk0

∣∣∣∣
Gt

:=
1

B
c,k0,k3
T

B
c,k0,k3
0

Bk0,k3(0, T )
,

hence QT,k0,k3 ≡ Qk0 on t > T .

(iii) The uncollateralized/unsecured domestic T -forward measure QT,k0 ∼ Qk0 on (Ω,G) is defined

via the Radon-Nikodym derivative

∂QT,k0

∂Qk0
:=

Bk0(T, T )

Bk0
T

Bk0
0

Bk0(0, T )
.

In particular:

(a) For t ≤ T we have

∂QT,k0

∂Qk0

∣∣∣∣
Gt

= EQk0

[
∂QT,k0

∂Qk0

∣∣∣∣Gt

]
=
Bk0(t, T )

Bk0
t

Bk0
0

Bk0(0, T )
;

(b) For t > T , since Bk0(t, T ) =
B

k0
t

B
k0
T

, we define

∂QT,k0

∂Qk0

∣∣∣∣
Gt

:=
1

Bk0
T

Bk0
0

Bk0(0, T )
,

hence QT,k0 ≡ Qk0 on t > T .
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Qk0−1 Qk0 Qk0+1

QT,k0−1,k0−1 QT,k0−1,k3 QT,k0,k0 QT,k0,k3 QT,k0+1,k0+1 QT,k0,k3

∂QT,k0+1,k0+1

∂Qk0+1
∂QT,k0,k0

∂Qk0

∂QT,k0−1,k0−1

∂Qk0−1
∂QT,k0−1,k3

∂Qk0−1
∂QT,k0,k3

∂Qk0

∂QT,k0+1,k3

∂Qk0+1

∂Qk0

∂Qk0−1
∂Qk0+1

∂Qk0

. . . . . .

Figure 2. This graph summarizes (a part of) the relations between the different pric-
ing measures. Each node in the graph is a pricing measure and each edge represents the
link between two probability measures via a suitable Radon-Nikodym derivative. For
the sake of readability, we only plot the Radon-Nikodym derivatives with respect to the
spot measures. However, each node of the graph can be linked to all the other nodes.
For illustrative purposes, we represent these relations only for the forward measure
QT,k0−1,k0−1 (blue arrows).

Figure 2 summarizes some of the relations between the different pricing measures.

Remark 4.3. We observe that the domestic-collateralized domestic T -forward measure that uses T -OIS

bonds as numéraire is the one typically employed in the literature on single-currency multiple-curve

models, such as Cuchiero et al. [2016] and Cuchiero et al. [2019]. Our general setting, however,

highlights the fact that there is no need to assume (as in the references above) that the OIS bank

account is the numéraire of Qk0 (in fact, it is not): under Qk0 , as we have seen, we have that multiple

assets with different funding strategies are simultaneously martingales with no cash account playing

the role of universal numéraire for all the risky assets.

5. Cross-currency HJM framework

The previous sections served the purpose of introducing a general valuation setup in the multi-

currency setting, where in each currency we have a multitude of interest rates and risky assets. The

results were formulated in an (almost) model-free setting: the only assumption is that certain processes

are martingales. The aim of this section is to set some of these processes “in motion” by introducing a

general HJM framework that accounts for a multitude of features of the cross-currency multiple-curve

market.

So far, we mainly adopted the point of view of a k0-based investor with associated risk-neutral

measure Qk0 . Here, we will instead consider a generic k0 currency, 1 ≤ k0 ≤ L, in order to provide a

symmetric treatment of the different currency areas. We aim to construct a modeling framework that

takes into account the intimate links existing among the different curves. In view of this, instead of

directly modeling all the families of ZCBs, we choose to fix a reference curve for each currency area,
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and to model the remaining curves by means of (either positive or real-valued) spreads with respect

to the reference curve. This is intuitive from a financial point of view and in line with the modeling

philosophy of Cuchiero et al. [2016].

In the following, for dX ∈ N, let X = (Xt)t≥0 be an RdX -valued Itô semimartingale with differential

characteristics (b, c,K) with respect to a truncation function χ. We recall the notion of local exponent

(see also Kallsen and Krühner [2013, Definition A.6]), which we state under the probability space

(Ω,G,G,P).

Definition 5.1. Let β = (βt)t≥0 an RdX -valued predictable and X-integrable process. The local ex-

ponent of X at β under the measure P is a predictable real-valued process (ΨP,X
t (βt))t≥0 such that(

exp(
∫ t

0 βsdXs −
∫ t

0 Ψ
P,X
s (βs)ds)

)
t≥0

is a local (P,G)-martingale. We denote by UP,X the set of pro-

cesses β such that ΨP,X(β) exists.

Moreover, with the following lemma we can express the local exponent in Lévy-Kintchine form.

Lemma 5.2. For any β ∈ UP,X , outside some dP⊗ dt-nullset, it holds that

ΨP,X
t (βt) = β⊤t bt +

1

2
β⊤t ctβt +

∫ (
eβ

⊤
t ξ − 1− β⊤t χ(ξ)

)
Kt(dξ).

Moreover, the gradient ∇βt
ΨP,X

t (βt) of ΨP,X
t (βt) in the direction of βt is the RdX -valued vector given

by

(5.1) ∇βt
ΨP,X

t (βt) = bt + ctβt +

∫ (
eβ

⊤
t ξξ − χ(ξ)

)
Kt(dξ).

We shall use the shorthand ∇ΨP,X
t (βt) := ∇βt

ΨP,X
t (βt).

Proof. For the first part, see Cuchiero et al. [2016, Proposition 3.3]. Equation (5.1) is obtained by

simple computations. �

We first focus on ZCBs prices. Starting from the particular configuration of the process M̃ in

Section 3, we know that
(
Bk0,k0(t, T )

B
c,k0
t

)

0≤t≤T

, and

(
Bk0,k3(t, T )

B
c,k0,k3
t

)

0≤t≤T

are (Qk0 ,G)-martingales. We now specify suitable HJM frameworks which allow to model these two

families of ZCBs.

Remark 5.3. The results of the present paper can be suitably adjusted to include the case of stochastic

discontinuities as in Fontana et al. [2023]. The estimation of term-structure models in the presence

of stochastic discontinuities due to the action of the central bank is delicate: in the aftermath of the

financial crisis, most central banks adopted a near-zero interest rate policy for several years without

significant changes. Hence the statistical basis for the estimation of models with stochastic discontinu-

ities, in particular for the estimation of the jumps size of the distribution, is rather limited. Backwell

and Hayes [2022], recognizing the above challenge, postulate a distribution for the jumps size without

performing a statistical estimation of the jumps linked to the monetary policy. In view of this, we

choose not to pursue such a direction.

5.1. HJM framework for collateral discount curves. We first concentrate on the domestic bond

with domestic collateral. This is the case that is considered by the whole literature on multiple-curve

models. The terminology OIS bond is common for this process, since the market-observed initial term
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structure of such ZCBs is obtained from a bootstrap procedure applied to overnight indexed swaps

(OIS).

We consider a filtered probability space (Ω,G,G,Q1, . . . ,QL) with the filtration G = (Gt)t≥0 satisfy-

ing the usual assumptions. On the probability space we postulate the existence of multiple probability

measures Qk0 , for 1 ≤ k0 ≤ L. Following Cuchiero et al. [2016], we introduce a term-structure model

for {(Bk0,k0(t, T ))t∈[0,T ], T ≥ 0} for each currency k0. Let P denote the predictable σ-algebra.

Definition 5.4. We say that the triple (f, α, σ) satisfies the HJM-basic condition, if:

(i) The map f : R+ → R is measurable with
∫ T

0 |f(u)|du <∞, Qk0-a.s. for all T ∈ R+;

(ii) The map (ω, t, T ) 7→ αt(T )(ω) is a P ⊗ B(R+)-measurable R-valued process such that∫ t

0

∫ T

0 |αs(u)|duds <∞, Qk0-a.s. for all t, T ∈ R+;

(iii) The map (ω, t, T ) 7→ σt(T )(ω) is P ⊗ B(R+)-measurable RdX -valued process such that
∫ T

0 σt(u)
⊤σt(u)du < ∞, Qk0-a.s. for all t, T ∈ R+, and the process

((∫ T

0 |σt,j(u)|2du
) 1

2

)

t≥0
is integrable with respect to the j-th component of the semimartingale X.

Definition 5.5. For any 1 ≤ k0 ≤ L, a bond-price model for the currency k0 is a quintuple

(Bc,k0 , X, f
c,k0
0 , αc,k0 , σc,k0) where

(i) The collateral cash account Bc,k0 is absolutely continuous with respect to the Lebesgue measure,

i.e. Bc,k0
t = e

∫ t

0 r
c,k0
s ds with collateral short rate rc,k0 = (rc,k0t )t≥0;

(ii) X is an RdX -valued Itô semimartingale;

(iii) The triple (f c,k00 , αc,k0 , σc,k0) satisfies the HJM-basic condition in Definition 5.4;

(iv) For every T ∈ R+, the instantaneous collateral forward rate (f c,k0t (T ))t∈[0,T ] is given by

f
c,k0
t (T ) = f

c,k0
0 (T ) +

∫ t

0
αc,k0
s (T )ds+

∫ t

0
σc,k0s (T )dXs;(5.2)

(v) The k0-collateralized k0-ZCB prices {(Bk0,k0(t, T ))t∈[0,T ], T≥0} satisfy

(5.3) Bk0,k0(t, T ) = e−
∫ T

t
f
c,k0
t (u)du,

for all t ≤ T and T ≥ 0. Moreover Bk0,k0(t, t) = 1 for all t ≥ 0.

Next, we characterize the measures Qk0 as the “domestic” risk-neutral measure for each economy

k0. This is in line with the previously introduced measure Qk0 . The next definition is in line with

Cuchiero et al. [2016, Definition 3.9].

Definition 5.6. Let 1 ≤ k0 ≤ L. We say that the bond price model for the k0-collateralized k0-ZCBs

is risk-neutral if the processes




(
Bk0,k0(t, T )

B
c,k0
t

)

t∈[0,T ]

, T ≥ 0



(5.4)

are (Qk0 ,G)-martingales.

We stress the fact that (5.4) being martingales does not mean that the cash account Bc,k0 is the

numéraire of the measure Qk0 . In fact, it is not. As we have seen in Section 3, Bc,k0 is the specific

funding account of the k0-collateralized k0-ZCB. When considering multiple risky assets in the k0

economy as in Section 2, it becomes clear that Bc,k0 is only the funding account for one of the several

risky assets in the economy. We also recall that, in order to prevent arbitrage opportunities, it is
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sufficient to impose the repo constraint (2.1) together with the assumption that both (2.2) and (2.3)

are Qk0-martingales.

We shall now characterize the martingale property for the family of processes in (5.4). Let

Σc,k0
t (T ) :=

∫ T

t

σ
c,k0
t (u)du.

We state the following result.

Proposition 5.7. Let 1 ≤ k0 ≤ L and 0 ≤ t ≤ T . The followings are equivalent:

(i) The bond-price model for the currency k0 is risk neutral;

(ii) The conditional expectation hypothesis holds, i.e.

EQk0

[
B

c,k0
t

B
c,k0
T

∣∣∣∣∣Gt

]
= e−

∫ T

t
f
c,k0
t (u)du;

(iii) The process −Σc,k0
t (T ) ∈ UQk0 ,X and the following conditions are satisfied:

(a) The process
(
exp

{
−
∫ t

0
Σc,k0
s (T )dXs −

∫ t

0
ΨQk0 ,X

s (−Σc,k0
s (T ))ds

})

t∈[0,T ]

is a (Qk0 ,G)-martingale;

(b) The consistency condition holds, meaning that

Ψ
Qk0 ,−

∫

·

0 r
c,k0
s ds

t (1) = −rc,k0t− = −f c,k0t− (t);(5.5)

(c) The HJM drift condition
∫ T

t

α
c,k0
t (u)du = ΨQk0 ,X

t (−Σc,k0
t (T ))(5.6)

holds.

Proof. See the proof of Cuchiero et al. [2016, Proposition 3.9]. �

Corollary 5.8. If the bond-price model for the currency k0 is risk neutral, then:

(i) For every T > 0, the instantaneous collateral forward rate (f c,k0t (T ))t∈[0,T ] is given by

f
c,k0
t (T ) = f

c,k0
0 (T )−

∫ t

0
σc,k0s (T )∇ΨQk0 ,X

s (−Σc,k0
s (T ))ds+

∫ t

0
σc,k0s (T )dXs;(5.7)

(ii) For every t ≥ 0, the collateral short rate rc,k0t at time t is given by

r
c,k0
t = f

c,k0
0 (t)−

∫ t

0
σc,k0s (t)∇ΨQk0 ,X

s (−Σc,k0
s (t))ds+

∫ t

0
σc,k0s (t)dXs.

Proof. By taking the derivative with respect to T > 0 on both sides of equation (5.6) we get

(5.8) α
c,k0
t (T ) =

∂ΨQk0 ,X
t (−Σc,k0

t (T ))

∂T
= −σc,k0t (T )∇ΨQk0 ,X

t (−Σc,k0
t (T )).

By substituting equation (5.8) into (5.2) we get (i). By letting t→ T we then obtain (ii). �

Remark 5.9. We remark that if X is a standard Brownian motion, then the differential characteristics

of X are (0, IdX , 0), where IdX denotes the identity matrix of dimension dX . Hence

∇ΨQk0 ,X
t (−Σc,k0

t (T )) = −Σc,k0
t (T ),
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and we recover the classical formulation for the instantaneous collateral forward rate, namely

f
c,k0
t (T ) = f

c,k0
0 (T ) +

∫ t

0
σc,k0s (T )

(∫ T

s

σc,k0s (u)du

)
ds+

∫ t

0
σc,k0s (T )dXs,

as found, e.g, in Filipović [2009, Theorem 6.1].

5.2. HJM framework for cross-currency basis curves. The previous results conveniently sum-

marize the HJMmethodology applied to the domestic-collateralized domestic-ZCBs,
(
Bk0,k0(t, T )

)
t∈[0,T ]

,

for every currency denomination 1 ≤ k0 ≤ L. The next step is to model foreign-collateralized domestic-

ZCBs,
(
Bk0,k3(t, T )

)
t∈[0,T ]

, for every T ≥ 0. The starting point is the result in Section 3.1.2 accordingly

to which the processes
(
Bk0,k3(t, T )

B
c,k0,k3
t

)

t∈[0,T ]

should be (Qk0 ,G)-martingales. We formulate this requirement in the following assumption.

Assumption 5.10. For all 1 ≤ k0, k3 ≤ L with k0 6= k3, we assume that the processes




(
Bk0,k3(t, T )

B
c,k0,k3
t

)

t∈[0,T ]

, T ≥ 0





are (Qk0 ,G)-martingales.

One possible approach is to introduce a specific bond-price model for Bk0,k3(t, T ) in the spirit

of Definition 5.5. This, however, would not exploit the link between Bk0,k0(t, T ) and Bk0,k3(t, T ),

and would lead to some redundancy. With a similar approach to Cuchiero et al. [2016], one can

instead model the multiplicative spread between Bk0,k0(t, T ) and Bk0,k3(t, T ). By doing this, the

previously studied domestic-collateralized domestic-ZCB price models serve as reference curves, while

the remaining curves are obtained by means of spreads with respect to these reference curves. In

particular, this will lead us to construct a HJM framework for the instantaneous cross-currency basis

spreads {(qk0,k3t (T ))t∈[0,T ], T ≥ 0}.
We first define the modeling quantities.

Definition 5.11. Let t ∈ [0, T ] with T ≥ 0, and 1 ≤ k0, k3 ≤ L such that k0 6= k3. We define the

k0-k3 cross-currency spread bond via

Qk0,k3(t, T ) :=
Bk0,k3(t, T )

Bk0,k0(t, T )
,(5.9)

and the k0-k3 cross-currency spread cash account Qk0,k3 = (Qk0,k3
t )t≥0 by setting

Q
k0,k3
t := e

∫ t

0 q
k0,k3
s ds,

with qk0,k3 being the k0-k3 cross-currency basis spreads introduced in Definition 3.8.

The following lemma states the relevant martingale property for our purposes.

Lemma 5.12. Let 1 ≤ k0, k3 ≤ L with k0 6= k3 and T ≥ 0. Assume that the bond-price model for the

k0-collateralized k0-ZCB is risk neutral. Then Assumption 5.10 holds if and only if the processes




(
Qk0,k3(t, T )

Q
k0,k3
t

)

t∈[0,T ]

, T ≥ 0





are (QT,k0,k0 ,G)-martingales.
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Proof. We use the Bayes’s formula for conditional expectations. For some fixed 1 ≤ k0, k3 ≤ L with

k0 6= k3 and T ≥ 0, the process

(
Qk0,k3 (t,T )

Q
k0,k3
t

)

t∈[0,T ]

is a (QT,k0,k0 ,G)-martingale if and only if the

process
(
Qk0,k3(t, T )

Q
k0,k3
t

Bk0,k0(t, T )

B
c,k0
t Bk0,k0(0, T )

)

t∈[0,T ]

is a (Qk0 ,G)-martingale. Since Qk0,k3 (t,T )

Q
k0,k3
t

Bk0,k0 (t,T )

B
c,k0
t

= Bk0,k3 (t,T )

B
c,k0,k3
t

, we then conclude thanks to Assump-

tion 5.10. �

Remark 5.13. We understand from Lemma 5.12 that cross-currency spread models should satisfy the

martingale property under the forward measure QT,k0,k0 . Looking at the time series of cross-currency

basis swaps in Figure 1, we also observe that cross-currency spreads could be positive or negative and

could exhibit a term structure of different shapes (either increasing or decreasing). This is different

from the IBOR-OIS basis considered in Cuchiero et al. [2016]: the multiplicative spot spreads between

OIS and IBORs is indeed greater than one and is increasing with respect to the tenor length. This

poses us in a more flexible modelling setting.

For any given currency k0, we shall now put together a bond price model for the k0-collateralized

k0-ZCBs with a family of L − 1 models for the k0-k3 cross-currency bond spreads. We call such a

combination an extended bond price model.

Definition 5.14. Let 1 ≤ k0 ≤ L be fixed. We call a model consisting of

I. The RdX+L-valued Itô semimartingale (X,Qk0,1, . . . , Qk0,k0−1, Qk0,k0+1 . . . , Qk0,L, Bc,k0);

II. The functions f c,k00 , q
k0,1
0 , . . . , q

k0,k0−1
0 , q

k0,k0+1
0 , . . . , q

k0,L
0 ;

III. The processes

αc,k0 , αk0,1, . . . , αk0,k0−1, αk0,k0+1, . . . , αk0,L,

and

σc,k0 , σk0,1, . . . , σk0,k0−1, σk0,k0+1, . . . , σk0,L;

an extended bond-price model for the currency k0, if for every k3 6= k0 the following conditions are

satisfied:

(i) The quintuple (Bc,k0 , X, f
c,k0
0 , αc,k0 , σc,k0) is a bond-price model in the sense of Definition 5.5.

(ii) The k0-k3 cross-currency spread cash account Qk0,k3 is absolutely continuous with respect to the

Lebesgue measure, i.e. Qk0,k3
t = e

∫ t

0 q
k0,k3
s ds with cross-currency basis rate qk0,k3 = (qk0,k3t )t≥0;

(iii) The triple (qk0,k30 , αk0,k3 , σk0,k3) satisfies the HJM-basic condition in Definition 5.4;

(iv) For T ∈ R+, the instantaneous cross-currency basis spread (qk0,k3t (T ))t∈[0,T ] is given by

q
k0,k3
t (T ) = q

k0,k3
0 (T ) +

∫ t

0
αk0,k3
s (T )ds+

∫ t

0
σk0,k3s (T )dXs;

vi) The k0-k3 cross-currency spread bonds {(Qk0,k3(t, T ))t∈[0,T ], T ≥ 0} satisfy

(5.10) Qk0,k3(t, T ) = e−
∫ T

t
q
k0,k3
t (u)du

for all t ≤ T and T ≥ 0. Moreover Qk0,k3(t, t) = 1 for all t ≥ 0.

Remark 5.15. We point out that for each currency k0, the dynamics of the instantaneous cross-currency

basis spreads qk0,k3t (T ) are defined under the measure Qk0 .
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The next definition naturally collects the martingale conditions that are relevant in the current

setting.

Definition 5.16. Let 1 ≤ k0 ≤ L. We say that the extended bond-price model for the currency k0 is

risk neutral if the following conditions hold:

(i) The bond-price model for the k0-collateralized k0-ZCB (Bc,k0 , X, f
c,k0
0 , αc,k0 , σc,k0) is risk neu-

tral in the sense of Definition 5.6;

(ii) For each 1 ≤ k3 ≤ L with k3 6= k0 and T ≥ 0, the processes




(
Qk0,k3(t, T )

Q
k0,k3
t

)

t∈[0,T ]

, T ≥ 0





are (QT,k0,k0 ,G)-martingales.

The next result characterizes condition (ii) of Definition 5.16. We define

Σk0,k3
t (T ) :=

∫ T

t

σ
k0,k3
t (u)du.

Theorem 5.17. Let 1 ≤ k0 ≤ L and 0 ≤ t ≤ T . For an extended bond-price model for the currency

k0 satisfying condition (i) of Definition 5.16, the followings are equivalent:

(i) The extended bond-price model satisfies condition (ii) of Definition 5.16;

(ii) For every k3 6= k0, the conditional expectation hypothesis holds, i.e.

EQT,k0,k0

[
Q

k0,k3
t

Q
k0,k3
T

∣∣∣∣∣Gt

]
= e−

∫ T

t
q
k0,k3
t (u)du;

(iii) For every k3 6= k0, the process −
(
Σc,k0(T ) + Σk0,k3(T )

)
∈ UQk0 ,X and the following conditions

are satisfied:

(a) The process
(
exp

{
−
∫ t

0

(
Σc,k0
s (T ) + Σk0,k3

s (T )
)
dXs −

∫ t

0
ΨQk0 ,X

s (−Σc,k0
s (T )− Σk0,k3

s (T ))ds

})

t∈[0,T ]

(5.11)

is a (Qk0 ,G)-martingale;

(b) The consistency condition holds, meaning that

Ψ
Qk0 ,−

∫

·

0 q
k0,k3
s ds

t (1) = −qk0,k3t− = −qk0,k3t− (t);(5.12)

(c) The HJM drift condition
∫ T

t

α
k0,k3
t (u)du = ΨQk0 ,X

t (−Σc,k0
t (T )− Σk0,k3

t (T ))−ΨQk0 ,X
t (−Σc,k0

t (T ))(5.13)

holds for every k3 6= k0.

Proof. Let T > 0 and 1 ≤ k3 ≤ L with k3 6= k0 be fixed.

(i) ⇒ (ii) Since the process

(
Qk0,k3 (t,T )

Q
k0,k3
t

)

t∈[0,T ]

is a (QT,k0,k0 ,G)-martingale, it follows that

EQT,k0,k0

[
1

Q
k0,k3
T

∣∣∣∣∣Gt

]
=
Qk0,k3(t, T )

Q
k0,k3
t

,

which, rearranged, gives (ii).
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(i) ⇒ (iii) Since the process

(
Qk0,k3 (t,T )

Q
k0,k3
t

)

t∈[0,T ]

is a (QT,k0,k0 ,G)-martingale, we know from

Lemma 5.12 that the process
(
Bk0,k3(t, T )

B
c,k0,k3
t

=
Bk0,k0(t, T )Qk0,k3(t, T )

B
c,k0,k3
t

=
e−

∫ T

t
(f

c,k0
t (u)+q

k0,k3
t (u))du

e
∫ t

0 (r
c,k0
s +q

k0,k3
s )ds

)

t∈[0,T ]

(5.14)

is a (Qk0 ,G)-martingale. Let Rt := −
∫ T

t
(f c,k0t (u) + q

k0,k3
t (u))du−

∫ t

0 (r
c,k0
s + q

k0,k3
s )ds. Then

the martingale property of (5.14) is equivalent to the martingale property of exp (R), which

implies that 1 ∈ UQk0 ,R and ΨQk0 ,R
t (1) = 0. Due to the integrability conditions on αc,k0 and

σc,k0 in Definition 5.5, and on αk0,k3 and σk0,k3 in Definition 5.14, we can apply the classical

and the stochastic Fubini theorem, which yield

(5.15)

∫ T

t

(f c,k0t (u) + q
k0,k3
t (u))du

=

∫ T

0
(f c,k00 (u) + q

k0,k3
0 (u))du+

∫ t

0

∫ T

s

(αc,k0
s (u) + αk0,k3

s (u))duds

+

∫ t

0
(Σc,k0

s (T ) + Σk0,k3
s (T ))dXs −

∫ t

0
(f c,k0u (u) + qk0,k3u (u))du.

By applying Kallsen and Krühner [2013, Lemma A.13] we then obtain that

0 = ΨQk0 ,R
t (1) = Ψ

Qk0 ,(−
∫

·

0(r
c,k0
s +q

k0,k3
s )ds,X)

t

((
1,−(Σc,k0

t (T ) + Σk0,k3
t (T ))⊤

)⊤)

−
∫ T

t

(αc,k0
t (u) + α

k0,k3
t (u))du+ f

c,k0
t− (t) + q

k0,k3
t− (t).

Set now T = t. Since Σc,k0
t (t) = Σk0,k3

t (t) = 0, we get

(5.16) Ψ
Qk0 ,−

∫

·

0 r
c,k0
s ds

t (1) + Ψ
Qk0 ,−

∫

·

0 q
k0,k3
s ds

t (1) = Ψ
Qk0 ,−

∫

·

0(r
c,k0
s +q

k0,k3
s )ds

t (1) = −f c,k0t− (t)− q
k0,k3
t− (t),

hence (5.12) due to the consistency condition (5.5). Moreover, substituting (5.16) into (5.15)

yields the following drift condition:

−
∫ T

t

(
α
c,k0
t (u) + α

k0,k3
t (u)

)
du = −ΨQk0 ,X

t (−Σc,k0
t (T )− Σk0,k3

t (T )),

hence
∫ T

t

α
k0,k3
t (u)du = ΨQk0 ,X

t (−Σc,k0
t (T )− Σk0,k3

t (T ))−
∫ T

t

α
c,k0
t (u)du

= ΨQk0 ,X
t (−Σc,k0

t (T )− Σk0,k3
t (T ))−ΨQk0 ,X

t (−Σc,k0
t (T )),

where the last equality is due to the drift condition for the bond-price model in Proposition

5.7. We now have both the consistency condition and the drift condition. By substituting

them into (5.15), together with (5.14) we can write that

(5.17)

Bk0,k3(t, T )

B
c,k0,k3
t

= exp

{
−
∫ T

t

(f c,k0t (u) + q
k0,k3
t (u))du−

∫ t

0
(rc,k0s + qk0,k3s )ds

}

= exp

{
−
∫ T

0
(f c,k00 (u) + q

k0,k3
0 (u))du−

∫ t

0
(Σc,k0

s (T ) + Σk0,k3
s (T ))dXs

−
∫ t

0
ΨQk0 ,X

s (−Σc,k0
s (T )− Σk0,k3

s (T ))dXs

}
,
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from which we deduce that the process (5.11) is a (Qk0 ,G)-martingale for every T ≥ 0.

(iii) ⇒ (i) The consistency condition and the drift condition yield again equation (5.17). The

martingale property of (5.11) together with Lemma 5.12 implies then the last statement.

�

Remark 5.18. We emphasise that the HJM drift condition (5.13) is given in terms of the local exponent

ΨQk0 ,X under the measure Qk0 . However, one can show that the local exponent ΨQT,k0,k0 ,X under the

measure QT,k0,k0 is obtained from ΨQk0 ,X through the following relation:

(5.18) ΨQT,k0,k0 ,X(β) = ΨQk0 ,X(β − Σc,k0(T ))−ΨQk0 ,X(−Σc,k0(T )),

for any β ∈ UQk0 ,X ∩ UQT,k0,k0 ,X . Hence the HJM drift condition (5.13) can be rewritten as
∫ T

t

α
k0,k3
t (u)du = ΨQT,k0,k0 ,X

t (−Σk0,k3
t (T )).

Notice also that relation (5.18) could be used to formulate an alternative proof for Theorem 5.17 by

working under the measure QT,k0,k0 instead of under the measure Qk0 .

Corollary 5.19. If the extended bond-price model for the currency k0 is risk neutral, then for every

1 ≤ k3 ≤ L with k3 6= k0, we have that:

(i) For every T > 0, the instantaneous cross-currency basis spread (qk0,k3t (T ))t∈[0,T ] is given by

(5.19)

q
k0,k3
t (T ) = q

k0,k3
0 (T )

−
∫ t

0

(
(σc,k0s (T ) + σk0,k3s (T ))∇ΨQk0 ,X

s (−Σc,k0
s (T )− Σk0,k3

s (T ))

−σc,k0s (T )∇ΨQk0 ,X
s (−Σc,k0

s (T ))
)
ds+

∫ t

0
σk0,k3s (T )dXs;

(ii) For every t ≥ 0, the k0-k3 cross-currency basis rate qk0,k3t at time t is given by

q
k0,k3
t = q

k0,k3
0

−
∫ t

0

(
(σc,k0s (t) + σk0,k3s (t))∇ΨQk0 ,X

s (−Σc,k0
s (t)− Σk0,k3

s (t))− σc,k0s (t)∇ΨQk0 ,X
s (−Σc,k0

s (t))
)
ds

+

∫ t

0
σk0,k3s (t)dXs.

Proof. The proof proceeds similarly to the proof of Corollary 5.8. �

Remark 5.20. We remark that if X is a standard Brownian motion, then the differential characteristics

of X are (0, IdX , 0), hence

∇ΨQk0 ,X
t (−Σc,k0

t (T )) = −Σc,k0
t (T ),

and

∇ΨQk0 ,X
t (−Σc,k0

t (T )− Σk0,k3
t (T )) = −Σc,k0

t (T )− Σk0,k3
t (T ).

Then, after some simplifications, the dynamics for the instantaneous cross-currency basis spread in

equation (5.19) becomes

q
k0,k3
t (T ) = q

k0,k3
0 (T )

+

∫ t

0

(
σk0,k3s (T )

(∫ T

s

(σc,k0s (u) + σk0,k3s (u))du

)
+ σc,k0s (T )

(∫ T

s

σk0,k3s (u)du

))
ds

+

∫ t

0
σk0,k3s (T )dXs.



CCY-HJM 27

This is in line with the results found in Piterbarg [2012].

5.3. HJM framework for foreign-collateral discount curves. We consider now the domestic

bond with foreign collateral. More precisely, for a fixed currency 1 ≤ k0 ≤ L, we consider L − 1

bonds {(Bk0,k3(t, T ))t∈[0,T ], T ≥ 0}, one for each currency k3 6= k0. From equation (5.9), Bk0,k3(t, T )

is obtained as the product between the domestic bond with domestic collateral, Bk0,k0(t, T ), and the

k0-k3 cross-currency bond spread, Qk0,k3(t, T ), namely

(5.20) Bk0,k3(t, T ) = Bk0,k0(t, T )Qk0,k3(t, T ).

Moreover, by combining equations (5.3), (5.10) and (5.20), we can rewrite Bk0,k3(t, T ) in terms of the

instantaneous collateral forward rate and of the instantaneous cross-currency basis spread, namely

(5.21) Bk0,k3(t, T ) = e−
∫ T

t
(f

c,k0
t (u)+q

k0,k3
t (u))du.

Remember also that, by definition, the k0-k3 collateral cash account at time t is given by

(5.22) B
c,k0,k3
t = e

∫ t

0 (r
c,k0
s +q

k0,k3
s )ds.

In other words, given an extended bond-price model as introduced in the previous section, the foreign

collateral discount curve is also implicitly modelled. In particular, for every T ∈ R+, the instantaneous

foreign-collateral forward rate (f c,k0,k3t (T ))t∈[0,T ] follows the HJM dynamics

f
c,k0,k3
t (T ) = f

c,k0
t (T ) + q

k0,k3
t (T )

= f
c,k0
0 (T ) + q

k0,k3
0 (T ) +

∫ t

0
(αc,k0

s (T ) + αk0,k3
s (T ))ds+

∫ t

0
(σc,k0s (T ) + σk0,k3s (T ))dXs,(5.23)

and the k0-k3 collateral short rate rc,k0,k3t at time t is obtained by

r
c,k0,k3
t = r

c,k0
t + q

k0,k3
t

= r
c,k0
0 + q

k0,k3
0 +

∫ t

0
(αc,k0

s (t) + αk0,k3
s (t))ds+

∫ t

0
(σc,k0s (t) + σk0,k3s (t))dXs.(5.24)

We conclude with the following results.

Lemma 5.21. Let 1 ≤ k0 ≤ L and 0 ≤ t ≤ T . For an extended bond-price model for the currency k0,

the followings are equivalent:

(i) The extended bond-price model is risk neutral;

(ii) For every k3 6= k0, the conditional expectation hypothesis holds, i.e.

EQk0

[
B

c,k0,k3
t

B
c,k0,k3
T

∣∣∣∣∣Gt

]
= e−

∫ T

t
f
c,k0,k3
t (u)du;

(iii) For every k3 6= k0, the following conditions are satisfied:

(a) The consistency condition holds, meaning that

Ψ
Qk0 ,−

∫

·

0 r
c,k0,k3
s ds

t (1) = −rc,k0,k3t− = −f c,k0,k3t− (t);(5.25)

(b) The HJM drift condition
∫ T

t

(αc,k0
t (u) + α

k0,k3
t (u))du = ΨQk0 ,X

t (−Σc,k0
t (T )− Σk0,k3

t (T ))(5.26)

holds.

Proof. These results are implicitly obtained in the proof of Theorem 5.17. �
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Corollary 5.22. If the extended bond-price model for the currency k0 is risk neutral, then for every

k3 6= k0 we have that:

(i) For every T > 0, the instantaneous foreign-collateral forward rate (f c,k0,k3t (T ))t∈[0,T ] is given

by

f
c,k0,k3
t (T ) = f

c,k0
0 (T ) + q

k0,k3
0 (T )

−
∫ t

0
(σc,k0s (T ) + σk0,k3s (T ))∇ΨQk0 ,X

s (−Σc,k0
s (T )− Σk0,k3

s (T ))ds

+

∫ t

0
(σc,k0s (T ) + σk0,k3s (T ))dXs;

(ii) For every t ≥ 0, the k0-k3 collateral short rate rc,k0,k3t at time t is given by

r
c,k0,k3
t = r

c,k0
0 + q

k0,k3
0

−
∫ t

0
(σc,k0s (t) + σk0,k3s (t))∇ΨQk0 ,X

s (−Σc,k0
s (t)− Σk0,k3

s (t))ds

+

∫ t

0
(σc,k0s (t) + σk0,k3s (t))dXs.

Proof. The two results are obtained by inserting the drift condition (5.26) into equation (5.23) and

equation (5.24), respectively. �

5.4. Foreign exchange rate models and changes of measure. We considered so far HJM models

for the collateral discount curves, for the cross-currency basis curves, and for the foreign collateral

discount curves. All these models have been presented under a domestic currency measure Qk0 , with

the index k0 ranging from 1 to L. In this section, we derive the corresponding dynamics under a

different measure Qk for k 6= k0. This allows to specify the term-structure models of every economy

under a single probability measure, which is essential when performing Monte Carlo simulations.

The first step is to link the different economies by means of general foreign exchange (FX) rate

processes. From Proposition 2.6 we learned that, to guarantee absence of arbitrage in the unextended

market, we need the (Qk0 ,G)-local martingale property of (2.3), namely, we require that, given a fixed

currency k0, for any choice of k 6= k0, the processes
(
X k0,k
t Bk

t

Bk0
t

)

0≤t≤T

(5.27)

are (Qk0 ,G)-local martingales. Moreover, in Section 3 we worked under Assumption 3.1, stating that

the processes (5.27) are true (Qk0 ,G)-martingales. We now proceed to construct models which are

consistent with this setting.

Definition 5.23. Let 1 ≤ k0 ≤ L. We call a model consisting of

I. The RdX+2L−1-valued Itô semimartingale

(X,Bc,1, . . . , Bc,L, Qk0,1, . . . , Qk0,k0−1, Qk0,k0+1, . . . , Qk0,L);

II. The initial conditions (X k0,1
0 , . . . ,X k0,k0−1

0 ,X k0,k0+1
0 , . . . ,X k0,L

0 ) ∈ RL−1
+ ;

III. The processes (σX ,k0,1, . . . , σX ,k0,k0−1, σX ,k0,k0+1, . . . , σX ,k0,L);

an FX market model for the currency k0, if for every k 6= k0 the following conditions are satisfied:

(i) The collateral cash accounts Bc,k satisfies condition (i) of Definition 5.5;

(ii) The k0-k cross-currency spread cash accounts Qk0,k satisfies condition (ii) of Definition 5.14;
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(iii) The maps (ω, t) 7→ σ
X ,k0,k
t are P ⊗ B(R+)-measurable RdX -valued processes such that:

(a) σX ,k0,k
t,j is integrable with respect to the j-th component of the semimartingale X;

(b) σX ,k0,k
t ∈ UQk0 ,X .

We then postulate the following dynamics for the FX rates:

X k0,k
t = X k0,k

0

B
c,k0
t Q

k0,k
t

B
c,k
t

exp

{
−
∫ t

0
ΨQk0 ,X

s (σX ,k0,k
s )ds+

∫ t

0
σX ,k0,k
s dXs

}
,(5.28)

or, analogously,

X k0,k
t = X k0,k

0 +

∫ t

0
X k0,k
s (rc,k0s − rc,ks + qk0,ks )ds+

∫ t

0
X k0,k
s− σX ,k0,k

s dXs.

The dynamics of the FX rates (5.28) immediately implies that the processes (5.27) are (Qk0 ,G)-local

martingales. In line with Assumption 3.1, we must further impose the assumption that the processes

(5.28) are such that (5.27) are (Qk0 ,G)-true martingales. Concretely, for general Itô semimartingales,

this can be achieved by imposing the conditions of Kallsen and Shiryaev [2002], see also Criens et al.

[2017]. This will allow us to introduce changes between different spot martingale measures via the

processes (5.27).

But before defining the change of measure starting from (5.27), we introduce some assumptions on

the differential characteristics of the Itô semimartingale X. This is in line with Criens et al. [2017,

Condition (B2)] and leads us to a concrete version of Assumption 3.1 for the process (5.27) in terms

of the semimartingale characteristics.

Assumption 5.24. Let 1 ≤ k0 ≤ L be fixed. For the RdX -valued Itô semimartingale X with Qk0-

differential characteristics (bQ
k0 , c,KQk0 ) with respect to the truncation function χ, we assume that:

(i) For all t ≥ 0 and all k 6= k0,
∫ t

0

∫
∣∣(σX ,k0,k

s

)⊤
ξ
∣∣>1

exp
{(
σX ,k0,k
s

)⊤
ξ
}(
σX ,k0,k
s

)⊤
ξ KQk0

s (dξ)ds <∞, Qk0-a.s.;

(ii) For all T ≥ 0 and all k 6= k0,

sup
t≤T

EQk0

[
exp

{
1

2

∫ t

0

(
σX ,k0,k
s

)⊤
csσ

X ,k0,k
s ds

+

∫ t

0

∫

RdX

(
exp

{(
σX ,k0,k
s

)⊤
ξ
}((

σX ,k0,k
s

)⊤
ξ − 1

)
+ 1
)
KQk0

s (dξ)ds

}]
<∞, Qk0-a.s..

Assumption 5.24 allows us to derive the following representation for the semimartingale X.

Lemma 5.25. Under Assumption 5.24, the semimartingale X admits the following representation

under the measure Qk0:

(5.29) Xt = X0 +

∫ t

0
bQ

k0

s ds+

∫ t

0

√
csdW

Qk0

s +

∫ t

0

∫

RdX

ξ
(
µX −KQk0

s

)
(dξ, ds),

where WQk0 is an RdX -valued (Qk0 ,G)-Brownian motion,
√· denotes the matrix-square root for sym-

metric positive semidefinite matrices, and µX is the random measure for the jump components of X

with compensator KQk0 under the measure Qk0.

Proof. The canonical decomposition of X under Qk0 is

Xt =X0 +

∫ t

0
bQ

k0

s ds+

∫ t

0

√
csdW

Qk0

s
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+

∫ t

0

∫

RdX

χ(ξ)
(
µX −KQk0

s

)
(dξ, ds) +

∫ t

0

∫

RdX

(ξ − χ(ξ))µX(dξ, ds).

Because of Assumption 5.24, for the last term we notice that we can add and subtract
∫ t

0

∫

RdX

(ξ − χ(ξ))µX(dξ, ds) <∞,

hence we obtain the decomposition (5.29) with

b̃Q
k0

s := bQ
k0

s +

∫

RdX

(ξ − χ(ξ))KQk0

s (dξ),

which, with an abuse of notation, we denoted again by bQ
k0 . �

Measure changes between different spot martingale measures are now defined via the processes

(5.27). We detail the measure transformation in the following result.

Lemma 5.26. Under Assumption 5.24, for any k 6= k0, we introduce the risk-neutral measure Qk ∼
Qk0 on GT by

∂Qk

∂Qk0
:=

X k0,k
T Bk

T

Bk0
T

Bk0
0

X k0,k
0 Bk

0

,

such that

(5.30)
∂Qk

∂Qk0

∣∣∣∣
Gt

= EQk0

[
∂Qk

∂Qk0

∣∣∣∣Gt

]
=

X k0,k
t Bk

t

Bk0
t

Bk0
0

X k0,k
0 Bk

0

.

Then

WQk

:=WQk0 −
∫ ·

0

(
σX ,k0,k
s

)⊤√
csds, and(5.31)

KQk

(dξ) := exp
{(
σX ,k0,k

)⊤
ξ
}
KQk0

(dξ),(5.32)

represent, respectively, a (Qk,G)-Brownian motion and the compensator of µX under Qk. Finally, the

semimartingale X admits the following representation under Qk:

(5.33) Xt = X0 +

∫ t

0
bQ

k

s ds+

∫ t

0

√
csdW

Qk

s +

∫ t

0

∫

RdX

ξ
(
µX −KQk

s

)
(dξ, ds),

where

bQ
k

s := bQ
k0

s +
(
σX ,k0,k
s

)⊤
cs −

∫

RdX

ξ

(
1− exp

{(
σX ,k0,k
s

)⊤
ξ
})

KQk0

s (dξ).

Proof. Equality (5.30) is easily satisfied since the processes (5.27) are (Qk0 ,G)-local martingales, while

the transformations (5.31) and (5.32) are due to the Girsanov transform, see, e.g., Jacod and Shiryaev

[2003]. It is left to show (5.33).

Combining (5.29) with (5.31) and (5.32), and by adding and subtracting
∫ t

0

∫
RdX

ξKQk

s (dξ, ds), we

get

Xt = X0 +

∫ t

0
bQ

k0

s ds+

∫ t

0

√
cs

(
dWQk

s +
(
σX ,k0,k
s

)⊤√
csds

)

+

∫ t

0

∫

RdX

ξ
(
µX −KQk

s

)
(dξ, ds) +

∫ t

0

∫

RdX

ξ

(
e

(
σ
X ,k0,k
s

)⊤
ξ − 1

)
KQk0

s (dξ, ds).

Regrouping the terms concludes the proof. �

We provide an application of the previous computations. Consider two currency areas k0, k. To

underline the fact that the characteristics of the semimartingale X are specified under a certain
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probability measure, we write XQk0 and XQk
, respectively. We consider the following hybrid model

resulting from the combination of (5.7) for the two currency areas, (5.19) and (5.28):

f
c,k0
t (T ) = f

c,k0
0 (T )−

∫ t

0
σc,k0s (T )∇ΨQk0 ,X

s (−Σc,k0
s (T ))ds+

∫ t

0
σc,k0s (T )dXQk0

s ;

f
c,k
t (T ) = f

c,k
0 (T )−

∫ t

0
σc,ks (T )∇ΨQk,X

s (−Σc,k
s (T ))ds+

∫ t

0
σc,ks (T )dXQk

s ;

q
k0,k
t (T ) = q

k0,k
0 (T )−

∫ t

0

(
(σc,k0s (T ) + σk0,ks (T ))∇ΨQk0 ,X

s (−Σc,k0
s (T )− Σk0,k

s (T ))

−σc,k0s (T )∇ΨQk0 ,X
s (−Σc,k0

s (T ))
)
ds+

∫ t

0
σk0,ks (T )dXQk0

s ;

X k0,k
t = X k0,k

0

B
c,k0
t Q

k0,k
t

B
c,k
t

exp

{
−
∫ t

0
ΨQk0 ,X

s (σX ,k0,k
s )ds+

∫ t

0
σX ,k0,k
s dXQk0

s

}
.

All the quantities are modelled under the measure Qk0 , except for the k-instantaneous collateral

forward rate {(f c,kt (T ))t∈[0,T ], T ≥ 0}. By Lemma 5.26, we can express the whole system under a

unique measure Qk0 as follows:

f
c,k
t (T ) = f

c,k
0 (T )−

∫ t

0
σc,ks (T )∇ΨQk,X

s (−Σc,k
s (T ))ds

+

∫ t

0
σc,ks (T )

(
bQ

k

s ds−
(
σX ,k0,k
s

)⊤
csds+

∫

RdX

ξ
(
1− e

(
σ
X ,k0,k
s

)⊤
ξ
)
KQk0

s (dξ)ds

+
√
csdW

Qk0

s +

∫

RdX

ξ
(
µX −KQk0

s

)
(dξ, ds)

)
,

where we recognize additional drift terms capturing the so-called quanto adjustments.

6. Forwards of indices

The aim of the present section is to analyze the financial concept of a forward contract in a general

way. For this reason, we first introduce on the usual filtered probability space (Ω,G, (Gt)t≥0,Q
1, . . . ,QL)

an abstract index associated to a generic currency area k2. Then, our definition of a forward price

is that of a fixed rate that makes a forward contract fair, in the sense that the price of the contract

at initiation time is zero. This principle is not new, but was first used by Mercurio [2009] in order

to introduce the concept of a forward rate agreement (FRA). The same principle has then been vir-

tually employed in all the subsequent literature on multiple curves, and was also specialized in Fries

[2016]. However, the definitions currently existing in the literature usually require to perform changes

of measure, since the pricing measure is linked to the cash-account numéraire. We have seen instead

that under the measure Qk0 there is a multitude of martingales, namely each risky asset discounted by

means of its own asset-specific cash account. We can then define all the forwards under a unique spot

pricing measure Qk0 : this is a consequence of our fully coherent model of funding from the previous

sections.

We denote by Ik2(T s, T f , T e, T p) the index referring to the period [T s, T e] which is fixed in T f for

a payment in T p, with T s ≤ T f ≤ T e and T p ≥ T f , see Figure 3 for an illustration of the structure

of the index. This means that the index is treated as a GT f -measurable random variable, while T p

fixes the time horizon for discounting. In particular, this definition includes both the case T p ≥ T e

and the case T p ≤ T e, meaning that the payment may happen before, at, or after the end of the

period, depending on the payment adjustment. In some cases, the index may be observed and paid

simultaneously, namely T s = T e = T f = T p. Notice also that this extends the classical notation
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T ft T s T e = T p

δf δp

Figure 3. Illustration of an abstract index. The period starts at T s and ends at T e.
The fixing and payment times are adjusted versions of T s and T e. In this case, we set
T s < T f < T e and T e = T p.

where T f = T s = T and T p = T e = T + δ. In this case, indeed, the index Ik2(T, T, T + δ, T + δ)

corresponds to Ik2(T, T + δ) in the usual notation, with the additional superscript k2 for the currency

denomination of the index.

We then denote by Ik0,k2,k3(T s, T f , T e, T p) the value for a k0-based agent of a forward, written on

the index Ik2(T s, T f , T e, T p), collateralized in currency k3, and with payment date T p. We define

I
k0,k2,k3
t (T s, T f , T e, T p) as the Gt-measurable random variable that solves the following equation

EQk0

[
B

c,k0,k3
t

B
c,k0,k3
T p

(
Ik2
T f (T

s, T f , T e, T p)X k0,k2
T p − I

k0,k2,k3
t (T s, T f , T e, T p)

)∣∣∣∣∣Gt

]
= 0,(6.1)

where we assume that the conditional expectation is finite. We notice however that, from the mathe-

matical point of view, the date T e does not play any role in the forward definition (6.1). Indeed, the

dates that really matter for the pricing of the forward are the start of the period T s, which sets the

start of the measuring of the index, the fixing date T f , which sets the GT f -measurability of the index,

and the payment date T p, which sets the discounting. For this reason, without loss of generality, we

shall drop the dependency on T e and work with Ik2(T s, T f , T p) and Ik0,k2,k3(T s, T f , T p) for the index

and the associated forward, respectively.

In view of specifying a dynamic model for the forward Ik0,k2,k3(T s, T f , T p), we need however to

consider a running version of the index Ik2(T s, T f , T p). For this, let us define δf := T f − T s and

δp := T p − T f being, respectively, the fixing and the payment adjustments with respect to the fixing

date. Then, at a given time t ≥ δf , we observe the spot index fixed in t, i.e. T f = t, and with fixing

window which has started in the past in T s = t − δf for the payment horizon T p = t + δp. In other

words, for the spot index with fixing in t, we shall adopt the notation Ik2t (t − δf , t, t + δp) instead

of Ik2t (T s, t, T p). Notice that for every time instant t, the spot index Ik2t (t − δf , t, t + δp) refers to a

measurement period which has started in t−δf , hence, with this new notation, the running time must

start in δf , namely t ≥ δf , since we need enough past information to evaluate the index.

By working under this new notation, we now formalize the definition of a forward of an index.

Definition 6.1. For a fixed δf ≥ 0 and a fixed δp ≥ 0, let
(
Ik2t (t− δf , t, t+ δp)

)
t≥δf

be a generic

index which at every time instant t ≥ δf has reference period starting in t − δf and payment date

t+ δp. For any T ≥ δf , we denote by

I
k0,k2,k3
t (T − δf , T, T + δp), for δf ≤ t ≤ T + δp,

the value at time t for a k0-based agent of a forward, written on the index
(
Ik2t (t− δf , t, t+ δp)

)
t≥δf

,

collateralized in currency k3, with period starting in T − δf , fixing in T and payment date T + δp.

We define Ik0,k2,k3t (T − δf , T, T + δp) as the Gt-measurable random variable that solves the following

equation:

EQk0

[
B

c,k0,k3
t

B
c,k0,k3
T+δp

(
Ik2T (T − δf , T, T + δp)X k0,k2

T+δp − I
k0,k2,k3
t (T − δf , T, T + δp)

)∣∣∣∣∣Gt

]
= 0,(6.2)
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where we assume that the conditional expectation is finite. We set Bc,k0,k3 = Bc,k0 whenever k3 = k0.

From the above definition of a forward, we immediately obtain the relation

I
k0,k2,k3
t (T − δf , T, T + δp) =

EQk0

[
B

c,k0,k3
t

B
c,k0,k3
T+δp

Ik2T (T − δf , T, T + δp)X k0,k2
T+δp

∣∣∣∣Gt

]

EQk0

[
B

c,k0,k3
t

B
c,k0,k3
T+δp

∣∣∣∣Gt

] .(6.3)

It is important to notice that, for a fixed index
(
Ik2t (t− δf , t, t+ δp)

)
t≥δf

, there are as many forward

prices as there are possible funding (collateralization) policies. This is captured by the cardinality of

the index 1 ≤ k3 ≤ L. In particular, by means of the change of measure (4.5), from (6.3) we obtain

that

I
k0,k2,k3
t (T − δf , T, T + δp) = EQT+δp,k0,k3

[
Ik2T (T − δf , T, T + δp)X k0,k2

T+δp

∣∣∣Gt

]
,(6.4)

hence the forward index is a (QT+δp,k0,k3 ,G)-martingale.

Remark 6.2. We point out that in Definition 6.1, after that the the spot index Ik2T (T − δf , T, T + δp)

has been fixed, namely for any T < t ≤ T + δp, the only varying components are the rate X k0,k2 and

the collateral cash account Bc,k0,k3 , which are fixed at time T + δp, see equation (6.2). Hence, strictly

speaking, the forward Ik0,k2,k3t (T − δf , T, T + δp) is a genuine forward only for δf ≤ t ≤ T , but it keeps

varying for T < t ≤ T + δp because of the fluctuations of X k0,k2 and Bc,k0,k3 .

6.1. Some examples. We present in this section some examples which serve as motivation for our

general framework which allows for the fixing date of the index to vary within the observation interval

[T s, T e]. In particular, the formalism that we introduce can be used to recover various types of interest

rates linked to the SOFR rate as introduced by Lyashenko and Mercurio [2019]. In what follows, for

M ∈ N, let 0 = T0, T1, . . . , TM be a schedule of times, with δm := Tm − Tm−1 the year fraction for the

interval [Tm−1, Tm), for 1 ≤ m ≤M .

6.1.1. Backward-looking rate. An example of index is the backward-looking rate. In the notation

of Lyashenko and Mercurio [2019], this is denoted by R (Tm−1, Tm). In our notation, T s = Tm−1,

T f = T p = Tm and t = Tm. We then write Ik0Tm
(Tm−1, Tm, Tm) = R(Tm−1, Tm) for the backward-

looking rate in currency k2 = k0, which is given by

Ik0Tm
(Tm−1, Tm, Tm) =

1

δm

(
e

∫ Tm
Tm−1

r
c,k0
u du − 1

)
=

1

δm

(
B

c,k0
Tm

B
c,k0
Tm−1

− 1

)
, m = 1, . . . ,M.

Clearly Ik0Tm
(Tm−1, Tm, Tm) is a GTm-measurable spot index.

6.1.2. Forward-looking rate. The forward-looking rate, in the notation of Lyashenko and Mercurio

[2019] F (Tm−1, Tm), is the Tm−1-time value of the fair FRA rate KF in the swaplet with payoff

δm (R(Tm−1, Tm)−KF ). This is a spot interest rate at time Tm−1, which we can however map in our

general formalism of forwards. In this case, we have T s = Tm−1, T
f = T p = Tm and t = Tm−1. Let

then Ik0Tm−1
(Tm−1, Tm, Tm) = F (Tm−1, Tm) be the forward-looking rate in currency k2 = k0, which,

from (6.3), is given by

Ik0Tm−1
(Tm−1, Tm, Tm) =

EQk0

[
B

c,k0
Tm−1

B
c,k0
Tm

Ik0Tm
(Tm−1, Tm, Tm)

∣∣∣∣∣GTm−1

]

EQk0

[
B

c,k0
Tm−1

B
c,k0
Tm

∣∣∣∣∣GTm−1

] =
1

δm

(
1

Bk0,k0(Tm−1, Tm)
− 1

)
.
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This is a GTm−1-measurable spot index.

6.1.3. Backward-looking in-arrears forward rate. The backward-looking in-arrears forward rate, in the

notation of Lyashenko and Mercurio [2019] Rm(t), is the t-time fixed fair value KR of a FRA with

payoff δm (R(Tm−1, Tm)−KR). In this case, we have a genuine forward rate which can be mapped in

the general definition. In particular, we have T s = Tm−1, T
f = Tm and T p = Tm. We then identify

this forward rate as a general forward in currency k2 = k0 with collateralization in currency k3 = k0,

by setting Ik0,k0,k0t (Tm−1, Tm, Tm) = Rm(t). Equation (6.3) takes the form

I
k0,k0,k0
t (Tm−1, Tm, Tm) =

EQk0

[
B

c,k0
t

B
c,k0
Tm

Ik0Tm
(Tm−1, Tm, Tm)

∣∣∣∣Gt

]

EQk0

[
B

c,k0
t

B
c,k0
Tm

∣∣∣∣Gt

] =
1

δm

(
Bk0,k0(t, Tm−1)

Bk0,k0(t, Tm)
− 1

)
.

It is clear that Rm(Tm−1) = F (Tm−1, Tm).

6.1.4. Forward-looking forward rate. The forward-looking forward rate, Fm(t) in the notation of Lyashenko

and Mercurio [2019], is the t-time fixed fair value KF of a FRA with payoff δm (F (Tm−1, Tm)−KF ).

Also in this case we have a genuine forward rate which can be mapped in our general definition by

setting T s = Tm−1, T
f = Tm−1 and T p = Tm. We then identify this forward rate as a general forward

in currency k2 = k0 with collateralization in currency k3 = k0, by setting Ik0,k0,k0t (Tm−1, Tm−1, Tm) =

Fm(t). Equation (6.3) takes then the form

I
k0,k0,k0
t (Tm−1, Tm−1, Tm) =

EQk0

[
B

c,k0
t

B
c,k0
Tm

Ik0Tm−1
(Tm−1, Tm, Tm)

∣∣∣∣Gt

]

EQk0

[
B

c,k0
t

B
c,k0
Tm

∣∣∣∣Gt

] =
1

δm

(
Bk0,k0(t, Tm−1)

Bk0,k0(t, Tm)
− 1

)
.

As already observed by Lyashenko and Mercurio [2019], for t > Tm−1, we have Fm(t) = F (Tm−1, Tm).

Moreover, for t ≤ Tm−1, Rm(t) = Fm(t), dP ⊗ dt-a.s., and for t = Tm−1, we have Rm (Tm−1) =

Fm (Tm−1) = F (Tm−1, Tm) .

6.1.5. Forward-looking inter-bank offered rate. An example of forward is a contract written on a

forward-looking inter-bank offered rate (IBOR), such as LIBOR, EURIBOR, TIBOR or AMERI-

BOR. We denote by Ik0(T s, T p) the value of the IBOR index for the currency k0. The IBOR index

is fixed at the beginning of the period, namely T f = T s, hence for t = T s, the index Ik0
T s(T s, T p) is

GT s-measurable. For k2 = k0, we then set T f = T s = Tm−1 and T p = Tm, and equation (6.3) takes

the form

I
k0,k0,k0
t (Tm−1, Tm−1, Tm) =

EQk0

[
B

c,k0
t

B
c,k0
Tm

Ik0
Tm−1

(Tm−1, Tm)

∣∣∣∣Gt

]

EQk0

[
B

c,k0
t

B
c,k0
Tm

∣∣∣∣Gt

]

= EQTm,k0,k0
[
Ik0
Tm−1

(Tm−1, Tm)
∣∣∣Gt

]
=: Ik0,k0

t (Tm−1, Tm−1, Tm),

for m = 1, . . . ,M , which serves a definition for the IBOR forward rate for currency k0 collateralized in

units of currency k0. This coincides with the definition of forward LIBOR rate originally introduced

in Mercurio [2009] and then employed in the literature on interest rate modeling in the multiple curve

framework.

6.1.6. Commodity forwards. Definition 6.1 covers also examples in the commodity markets. Let

Ik0(T1, T2) be an index whose values depend on an underlying process observed over the interval [T1, T2]
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with T1 ≤ T2, hence in this case T s = T1 and T
f = T p = T2. The underlying process could be, e.g., the

spot price of electricity or a temperature index, such as the cumulative average temperature (CAT)

index. In the notation of Benth et al. [2008], we would have Ik0(T1, T2) =
1

T2−T1

∫ T2

T1
Sudu for the elec-

tricity index, and Ik0(T1, T2) =
∫ T2

T1
Tudu for the temperature index, with {Su}u≥0 and {Tu}u≥0, respec-

tively, the spot price of electricity and the instantaneous temperature. For k2 = k3 = k0, the forward

written on Ik0(T1, T2) is then, in the notation of Benth et al. [2008], Ik0,k0,k0t (T1, T2, T2) = F (t;T1, T2).

Equation (6.3) becomes

I
k0,k0,k0
t (T1, T2, T2) =

EQk0

[
B

c,k0
t

B
c,k0
T2

Ik0T2
(T1, T2)

∣∣∣∣Gt

]

EQk0

[
B

c,k0
t

B
c,k0
T2

∣∣∣∣Gt

] = EQT2,k0,k0
[
Ik0T2

(T1, T2)
∣∣∣Gt

]
.

This is a GT2-measurable contract which is referred to as a forward with delivery period [T1, T2]. Here

QT2,k0,k0 is the pricing measure and Ik0,k0,k0t (T1, T2, T2) is a (QT2,k0,k0 ,G)-martingale. This is a typical

kind of contracts in the electricity markets where the underlying (the electricity) must be delivered over

a period of time. For those types of commodities with instantaneous delivery, we have T1 = T2 instead,

and we may simply write Ik0(T1) = Ik0(T1, T1) for the index and Ik0,k0,k0t (T1) = I
k0,k0,k0
t (T1, T1, T1) =

EQT1,k0,k0
[
Ik0T1

(T1)
∣∣∣Gt

]
for the forward contract.

6.2. HJM framework for abstract indices. The aim of the present section is to study an HJM-

type of framework for forward contracts on the abstract index from Definition 6.1. As for discount

curves, we can choose between modeling directly the forward contracts, or we can introduce appropriate

spread models. We shall follow the approach of Cuchiero et al. [2016], where the authors modelled

the multiplicative spreads between LIBOR FRA rates and OIS FRA rates. In particular, we shall

extend their approach in at least two directions. In fact, OIS FRA rates correspond to the forwards

on the future performance of the collateral account. However, we have seen that in our setting we

have multiple collateral accounts corresponding to multiple collateral currencies. Hence, on one hand,

we will allow for multiple collateral currencies. On the other hand, we will work in a general setting

allowing for both forward- and backward-looking rates, namely we will extend the definition of OIS

FRA rates to include also backward-looking rates.

Before doing that, let us discuss the role of the native currency of denomination k2 for the spot

index
(
Ik2t (t− δf , t, t+ δp)

)
t≥δf

which appears in Definition 6.1. Starting from equation (6.3) and

switching to the Qk2 spot measure as in Definition 4.1, we obtain that

I
k0,k2,k3
t (T − δf , T, T + δp) =

X
k0,k2
t B

k2
t

B
k0
t

EQk2

[
B

k0
T+δp

X
k0,k2
T+δp

B
k2
T+δp

B
c,k0,k3
t

B
c,k0,k3
T+δp

Ik2T (T − δf , T, T + δp)X k0,k2
T+δp

∣∣∣∣Gt

]

X
k0,k2
t B

k2
t

B
k0
t

EQk2

[
B

k0
T+δp

X
k0,k2
T+δp

B
k2
T+δp

B
c,k0,k3
t

B
c,k0,k3
T+δp

∣∣∣∣Gt

]

=

X k0,k2
t EQk2

[
B

c,k2,k3
t

B
c,k2,k3
T+δp

Ik2T (T − δf , T, T + δp)

∣∣∣∣Gt

]

EQk2

[
X

k0,k2
t B

c,k2,k3
t

X
k0,k2
T+δp

B
c,k2,k3
T+δp

∣∣∣∣Gt

] ,(6.5)

where we used that Bc,k0,k3Bk2

Bk0
= Bc,k2,k3 due to the relations

rc,k0 + qk0,k3 + rk2 − rk0 = rk2 − rk3 + rc,k3 = rc,k2 + qk2,k3 .

Equation (6.5) shows that we can conveniently postulate a model for the generic forward under the

native currency of denomination of the index k2 and then perform a measure change to recover the
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formulation of Definition 6.1. For this reason, we will limit ourselves to model Ik0,k2,k3(T−δf , T, T+δp)
for k2 = k0, which will allow us to further simplify the notation and write Ik0,k3(T − δf , T, T + δp) :=

Ik0,k0,k3(T − δf , T, T + δp).

Our proposed generalization of OIS FRA rate, or, equivalently, of forward performance of the

collateral rate, is the following:

Definition 6.3. For any 1 ≤ k0, k3 ≤ L, any δf , δp ≥ 0 and T ≥ δf , we define the k0-k3 simple

forward collateral rate
(
I
k0,k3,D
t (T − δf , T, T + δp)

)
δf≤t≤T+δp

related to the term structure of discount

factors {(Bk0,k3(t, τ))t∈[0,τ ], τ ≥ 0} by

I
k0,k3,D
t (T − δf , T, T + δp)

:=





1
δf

(
1

Bk0,k3 (t,T+δp)
EQk0

[
e−

∫ T−δf

t
r
c,k0,k3
u du−

∫ T+δp

T
r
c,k0,k3
u du

∣∣∣Gt

]
− 1

)
, δf ≤ t ≤ T − δf ,

1
δf

(
B

c,k0,k3
t

B
c,k0,k3
T−δf

1
Bk0,k3 (t,T+δp)

EQk0
[
e−

∫ T+δp

T
r
c,k0,k3
u du

∣∣∣Gt

]
− 1

)
, T − δf < t <≤ T,

1
δf

(
B

c,k0,k3
T

B
c,k0,k3
T−δf

− 1

)
, T < t ≤ T + δp.

The definition above is very general since it does not restrict the fixing time T to coincide with

the start of the period or with the payment date. In particular, this latter case is obtained by letting

δp = 0. This leads to

(6.6) I
k0,k3,D
t (T − δf , T, T ) =





1
δf

(
Bk0,k3 (t,T−δf )

Bk0,k3 (t,T )
− 1
)
, δf ≤ t ≤ T − δf ,

1
δf

(
B

c,k0,k3
t

B
c,k0,k3
T−δf

1
Bk0,k3 (t,T )

− 1

)
, T − δf < t ≤ T.

Notice that, in the single-currency setting, for δf ≤ t ≤ T − δf , this corresponds to the OIS FRA rate

of Cuchiero et al. [2016] with k3 = k0, namely Ik0,k0,Dt (T − δf , T, T ) = LD
t (T − δf , T ) in the notation

of Cuchiero et al. [2016]. Moreover, in Section 5.3 we derived the HJM dynamics of Bk0,k3(t, ·) as a

consequence of the frameworks postulated for Bk0,k0(t, ·) and Qk0,k3(t, ·). It is then immediate to link

the k0-k3 simple forward collateral rate with the k0-k3 cross-currency spread bond since, by definition,

we have

I
k0,k3,D
t (T − δf , T, T ) =





1
δf

(
Bk0,k0 (t,T−δf )Qk0,k3 (t,T−δf )

Bk0,k0 (t,T )Qk0,k3 (t,T )
− 1
)
, δf ≤ t ≤ T − δf ,

1
δf

(
B

c,k0,k0
t Q

c,k0,k3
t

B
c,k0,k0
T−δf

Q
c,k0,k3
T−δf

1
Bk0,k0 (t,T )Qk0,k3 (t,T )

− 1

)
, T − δf < t ≤ T.

We then see that the dynamics model for Ik0,k3,Dt (T − δf , T, T ) (but also the one for Ik0,k3,Dt (T −
δf , T, T + δp)) is fully characterized by the HJM models studied in Section 5.

The next step is to introduce appropriate HJM frameworks for the spreads with respect to the

forward of a generic index. It is obvious that for modelling the multiplicative spread between the

forward Ik0,k3 on a generic index and the discount curve Ik0,k3,D, the start of the period for Ik0,k3

must coincide with the start of the period for Ik0,k3,D, say T − δf for some T ≥ δf ≥ 0. Similarly,

the payment date for Ik0,k3 must coincide with the payment date for Ik0,k3,D, say T + δp for a certain

δp ≥ 0. However, we observe at this point that for any fixed start of period T − δf and any fixed

payment date T + δp, the two quantities Ik0,k3(T − δf , ·, T + δp) and Ik0,k3,D(T − δf , ·, T + δp) may

have different fixing dates, both varying between T − δf and T + δp. As this would lead to work with

four different date indices, we shall let free the fixing date in Ik0,k3(T − δf , ·, T + δp), namely we set it
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to T , and we shall set the fixing date in Ik0,k3,D(T − δf , ·, T + δp) to coincide with the payment date,

namely T + δp, similarly as in (6.6). Under this simplifying assumption for the discount curve index,

we generalize Cuchiero et al. [2016] by introducing the following.

Definition 6.4. Fix 1 ≤ k0, k3 ≤ L and δf , δp ≥ 0, and let δ := δf + δp. For every T ≥ δf , the

forward index spread at time δf ≤ t ≤ T + δp for the time period [T − δf , T + δp] over the index

Ik0(T − δf , T, T + δp) collateralized according to Bc,k0,k3 and payed at time T + δp is defined by

(6.7) Sk0,k3
t (T − δf , T, T + δp) :=

1 + δI
k0,k3
t (T − δf , T, T + δp)

1 + δI
k0,k3,D
t (T − δf , T + δp, T + δp)

.

Notice that, strictly speaking, the quantities δf and δp in (6.7) refer to the fixing and payment

adjustments for the numerator Ik0,k3t (T − δf , T, T + δp). Indeed, the fixing and payment adjustments

for the denominator Ik0,k3,Dt (T − δf , T + δp, T + δp) are δ = δf + δp and 0, respectively. Hence (6.6)

in this case becomes

I
k0,k3,D
t (T − δf , T + δp, T + δp) =





1
δ

(
Bk0,k3 (t,T−δf )

Bk0,k3 (t,T+δp)
− 1
)
, δf ≤ t ≤ T − δf ,

1
δ

(
B

c,k0,k3
t

B
c,k0,k3
T−δf

1
Bk0,k3 (t,T+δp)

− 1

)
, T − δf < t ≤ T + δp,

and the forward spread in (6.7) can be rewritten by

(6.8)

Sk0,k3
t (T − δf , T, T + δp)

=





(
1 + δI

k0,k3
t (T − δf , T, T + δp)

)
Bk0,k3 (t,T+δp)

Bk0,k3 (t,T−δf )
, δf ≤ t ≤ T − δf ,

(
1 + δI

k0,k3
t (T − δf , T, T + δp)

) B
c,k0,k3
T−δf

B
c,k0,k3
t

Bk0,k3(t, T + δp), T − δf < t ≤ T,

(
1 + δI

k0,k3
T (T − δf , T, T + δp)

) B
c,k0,k3
T−δf

B
c,k0,k3
t

Bk0,k3(t, T + δp), T < t ≤ T + δp.

This definition of spread, explicitly featuring the k0-k3 cross-currency spread bonds, highlights the

role that cross-currency convexity adjustments will play in the dynamics of the generalized forward.

In particular, we observe that for δf ≤ t ≤ T , both numerator and denominator in the definition

of spread (6.7) are random quantities. However, for T − δf < t ≤ T we are in the monitoring period

of both numerator and denominator, hence we expect the volatility to be decreasing. Finally, for

T < t ≤ T + δp the numerator is no longer random since it has been fixed in t = T , while we still

observe fluctuations of the denominator with decreasing volatility up to time t = T + δp, where the

volatility becomes zero. From (6.8), we then deduce that for T < t ≤ T + δp the multiplicative spread

is of the form

Sk0,k3
t (T − δf , T, T + δp) = C B

k0,k3(t, T + δp)

B
c,k0,k3
t

,

with C := B
c,k0,k3
T−δf

(
1 + δI

k0,k3
T (T − δf , T, T + δp)

)
∈ R being a GT -measurable random variable. Hence

for T < t ≤ T + δp the model for the multiplicative spread is given by the HJM framework for the

foreign-collateral discount curves in Section 5.3, since the only fluctuating components in the spread

are Bk0,k3(·, T + δp) and Bc,k0,k3
· .

Notice further that for T = t, we have that Ik0,k3t (t− δf , t, t+ δp) = Ik0t (t− δf , t, t+ δp), hence from

(6.7) the spot index spread is given by

Sk0,k3
t (t− δf , t, t+ δp) =

1 + δIk0t (t− δf , t, t+ δp)

1 + δI
k0,k3,D
t (t− δf , t+ δp, t+ δp)

, for any t ≥ δf .
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Remark 6.5. In some applications, it is desirable to guarantee that the forward index spread is larger

than one. These situations arise for example when modeling a forward risky inter-bank rate. This

property can be achieved by imposing restrictions on the dynamics of the spread as in Cuchiero et al.

[2016] and Cuchiero et al. [2019]. Alternatively, one can define the forward index spread by first

modelling

1 + δS̃k0,k3
t (T − δf , T, T + δp) :=

1 + δI
k0,k3
t (T − δf , T, T + δp)

1 + δI
k0,k3,D
t (T − δf , T + δp, T + δp)

,

so that Sk0,k3
t (T −δf , T, T +δp) = 1+δS̃k0,k3

t (T −δf , T, T +δp) is larger than one as soon as S̃k0,k3
t (T −

δf , T, T + δp) is positive. The drawback of this approach is that it typically leads to more complicated

pricing formulas. For example, for a caplet written on the IBOR rate, this approach leads in general

to the pricing formula of a two-dimensional basket option.

The next lemma characterizes the martingale property of the forward index spreads.

Lemma 6.6. Let 1 ≤ k0, k3 ≤ L and δf , δp ≥ 0. Then the forward index spread (Sk0,k3
t (T − δf , T, T +

δp))t∈[δf ,T+δp] is a (QT−δf ,k0,k3 ,G)-martingale for every T ≥ δf .

Proof. The proof generalises Lemma 3.11 of Cuchiero et al. [2016]. Fix any schedule δf , δp ≥ 0. We

know from (6.4) that (Ik0,k3t (T − δf , T, T + δp))t∈[δf ,T+δp] is a martingale under QT+δp,k0,k3 . Moreover,

using Bayes’ formula, the spread process (Sk0,k3
t (T − δf , T, T + δp))t∈[δf ,T+δp] is a (QT−δf ,k0,k3 ,G)-

martingale if and only if the process

Sk0,k3
t (T − δf , T, T + δp)

∂QT−δf ,k0,k3

∂Qk0

∣∣∣∣∣
Gt

is a (Qk0 ,G)-martingale. From Definition 4.2, we can compactly write that

∂QT−δf ,k0,k3

∂Qk0

∣∣∣∣∣
Gt

=
B

c,k0,k3
δf

B
c,k0,k3
t∧(T−δf )

Bk0,k3(t ∧ (T − δf ), T − δf )

Bk0,k3(δf , T − δf )
, for all δf ≤ t ≤ T + δp,

where t∧(T −δf ) is the minimum between t and T −δf , and we consider δf as the start of the running

time. Similarly, from (6.8) we can rewrite compactly the spread as

Sk0,k3
t (T − δf , T, T + δp) =

(
1 + δI

k0,k3
t (T − δf , T, T + δp)

) Bc,k0,k3
t∧(T−δf )

B
c,k0,k3
t

Bk0,k3(t, T + δp)

Bk0,k3(t ∧ (T − δf ), T − δf )
.

By combining the last three equations, we then obtain

(
1 + δI

k0,k3
t (T − δf , T, T + δp)

) B
c,k0,k3
δf

Bk0,k3(t, T + δp)

B
c,k0,k3
t Bk0,k3(δf , T + δp)

Bk0,k3(δf , T + δp)

Bk0,k3(δf , T − δf )
,

which is indeed a (Qk0 ,G)-martingale because (Ik0,k3t (T −δf , T, T +δp))t∈[δf ,T+δp] is a (QT+δp,k0,k3 ,G)-

martingale and ∂QT+δp,k0,k3

∂Qk0

∣∣∣
Gt

=
B

c,k0,k3
δf

Bk0,k3 (t,T+δp)

B
c,k0,k3
t Bk0,k3 (δf ,T+δp)

, for all t ≥ δf . �

We point out that Lemma 6.6 generalises Lemma 3.11 of Cuchiero et al. [2016] in the sense that

in our setting the fixing date T may differ from the start-of-period date, T − δf . Moreover, since we

model the spread up to the payment date, T + δp, we obtain a more general result, stating that the

multiplicative forward index spread is a martingale under the forward measure QT−δf ,k0,k3 for any

δf ≤ t ≤ T + δp. Notice, however, that for t ≥ T − δf the Radon-Nikodym derivative ∂QT−δf ,k0,k3

∂Qk0

∣∣∣∣
Gt

is a known quantity, hence the two measures QT−δf ,k0,k3 and Qk0 are equivalent for any t ≥ T − δf up
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to a multiplicative factor. This means that, in practice, the multiplicative spread is a Qk0-martingale

after the start of the monitoring period, T − δf .

We proceed now to introduce the modeling framework for the forward index spreads. The following

definition captures the complexity given by the fact that the forward on the index, for any given

schedule δf , δp ≥ 0 and any currency k0, can be collateralized in any currency k3 = 1, . . . , L.

Definition 6.7. Let 1 ≤ k0 ≤ L and δf , δp ≥ 0 be fixed. We call a model consisting of

I. An extended bond-price model for the currency k0
(
X,Qk0,1, . . . , Qk0,k0−1, Qk0,k0+1 . . . , Qk0,L, Bc,k0 , f

c,k0
δf

, q
k0,1
δf

, . . . , q
k0,k0−1
δf

, q
k0,k0+1
δf

, . . . , q
k0,L

δf
,

αc,k0 , αk0,1, . . . , αk0,k0−1, αk0,k0+1, . . . , αk0,L, σc,k0 , σk0,1, . . . , σk0,k0−1, σk0,k0+1, . . . , σk0,L
)

in the sense of Definition 5.14;

II. The RL-valued Itô semimartingale
(
Sk0,1
t (t− δf , t, t+ δp), . . . ,Sk0,L

t (t− δf , t, t+ δp)
)
t≥δf

;

III. The functions hδ
f ,δp,k0,1

δf
, . . . , h

δf ,δp,k0,L

δf
;

IV. The processes

αδf ,δp,k0,1, . . . , αδf ,δp,k0,L,

and

σδ
f ,δp,k0,1, . . . , σδ

f ,δp,k0,L;

a multiplicative spread model for the currency k0, if for every 1 ≤ k3 ≤ L the following conditions

are satisfied:

(i) The spot spread index Sk0,k3
t (t − δf , t, t + δp) is absolutely continuous with respect to the

Lebsegue measure and satisfies Sk0,k3
t (t− δf , t, t+ δp) = e−

∫ t

δf
h
δf ,δp,k0,k3
s ds with multiplicative

spread short rate hδ
f ,δp,k0,k3 = (hδ

f ,δp,k0,k3
t )t≥δf ;

(ii) The triple (hδ
f ,δp,k0,k3

δf
, αδf ,δp,k0,k3 , σδ

f ,δp,k0,k3) satisfies the HJM-basic condition in Definition

5.4;

(iii) For every τ ≥ δf , the instantaneous multiplicative spread forward rate (hδ
f ,δp,k0,k3

t (τ))t∈[δf ,τ ]
is given by

(6.9) h
δf ,δp,k0,k3
t (τ) = h

δf ,δp,k0,k3
δf

(τ) +

∫ t

δf
αδf ,δp,k0,k3
s (τ)ds+

∫ t

δf
σδ

f ,δp,k0,k3
s (τ)dXs;

(iv) For every T ≥ δf , the instantaneous multiplicative spread forward rate satisfies

h
δf ,δp,k0,k3
t (τ) = f

c,k0,k3
t (τ), for every T < t ≤ τ ≤ T + δp;

(v) The forward index spread (Sk0,k3
t (T − δf , T, T + δp))t∈[δf ,T+δp] satisfies

(6.10) Sk0,k3
t (T − δf , T, T + δp) = e−

∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du.

The next definition naturally collects the martingale conditions that are relevant in the current

setting.

Definition 6.8. Let 1 ≤ k0 ≤ L and δf , δp ≥ 0. We say that the multiplicative spread model for the

currency k0 is risk neutral if the following conditions hold:

(i) The extended bond-price model for the currency k0
(
X,Qk0,1, . . . , Qk0,k0−1, Qk0,k0+1 . . . , Qk0,L, Bc,k0 , f

c,k0
δf

, q
k0,1
δf

, . . . , q
k0,k0−1
δf

, q
k0,k0+1
δf

, . . . , q
k0,L

δf
,

αc,k0 , αk0,1, . . . , αk0,k0−1, αk0,k0+1, . . . , αk0,L, σc,k0 , σk0,1, . . . , σk0,k0−1, σk0,k0+1, . . . , σk0,L
)
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is risk neutral in the sense of Definition 5.16;

(ii) For each 1 ≤ k3 ≤ L, the forward index spreads
{(

Sk0,k3
t (T − δf , T, T + δp

)
t∈[δf ,T+δp]

, T ≥ δf
}

are (QT−δf ,k0,k3 ,G)-martingales.

For every τ ≥ δf , we further define

Σδf ,δp,k0,k3
t (τ) :=

∫ τ

t

σ
δf ,δp,k0,k3
t (u)du,

and state the following result characterizing condition (ii) of Definition 6.8.

Theorem 6.9. Let 1 ≤ k0 ≤ L and δf , δp ≥ 0. For a multiplicative spread model for the currency k0,

the followings are equivalent:

(i) The multiplicative spread model satisfies condition (ii) of Definition 6.8;

(ii) For every T ≥ δf and every k3, the conditional expectation hypothesis holds, namely

EQT−δf ,k0,k3
[
Sk0,k3
T (T − δf , T, T + δp)

∣∣∣Gt

]
= e−

∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du,

for every t ∈ [δf , T + δp];

(iii) For every T ≥ δf and every k3, −Σδf ,δp,k0,k3(T + δp) ∈ UQk0 ,X and

−
(
Σδf ,δp,k0,k3(T + δp) + Σc,k0(T − δf ) + Σk0,k3(T − δf )

)
∈ UQk0 ,X ,

and the following conditions are satisfied:

(a) The process

(6.11)

(
exp

{
−
∫ t

δf

(
Σδf ,δp,k0,k3
s (T + δp) + Σc,k0

s∧(T−δf )
(T − δf ) + Σk0,k3

s∧(T−δf )
(T − δf )

)
dXs

−
∫ t

δf
ΨQk0 ,X

s (−Σδf ,δp,k0,k3
s (T + δp)− Σc,k0

s∧(T−δf )
(T − δf )− Σk0,k3

s∧(T−δf )
(T − δf ))ds

})

t∈[δf ,T+δp]

is a Qk0-martingale;

(b) The consistency condition holds, meaning that

Ψ
Qk0 ,−

∫

·

δf
h
δf ,δp,k0,k3
s ds

t (1) = −hδf ,δp,k0,k3t− = −hδf ,δp,k0,k3t− (t)(6.12)

for all t ≥ δf ;

(c) For every T ≥ δf and every k3, the HJM drift condition

(6.13)

∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du

= ΨQk0 ,X
t (−Σδf ,δp,k0,k3

t (T + δp)− Σc,k0
t∧(T−δf )

(T − δf )− Σk0,k3
t∧(T−δf )

(T − δf ))

−ΨQk0 ,X
t (−Σc,k0

t∧(T−δf )
(T − δf )− Σk0,k3

t∧(T−δf )
(T − δf ))

holds for every t ∈ [δf , T + δp].

Proof. The proof goes in parallel to the proof of Theorem 5.17. In the following, let T ≥ δf and

1 ≤ k3 ≤ L be fixed.
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(i)⇒ (ii) Since the process
(
Sk0,k3
t (T − δf , T, T + δp)

)
t∈[δf ,T+δp]

is a (QT−δf ,k0,k3 ,G)-martingale,

it follows that

EQT−δf ,k0,k3
[
Sk0,k3
T (T − δf , T, T + δp)

∣∣∣Gt

]
= Sk0,k3

t (T − δf , T, T + δp)

= e−
∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du.

(i)⇒ (iii) Since the process
(
Sk0,k3
t (T − δf , T, T + δp)

)
t∈[δf ,T+δp]

is a (QT−δf ,k0,k3 ,G)-martingale,

by Bayes’ formula, the process

(6.14)


Sk0,k3

t (T − δf , T, T + δp)
B

c,k0,k3
δf

B
c,k0,k3
t∧(T−δf )

Bk0,k3(t ∧ (T − δf ), T − δf )

Bk0,k3(δf , T − δf )




t∈[δf ,T+δp]

=



e
−

∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du−

∫ T−δf

t∧(T−δf )
f
c,k0,k3
t∧(T−δf )

(u)du

e
∫ t∧(T−δf )

δf
r
c,k0,k3
s ds−

∫ T−δf

δf
f
c,k0,k3
δf

(u)du




t∈[δf ,T+δp]

is a (Qk0 ,G)-martingale. Let

Rt : = −
∫ t

δf
hδ

f ,δp,k0,k3
s ds−

∫ T+δp

t

h
δf ,δp,k0,k3
t (u)du−

∫ T−δf

t∧(T−δf )
f
c,k0,k3
t∧(T−δf )

(u)du

−
∫ t∧(T−δf )

δf
rc,k0,k3s ds+

∫ T−δf

δf
f
c,k0,k3
δf

(u)du.

Then the martingale property of (6.14) is equivalent to the martingale property of exp (R),

which implies that 1 ∈ UQk0 ,R and ΨQk0 ,R
t (1) = 0. Due to the integrability conditions on

αc,k0 and σc,k0 in Definition 5.5, on αk0,k3 and σk0,k3 in Definition 5.14, and αδf ,δp,k0,k3 and

σδ
f ,δp,k0,k3 in Definition 6.7, we can apply the classical and the stochastic Fubini theorem,

which yield

(6.15)

∫ T+δp

t

h
δf ,δp,k0,k3
t (u)du =

∫ T+δp

δf
h
δf ,δp,k0,k3
δf

(u)du+

∫ t

δf

∫ T+δp

s

αδf ,δp,k0,k3
s (u)duds

+

∫ t

δf
Σδf ,δp,k0,k3
s (T + δp)dXs −

∫ t

δf
hδ

f ,δp,k0,k3
u (u)du,

and, similarly, starting from (5.23),

(6.16)

∫ T−δf

t∧(T−δf )
f
c,k0,k3
t∧(T−δf )

(u)du

=

∫ T−δf

δf
f
c,k0,k3
δf

(u)du+

∫ t∧(T−δf )

δf

∫ T−δf

s

(αc,k0
s (u) + αk0,k3

s (u))duds

+

∫ t∧(T−δf )

δf
(Σc,k0

s (T − δf ) + Σk0,k3
s (T − δf ))dXs −

∫ t∧(T−δf )

δf
f c,k0,k3u (u)du.

By applying Kallsen and Krühner [2013, Lemma A.13] and using the equality

Ψ
Qk0 ,−

∫

·∧(T−δf )

δf
r
c,k0,k3
s ds

t (1) = Ψ
Qk0 ,−

∫

·∧(T−δf )

δf
r
c,k0,k3
s ds

t∧(T−δf )
(1) ,
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we then obtain that

(6.17)

0 = ΨQk0 ,R
t (1)

= Ψ
Qk0 ,−

∫

·

δf
h
δf ,δp,k0,k3
s ds

t (1) + Ψ
Qk0 ,−

∫

·∧(T−δf )

δf
r
c,k0,k3
s ds

t∧(T−δf )
(1)

+ ΨQk0 ,X
t

(
−Σδf ,δp,k0,k3

t (T + δp)− Σc,k0
t∧(T−δf )

(T − δf )− Σk0,k3
t∧(T−δf )

(T − δf )
)

−
∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du−

∫ T−δf

t∧(T−δf )
(αc,k0

t∧(T−δf )
(u) + α

k0,k3
t∧(T−δf )

(u))du

+ h
δf ,δp,k0,k3
t− (t) + f

c,k0,k3
(t∧(T−δf ))−

(t ∧ (T − δf )),

where Ψ
Qk0 ,−

∫

·∧(T−δf )

δf
r
c,k0,k3
s ds

t∧(T−δf )
(1) + f

c,k0,k3
(t∧(T−δf ))−

(t ∧ (T − δf )) = 0 because of the consistency

condition (5.25). Set now t = T + δp in (6.17). Since Σδf ,δp,k0,k3
T+δp (T + δp) = Σc,k0

T−δf
(T − δf ) =

Σk0,k3
T−δf

(T − δf ) = 0, we get

0 = Ψ
Qk0 ,−

∫

·

δf
h
δf ,δp,k0,k3
s ds

t (1) + h
δf ,δp,k0,k3
t− (t),

hence (6.12). Moreover, substituting the two consistency conditions into (6.17) yields the

following drift condition:
∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du+

∫ T−δf

t∧(T−δf )
(αc,k0

t∧(T−δf )
(u) + α

k0,k3
t∧(T−δf )

(u))du

= ΨQk0 ,X
t

(
−Σδf ,δp,k0,k3

t (T + δp)− Σc,k0
t∧(T−δf )

(T − δf )− Σk0,k3
t∧(T−δf )

(T − δf )
)
,

hence, by the drift condition (5.26),
∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du

= ΨQk0 ,X
t

(
−Σδf ,δp,k0,k3

t (T + δp)− Σc,k0
t∧(T−δf )

(T − δf )− Σk0,k3
t∧(T−δf )

(T − δf )
)

−ΨQk0 ,X

t∧(T−δf )
(−Σc,k0

t∧(T−δf )
(T − δf )− Σk0,k3

t∧(T−δf )
(T − δf )).

We now have both the consistency condition and the drift condition. By substituting them

into (6.15), and then together with (6.16) into (6.14) we write that

(6.18)

Sk0,k3
t (T − δf , T, T + δp)

B
c,k0,k3
δf

B
c,k0,k3
t∧(T−δf )

Bk0,k3(t ∧ (T − δf ), T − δf )

Bk0,k3(δf , T − δf )

= exp

{
−
∫ T+δp

δf
h
δf ,δp,k0,k3
δf

(u)du

−
∫ t

δf
ΨQk0 ,X

s

(
−Σδf ,δp,k0,k3

s (T + δp)− Σc,k0
s∧(T−δf )

(T − δf )− Σk0,k3
s∧(T−δf )

(T − δf )
)
ds

−
∫ t

δf

(
Σδf ,δp,k0,k3
s (T + δp) + Σc,k0

s∧(T−δf )
(T − δf ) + Σk0,k3

s∧(T−δf )
(T − δf )

)
dXs

}
,

from which we deduce that the process (6.11) is a Qk0-martingale for every T ≥ δf .

(iii) ⇒ (i) The consistency condition and the drift condition yield again equation (6.18). The

martingale property of (6.11) implies then that the forward index spread (Sk0,k3
t (T−δf , T, T+

δp))t∈[δf ,T+δp] is a (QT−δf ,k0,k3 ,G)-martingale.



CCY-HJM 43

�

The drift condition (6.13) allows us to explicitly observe the interplay between the different risk

factors that drive the multiplicative spread. In particular, we observe that the drift depends of course

on the integrated volatility of the spread Σδf ,δp,k0,k3
t (T + δp) up to the payment date T + δp, but also

on the integrated volatility of the instantaneous collateral forward rate Σc,k0
t (T − δf ) and on that of

the instantaneous cross-currency basis spread Σk0,k3
t (T − δf ), which is an interesting feature from an

economic perspective.

Remark 6.10. Similarly as in Remark 5.18, we notice that the HJM drift condition (6.13) is given in

terms of the local exponent ΨQk0 ,X . However, one can show that for any δf ≤ t ≤ T − δf the local

exponent ΨQT−δf ,k0,k3 ,X under the measure QT−δf ,k0,k3 is obtained from ΨQk0 ,X by

ΨQT−δf ,k0,k3 ,X(β) = ΨQk0 ,X(β−Σc,k0(T−δf )−Σk0,k3(T−δf ))−ΨQk0 ,X(−Σc,k0(T−δf )−Σk0,k3(T−δf )),

for any Rd-valued predictable and X-integrable process β = (βt)t≥0. We further observe from Defini-

tion 4.2, that for T − δf < t ≤ T + δp the two measures Qk0 and QT−δf ,k0,k3 are equivalent up to a

multiplicative constant. Hence, basically, we have that

ΨQT−δf ,k0,k3 ,X(β) = ΨQk0 ,X(β).

The HJM drift condition (6.13) can then be rewritten under the forward measure QT−δf ,k0,k3 as
∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du = ΨQT−δf ,k0,k3 ,X

t (−Σδf ,δp,k0,k3
t (T + δp)),

for every δf ≤ t ≤ T + δp. We further notice that, since h
δf ,δp,k0,k3
t (τ) = f

c,k0,k3
t (τ) for every

T < t ≤ τ ≤ T + δp by definition, then α
δf ,δp,k0,k3
t (τ) = α

c,k0
t (τ) + α

k0,k3
t (τ) and Σδf ,δp,k0,k3

t (τ) =

Σc,k0
t (τ) + Σk0,k3

t (τ) for every T < t ≤ τ ≤ T + δp, and the drift condition (6.13) coincides with the

drift condition (5.26), namely
∫ T+δp

t

(αc,k0
t (u) + α

k0,k3
t (u))du =

∫ T+δp

t

α
δf ,δp,k0,k3
t (u)du

= ΨQk0 ,X
t (−Σδf ,δp,k0,k3

t (T + δp))

= ΨQk0 ,X
t (−Σc,k0

t (T + δp)− Σk0,k3
t (T + δp)),

for every T < t ≤ T + δp.

Remark 6.11. For k3 = k0, δ
f = 0 and δp = δ, the drift condition (6.13) becomes

(6.19)

∫ T+δ

t

α
0,δ,k0,k0
t (u)du = ΨQk0 ,X

t (−Σ0,δ,k0,k0
t (T + δ)− Σc,k0

t∧T (T ))−ΨQk0 ,X
t (−Σc,k0

t∧T (T )).

Notice that this extends the results of Cuchiero et al. [2016], because we model the spread beyond

the fixing date, in this case T , namely we model the spread up to the payment date, T + δ. This is

important since, as discussed before, despite for T < t ≤ T + δp the index has already been fixed, one

still observes fluctuations in the spread due to fluctuations in the foreign-collateral discount curves.

Instead, in Cuchiero et al. [2016], these fluctuations are implicitly ignored since the spread is only

modelled up to the fixing date T . In particular, this would mean to set
∫ T+δp

T

α
0,δ,k0,k0
t (u)du =

∫ T+δp

T

σ
0,δ,k0,k0
t (u)du = 0,
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hence Σ0,δ,k0,k0
t (T + δ) = Σ0,δ,k0,k0

t (T ). Under these assumptions, we observe that the drift condition

(6.19) coincides indeed with the drift condition found in Cuchiero et al. [2016, Theorem 3.15].

Corollary 6.12. Let 1 ≤ k0 ≤ L and δf , δp ≥ 0. If the multiplicative spread model for the currency

k0 is risk neutral, then for every 1 ≤ k3 ≤ L we have that:

(i) For every t ≥ δf and τ ≥ δ = δf + δp, the instantaneous multiplicative spread forward rate is

given by

h
δf ,δp,k0,k3
t (τ) = h

δf ,δp,k0,k3
δf

(τ)

−
∫ t

δf

((
σδ

f ,δp,k0,k3
s (τ) + σ

c,k0
s∧(τ−δ)(τ − δ) + σ

k0,k3
s∧(τ−δ)(τ − δ)

)
·

· ∇ΨQk0 ,X
s

(
−Σδf ,δp,k0,k3

s (τ)− Σc,k0
s∧(τ−δ)(τ − δ)− Σk0,k3

s∧(τ−δ)(τ − δ)
)

−
(
σ
c,k0
s∧(τ−δ)(τ − δ) + σ

k0,k3
s∧(τ−δ)(τ − δ)

)
∇ΨQk0 ,X

s

(
−Σc,k0

s∧(τ−δ)(τ − δ)− Σk0,k3
s∧(τ−δ)(τ − δ)

))
ds

+

∫ t

δf
σδ

f ,δp,k0,k3
s (τ)dXs;

(ii) For every t ≥ δ, the multiplicative spread short rate hδ
f ,δp,k0,k3

t at time t is given by

h
δf ,δp,k0,k3
t = h

δf ,δp,k0,k3
t (t) = h

δf ,δp,k0,k3
δf

(t)

−
∫ t

δf

((
σδ

f ,δp,k0,k3
s (t) + σ

c,k0
s∧(t−δ)(t− δ) + σ

k0,k3
s∧(t−δ)(t− δ)

)
·

· ∇ΨQk0 ,X
s

(
−Σδf ,δp,k0,k3

s (t)− Σc,k0
s∧(t−δ)(t− δ)− Σk0,k3

s∧(t−δ)(t− δ)
)

−
(
σ
c,k0
s∧(t−δ)(t− δ) + σ

k0,k3
s∧(t−δ)(t− δ)

)
∇ΨQk0 ,X

s

(
−Σc,k0

s∧(τ−δ)(t− δ)− Σk0,k3
s∧(t−δ)(t− δ)

))
ds

+

∫ t

δf
σδ

f ,δp,k0,k3
s (t)dXs;

Proof. The proof proceeds similarly to the proof of Corollary 5.8, starting from (6.9) and using the

drift condition (6.13) for τ := T + δp. For the short rate, we let t→ τ . �

We conclude this section by deriving the HJM framework for an abstract index by combining the

multiplicative spread model for the currency k0 with the HJM framework for the extended bond-price

model in Section 5.3. In particular, from Definition 6.4, for any fixed 1 ≤ k0, k3 ≤ L, any δf , δp ≥ 0

and for any T ≥ δf , the forward on the abstract index Ik0(T − δf , T, T + δp) at time δf ≤ t ≤ T + δp

for the time period [T − δf , T + δp] collateralized according to Bc,k0,k3 and payed at time T + δp is the

product between the multiplicative spread and the discount curve index, namely

I
k0,k3
t (T − δf , T, T + δp) =

1

δ

(
Sk0,k3
t (T − δf , T, T + δp)

(
1 + δI

k0,k3,D
t (T − δf , T + δp, T + δp)

)
− 1
)
,
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where δ = δf + δp. From (6.8) we further write that

(6.20)

I
k0,k3
t (T − δf , T, T + δp)

=





1
δ

(
Sk0,k3
t (T − δf , T, T + δp)B

k0,k3 (t,T−δf )

Bk0,k3 (t,T+δp)
− 1
)
, δf ≤ t ≤ T − δf ,

1
δ

(
Sk0,k3
t (T − δf , T, T + δp)

B
c,k0,k3
t

B
c,k0,k3
T−δf

1
Bk0,k3 (t,T+δp)

− 1

)
, T − δf < t ≤ T,

Ik0T (T − δf , T, T + δp), T < t ≤ T + δp.

By combining equations (5.20), (5.21), (5.22) and (6.10), we can also rewrite the index in terms of

the instantaneous collateral forward rate, the cross-currency basis spread and of the instantaneous

multiplicative spread forward rate, namely

I
k0,k3
t (T − δf , T, T + δp) =

1

δ

(
e
−

∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du+

∫ T+δp

T−δf

(

f
c,k0
t (u)+q

k0,k3
t (u)

)

du − 1

)
,

for δf ≤ t ≤ T − δf , and

I
k0,k3
t (T − δf , T, T + δp)

=
1

δ

(
e
−

∫ t

δf
h
δf ,δp,k0,k3
s ds−

∫ T+δp

t
h
δf ,δp,k0,k3
t (u)du+

∫ t

T−δf

(

r
c,k0
s +q

k0,k3
s

)

ds−
∫ T+δp

t

(

f
c,k0
t (u)+q

k0,k3
t (u)

)

du − 1

)
,

for T − δf < t ≤ T . Notice that for T < t ≤ T + δp the forward equals the index at time T , namely

I
k0,k3
t (T − δf , T, T + δp) = Ik0T (T − δf , T, T + δp). Hence, in particular, it is constant.

7. Application: cross-currency swaps pricing

We provide an in-depth study of cross-currency swap contracts. The motivation for studying these

instruments is twofold: on the one hand, cross-currency swap contracts offer the perfect example of

instruments which depend on all the sources of risk that we have described in the previous sections.

On the other hand, studying cross-currency swap contracts serves as a starting point for analysing

the benchmark transition, which is still not treated in the literature. In particular, in view of the

benchmark reform, we shall describe the legs of the contracts in terms of some abstract indices, in

line with the approach adopted in Section 6.2. We proceed as follows: we consider first the case of

constant-notional cross-currency swaps and provide the corresponding pricing formulas under different

collateral currencies. Then, we consider resetting cross-currency swaps, and, finally, we study potential

leg asymmetries which are originated by the LIBOR transition.

We consider two generic currencies 1 ≤ k0, k ≤ L and a time interval [τ s, τ e], with τ e ≥ τ s ≥ 0,

representing the monitoring period of the cross-currency swap contract which is stipulated by two

agents at time 0. In general, the number of legs for a swap can be arbitrary, most typically for

bespoke over-the-counter (OTC) contracts. However, for simplicity, we consider contracts with only

two legs and we use the index k0 and the index k to denote, respectively, the domestic and the foreign

leg. Let then Nk0 ∈ N and Nk ∈ N be the numbers of time intervals in the two schedules of cash

flows happening within the interval [τ s, τ e] and referring, respectively, to k0 and to k. Notice that,

in general, the number of cash flows can be different among different legs, typically due to different

payment frequencies. We then denote the time instants for the domestic leg by tk0n , with 0 ≤ n ≤ Nk0 ,

and the time instants for the foreign leg by tkn, with 0 ≤ n ≤ Nk. In particular, we set tk00 = tk0 = τ s

and tk0
Nk0

= tk
Nk = τ e. For each interval of the form (tk0n−1, t

k0
n ], we define δk0n := tk0n − tk0n−1, for
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1 ≤ n ≤ Nk0 . Similarly, we define δkn := tkn − tkn−1, for 1 ≤ n ≤ Nk. We then introduce δk0,fn , δk0,pn ,

δ
k,f
n and δk,pn such that δk0,fn + δ

k0,p
n = δk0n and δk,fn + δ

k,p
n = δkn, respectively.

We further introduce φ ∈ {+1,−1} as the indicator for long and short positions, respectively, and

N k0 and N k for the constant notional of the contract in domestic and foreign currency, respectively.

Notice that a schedule of time-varying notional could be included by writing N k0

t
k0
n

and N k
tkn
, instead.

Spreads can also be included in either leg by means of the quantities Sk0
0 (τ e) and Sk

0 (τ
e). The standard

market practice is to quote cross-currency swaps against USD and to add the spread to the non-USD

leg. Notice also that the two spreads are fixed at the moment of the stipulation of the contract, namely

in 0, and depend on the final horizon of the monitoring period, namely τ e. As in the previous sections,

we denote with k3 the currency of denomination of the collaterals.

7.1. Constant-notional cross-currency swaps. The simplest form of cross-currency swap involves

two agents who lend to each other notional amounts in two different currencies. The notional is

swapped at the initial time, τ s, and then swapped back at the terminal time, τ e. We denote by

CCSk0,k3 the value in domestic currency of the constant-notional cross-currency swap collateralized

in currency k3, which at time t ≥ 0 is given by

CCS
k0,k3
t = φ

(
Sk0
t (Ak0

CCS , C
k3)−X k0,k

t Sk
t (A

k
CCS , C

k3)
)
,

with Ak0
CCS and Ak

CCS representing the cash flow of the domestic and foreign legs associated to two

generic market indices Ik0 and Ik. In particular, for each t ≤ τ e, the leg ℓ ∈ {k0, k} is evaluated via

(7.1)

Sℓ
t (A

ℓ
CCS , C

k3) = N ℓ

(
−Bℓ,k3(t, τ s)I{t≤τs} +Bℓ,k3(t, τ e)

+

Nℓ∑

n=1

δℓnE
Qℓ


B

c,ℓ,k3
t

B
c,ℓ,k3
tℓn

(
Iℓ
tℓn−1+δ

ℓ,f
n

(tℓn−1, t
ℓ
n−1 + δℓ,fn , tℓn) + Sℓ

0(τ
e)

)∣∣∣∣∣∣
Gt


 I{t≤tℓn}

)
,

where the indicator function I means that each term in the summations exists until its payment date,

namely the n-th term in the domestic leg disappears for t > tk0n , and the n-th term in the foreign

leg disappears for t > tkn. Notice that the same formulas allow also to treat the case of fixed-versus-

fixed and fixed-versus-floating cross-currency swaps by suitably setting the desired indices to zero and

interpreting the spreads Sk0
0 (τ e) and Sk

0 (τ
e) as fixed rates.

We now illustrate how the modeling quantities analyzed in the present work are crucial in the

evaluation of the formula (7.1). By Definition 6.1, we express the leg ℓ ∈ {k0, k} in terms of the

forward contract Iℓ,k3 written on the index Iℓ with collateralization in currency k3, namely

Sℓ
t (A

ℓ
CCS , C

k3) = N ℓ

(
−Bℓ,k3(t, τ s)I{t≤τs} +Bℓ,k3(t, τ e)

+

Nℓ∑

n=1

δℓn

(
I
ℓ,k3
t (tℓn−1, t

ℓ
n−1 + δℓ,fn , tℓn) + Sℓ

0(τ
e)
)
Bℓ,k3(t, tℓn) I{t≤tℓn}

)
.

(7.2)

In particular, for every t ≥ 0, the forward contract Iℓ,k3 can be written in compact form starting from

equation (6.20) as

(7.3) I
ℓ,k3
t (tℓn−1, t

ℓ
n−1 + δℓ,fn , tℓn) =

1

δℓn


 B

c,ℓ,k3
t

B
c,ℓ,k3
t∧tℓn−1

Bℓ,k3(t ∧ tℓn−1, t
ℓ
n−1)

Bℓ,k3(t, tℓn)
Sℓ,k3
t (tℓn−1, t

ℓ
n−1 + δℓ,fn , tℓn)− 1


 .
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By substituting (7.3) into (7.2), we get

Sℓ
t (A

ℓ
CCS , C

k3) = N ℓ

(
−Bℓ,k3(t, τ s)I{t≤τs} +Bℓ,k3(t, τ e)

+
Nℓ∑

n=1


 B

c,ℓ,k3
t

B
c,ℓ,k3
t∧tℓn−1

Bℓ,k3(t ∧ tℓn−1, t
ℓ
n−1)

Bℓ,k3(t, tℓn)
Sℓ,k3
t (tℓn−1, t

ℓ
n−1 + δℓ,fn , tℓn)− 1 + δℓnSℓ

0(τ
e)


Bℓ,k3(t, tℓn) I{t≤tℓn}

)
.

Finally, we use the definition of the foreign-collateral discount curves as product between the domestic

bond with domestic collateral and the ℓ-k3 cross-currency bond spread in equation (5.20) and obtain

Sℓ
t (A

ℓ
CCS , C

k3) =N ℓ

(
−Bℓ,ℓ(t, τ s)Qℓ,k3(t, τ s)I{t≤τs} +Bℓ,ℓ(t, τ e)Qℓ,k3(t, τ e)

+

Nℓ∑

n=1

( B
c,ℓ
t Q

ℓ,k3
t

B
c,ℓ

t∧tℓn−1
Q

ℓ,k3
t∧tℓn−1

Bℓ,ℓ(t ∧ tℓn−1, t
ℓ
n−1)Q

k0,k3(t ∧ tℓn−1, t
ℓ
n−1)

Bℓ,ℓ(t, tℓn)Q
ℓ,k3(t, tk0n )

·

· Sℓ,k3
t (tℓn−1, t

ℓ
n−1 + δℓ,fn , tℓn)− 1 + δℓnSℓ

0(τ
e)
)
Bℓ,ℓ(t, tℓn)Q

ℓ,k3(t, tℓn) I{t≤tℓn}

)
.

This shows how all the quantities modelled in the previous sections enter into play in the evaluation

of cross-currency swap contracts. In particular, the formulas obtained also highights that constant-

notional cross-currency swaps are linear with respect to all the quantities introduced in our cross-

currency HJM framework.

7.2. Resetting cross-currency swaps. A resetting (or marked-to-market) cross-currency swap

(MtMCCS) is constructed via a sequence of one-period cross-currency swaps. Every single cross-

currency swap in the sequence involves an exchange of notional, so that the contract can be inter-

preted as a rolling strategy on loans with varying notional. The rolling mechanism implies exchanges

of notional at every payment date, and it reduces the outstanding counterparty risk exposure. This

version of the instrument is cheaper if one takes into account the possibility of default of the agents

which are involved in the transaction.

Typically, quoted instruments feature notional resets on the leg indexed to the stronger currency

(e.g., USD for the EURUSD pair), and a constant notional for the weaker currency (i.e., EUR in the

EURUSD pair example). In this case, the spread is introduced only on the weaker leg and it is fixed

in such a way that the value of the contract at initiation is zero. This means in particular that the

spread is the market quote. For our example, we shall analyze the case when the notional resets affect

either the k0- or the k-denominated leg. The collateralization is in currency k3.

We then denote by MtMCCSk0,k3 the value in domestic currency of the resetting cross-currency

swap collateralized in currency k3. With the notional resets affecting the k0-denominated leg, for

t ≤ τ e we have that

MtMCCSk0,k3 = φ
(
Sk0
t (Ak0

MtMCCS , C
k3)−X k0,k

t Sk
t (A

k
CCS , C

k3)
)
,

where Ak0
MtMCCS represents the cash flow of the domestic leg with resetting. Similarly, if the notional

resets are affecting the foreign leg instead, the valuation formula is

MtMCCSk0,k3 = φ
(
Sk0
t (Ak0

CCS , C
k3)−X k0,k

t Sk
t (A

k
MtMCCS , C

k3)
)
,
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with Ak
MtMCCS being the cash flow of the foreign leg with resetting. In particular, then the value of

the leg with resetting is given for ℓ ∈ {k0, k} by

(7.4)

Sℓ
t (A

ℓ
MtMCCS , C

k3) =

N κ




Nℓ∑

n=1

EQℓ


B
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tℓn
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n

(tℓn−1, t
ℓ
n−1 + δℓ,fn , tℓn) + Sℓ

0(τ
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))∣∣∣∣∣∣
Gt


 I{t≤tℓn}

−
Nℓ∑
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EQℓ


B
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t

B
c,ℓ,k3
tℓn−1

X ℓ,κ

tℓn−1
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Gt


 I{t≤tℓn}


 ,

where we notice that the notional for the leg ℓ ∈ {k0, k} is now denominated in the other currency,

namely in currency κ ∈ {k0, k} with κ 6= ℓ. The leg with no resetting, Sκ
t (A

κ
CCS , C

k3), is evaluated as

in (7.1) for κ ∈ {k0, k}. Starting from (7.4), with similar steps as in Section 7.1, one recovers all the

modelling quantities studied in the paper, including the dynamics for the FX rate in Section 5.4.

7.3. The impact of the LIBOR transition. For concreteness, we take the perspective of a USD

agent who entered at time t = 0 before any benchmark reform into an OTC EURUSD cross-currency

swap with notional resets and fixed spread applied on the EUR-denominated leg. In this case, we then

have k0 = $ and k = e. As a legacy product, we assume that the swap was entered when the USD

3M LIBOR and the 3M EURIBOR were the market standard floating rates applied to the two legs in

this kind of contracts. Both the floating rates are fixed at the beginning of the period and paid at the

end, so in this case δe,fn = δ
$,f
n = 0 for all n, which allows us to use the more familiar notation

Iℓ
tℓn−1+δ

ℓ,f
n

(tℓn−1, t
ℓ
n−1 + δℓ,fn , tℓn) = Iℓ

tℓn−1
(tℓn−1, t

ℓ
n−1, t

ℓ
n) = Iℓ

tℓn−1
(tℓn−1, t

ℓ
n), for ℓ ∈ {e, $},

to denote the IBOR rate of the two currencies which is fixed in tℓn−1 for the interval (tℓn−1, t
ℓ
n], and is

paid in tℓn. In line with the prevailing market standard, we assume that the collateral is exchanged

in USD, namely rc,k3 = rc,k0 = rc,$, with rc,$ being initially the Fed Fund rate which is an unsecured

overnight rate. The value of the resetting cross-currency swap is then

MtMCCS$,$ = φ
(
S$
t (A

$
CCS , C

$)−X $,e
t Set (A

e
MtMCCS , C

$)
)
,

where, before the LIBOR discontinuation, the USD leg is evaluated as in (7.1), namely

S$
t (A

$
CCS , C

$) = N $

(
−B$,$(t, τ s)I{t≤τs} +B$,$(t, τ e)
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$
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]
I{t≤t$n}

)
.

(7.5)
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Here the spread S$
0 (τ

e) = 0 because the the USD currency is the strong one in the USD-EUR pair.

The EUR leg is instead evaluated as in (7.4) by

Set (A
e
MtMCCS , C

$) = N $




Ne∑

n=1

EQe


B

c,e,$
t

B
c,e,$
ten

Xe,$
ten−1

(
1 + δen

(
Ie
ten−1

(ten−1, t
e
n) + Se0 (τ e)

))
∣∣∣∣∣∣
Gt


 I{t≤ten}

−
Ne∑

n=1

EQe


B

c,e,$
t

B
c,e,$

ten−1

Xe,$
ten−1

∣∣∣∣∣∣
Gt


 I{t≤ten}


 ,

where the rate rc,e was initially represented by the EONIA rate. We remark that the expression above

depends also on the infinitesimal cross-currency basis q$,e.

The benchmark reform had multiple impacts on the valuation of this type of products. The first

one is a switch of the collateral rate by central counterparties for both the currency areas, which also

became the market standard for OTC markets. On 27 July 2020, the central counterparties switched

rc,e from EONIA to ESTR. Subsequently, on 16 October 2020, the rate rc,$ has been switched from the

Fed Fund rate to SOFR. Both the switches of discount rates triggered exchanges of cash flows among

agents. Even more relevant is the discontinuation of the USD 3M LIBOR rate, which is impacting

directly the USD leg. In this case, the agents can agree on different alternatives, all of which are

captured by our framework.

A first choice is to replace the USD 3M LIBOR by means of AMERIBOR T90. In this case, the new

benchmark is still an unsecured forward-looking rate that embeds a dynamic credit component, hence

the valuation formula (7.5) is virtually unchanged. A second choice is to adopt the ISDA fallback

protocol6, where USD 3M LIBOR is replaced by the sum of the backward-looking rate and a fixed

credit spread. This means that in (7.5) we replace the spot index I$
t$n−1

(t$n−1, t
$
n) by

7

I$
t$n−1

(t$n−1, t
$
n, t

$
n) :=

1

t$n − t$n−1


e

∫ t$n

t$
n−1

r
c,$
u du

− 1


+ CS =

1

t$n − t$n−1



B

c,$

t$n

B
c,$

t$n−1

− 1


+ CS,

where CS denotes a credit spread between the USD 3M LIBOR and the backward-looking rate. This

is usually estimated as a mean or a median on the basis of historical data. For an in-depth analysis

of LIBOR fallbacks from a quantitative perspective, we refer to Henrard [2019]. We limit ourselves to

notice that a constant credit spread is a questionable choice, since it is clearly unable to capture the

dynamic nature of inter-bank risk Filipović and Trolle [2013].

In the aftermath of the benchmark reform, cross-currency swaps still fall within our HJM framework:

the market practice has moved to the use of the backward-looking rate on both legs.
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E. Schlögl, J. B. Skov, and D. Skovmand. Term structure modeling of SOFR: Evaluating the impor-

tance of scheduled jumps. https://ssrn.com/abstract=4431839, 2023.

J. Skov and D. Skovmand. Dynamic term structure models for SOFR futures. Journal of Futures

Markets, 41(10):1520–1544, 2021.

C. Turfus. Caplet pricing with backward-looking rates. Working paper, 2020.

S. Willems. Sabr smiles for RFR caplets. Working paper, 2020.

(Alessandro Gnoatto) University of Verona, Department of Economics,

Via Cantarane 24, 37129 Verona, Italy

Email address: alessandro.gnoatto@univr.it

(Silvia Lavagnini) BI Norwegian Business School, Department of Data Science and Analytics,

Nydalsveien 37, 0484 Oslo, Norway

Email address: silvia.lavagnini@bi.no

https://ssrn.com/abstract=4431839

	1. Introduction
	1.1. Violations of the covered interest rate parity
	1.2. IBOR-OIS spread
	1.3. The LIBOR discontinuation is not the end of IBORs
	1.4. Summary of the requirements

	2. Multi-currency trading in the basic market
	3. Pricing under funding costs and collateralization
	3.1. Pricing of zero-coupon bonds

	4. Measure changes
	4.1. Spot-foreign measures
	4.2. Forward measures

	5. Cross-currency HJM framework
	5.1. HJM framework for collateral discount curves
	5.2. HJM framework for cross-currency basis curves
	5.3. HJM framework for foreign-collateral discount curves
	5.4. Foreign exchange rate models and changes of measure

	6. Forwards of indices
	6.1. Some examples
	6.2. HJM framework for abstract indices

	7. Application: cross-currency swaps pricing
	7.1. Constant-notional cross-currency swaps
	7.2. Resetting cross-currency swaps
	7.3. The impact of the LIBOR transition

	References

