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CBI-TIME-CHANGED LÉVY PROCESSES

CLAUDIO FONTANA, ALESSANDRO GNOATTO, AND GUILLAUME SZULDA

Abstract. We introduce and study the class of CBI-time-changed Lévy processes (CBITCL),

obtained by time-changing a Lévy process with respect to an integrated continuous-state branching

process with immigration (CBI). We characterize CBITCL processes as solutions to a certain

stochastic integral equation and relate them to affine stochastic volatility processes. We provide a

complete analysis of the time of explosion of exponential moments of CBITCL processes and study

their asymptotic behavior. In addition, we show that CBITCL processes are stable with respect

to a suitable class of equivalent changes of measure. As illustrated by some examples, CBITCL

processes are flexible and tractable processes with a significant potential for applications in finance.

1. Introduction

Since their introduction in [KW71], continuous-state branching processes with immigration (CBI

processes) have represented a major topic of research in the theory of stochastic processes (we refer

to [Li20] for a recent overview of some of the main developments in the field). CBI processes belong

to the class of affine processes (see [DFS03]) and, due to their analytical tractability, have found

important applications in mathematical finance, especially in interest rate modelling (see [Fil01]).

In recent years, CBI processes have attracted a renewed interest in financial modelling, due to their

capability of reproducing empirical features of financial time series such as volatility clustering

and self-exciting jumps. In particular, self-exciting CBI processes have been exploited for the

construction of single-curve and multi-curve interest rate models in [JMS17, FGS21b], for the

modelling of energy prices in [JMSS19, CMS22] and for stochastic volatility modelling in [JMSZ21].

In this paper, we introduce and study the class of CBI-time-changed Lévy processes (CBITCL),

obtained by time-changing a Lévy process with respect to the time integral of a CBI process. This

construction combines the distributional flexibility of Lévy processes with the self-exciting behavior

of CBI processes, while retaining full analytical tractability. As shown in the companion paper

[FGS21a], CBITCL processes have a significant potential for use in finance, notably in markets

with stochastic volatility. In this paper, we set the theoretical foundations of CBITCL processes

and derive some results that are especially motivated by financial applications.
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The main contributions of the present paper can be outlined as follows:

‚ We characterize CBITCL processes as solutions to a system of stochastic integral equations

which generalizes the well-known Dawson-Li representation of a CBI process (see [DL06])

and we provide an additional characterization in terms of their semimartingale characteris-

tics. Moreover, we study the relation with affine stochastic volatility processes, adopting an

extension of the original definition of [KR11], and derive necessary and sufficient conditions

for a general affine stochastic volatility process to be a CBITCL process.

‚ By combining general techniques of affine processes and specific properties of CBITCL

processes, we provide a complete analysis of the time of explosion of exponential moments

of CBITCL processes. This result is of fundamental importance in financial models, where

a CBITCL process can be used to represent the log-price of an asset. We also study the

asymptotic behavior of CBITCL processes. While the existence of a stationary distribution

of a CBI process is well understood (see, e.g., [Li20, Section 10]), we provide an asymptotic

result analogous to [KR11, Theorem 3.4] for the distribution of a CBITCL process, making

use of our characterization of the lifetime of exponential moments.

‚ In view of financial applications, we derive a class of equivalent changes of probability

that leave invariant the class of CBITCL processes, up to a change in their parameters.

Moreover, we show how our results can be applied to two different specifications of CBITCL

processes that have been recently considered in mathematical finance.

We emphasize that, while some of our results can be derived from the general theory of affine

processes, we obtain more refined statements under minimal technical assumptions by exploiting

the specific structure of CBITCL processes.

Our work is naturally related to the use of stochastic changes of time in finance. Starting from the

seminal work [Cla73], time-changed processes have been widely adopted as models for asset prices

and we refer to [BNS15, Swi16] for detailed accounts on the topic. In particular, our work builds on

the contributions of [CGMY03, CW04], where stochastic volatility models have been constructed

by relying on time-changed Lévy processes. An empirical analysis of several specifications of such

models has been conducted in [HW04]. While their analysis only considers time changes driven

by square-root diffusions, [HW04] point out that a promising direction of research is to investigate

models where the activity rate of the time change process exhibits high-frequency jumps. This has

been confirmed by the recent empirical analysis conducted in [FHM21]. This paper contributes to

this line of research by developing a general theoretical framework for the use of CBI processes as

time changes for Lévy processes, also allowing for the possible presence of self-exciting jumps in

the activity rate of the time change.

The paper is structured as follows. In Section 2, we state the definition of CBITCL processes,

characterize them as solutions to certain stochastic integral equations and study their relation to

affine stochastic volatility processes. Section 3 contains the analysis of exponential moments of

CBITCL processes and a study of their asymptotic behavior. In Section 4, we present a class

of equivalent changes of probability that leave invariant the class of CBITCL processes. Finally,

Section 5 contains two examples of CBITCL processes that are relevant for financial applications.
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2. Definition and characterization

In this section, we state the definition of a CBITCL process and prove some foundational results

for this class of processes. We work on a probability space pΩ,F ,Pq. Let us first recall the definition
of a continuous-state branching process with immigration (see, e.g., [Li11, Chapter 3] and [Li20,

Section 5]). To this effect, we introduce the following two functions:

‚ let Ψ : R´ Ñ R be defined by

(2.1) Ψpuq :“ βu`
ż `8

0

peuz ´ 1qνpdzq, @u P R´,

where β ě 0 and ν is a Lévy measure on p0,`8q such that
ş1
0
z νpdzq ă `8;

‚ let Φ : R´ Ñ R be defined by

(2.2) Φpuq :“ ´bu` 1

2
σ2u2 `

ż `8

0

peuz ´ 1 ´ uzqπpdzq, @u P R´,

where b P R, σ P R and π is a Lévy measure on p0,`8q such that
ş`8
1

z πpdzq ă `8.

Definition 2.1. A Markov process X “ pXtqtě0 taking values in the state space R` and with

transition kernels pt : R` ˆ BpR`q Ñ r0, 1s, for t ě 0, is said to be a continuous-state branching

process with immigration (CBI) with immigration mechanism Ψ and branching mechanism Φ if

(2.3)

ż

R`

euy ptpx, dyq “ exp

ˆż t

0

Ψ
`
vps, uq

˘
ds` vpt, uqx

˙
,

for all u P R´, x P R` and t ě 0, where the function vp¨, uq : R` Ñ R´ is the unique solution to

(2.4)
Bv
Bt pt, uq “ Φ

`
vpt, uq

˘
, vp0, uq “ u.

In the following, we denote by CBIpX0,Ψ,Φq a CBI process with initial value X0, immigration

mechanism Ψ and branching mechanism Φ. Definition 2.1 corresponds to a conservative stochasti-

cally continuous CBI process in the sense of [KW71]. CBI processes are non-negative strong Markov

(Feller) processes with càdlàg trajectories. As a consequence, the path integral Y :“
ş¨
0
Xs ds of a

CBI process X is always well defined as a non-decreasing process and can therefore be used as a

change of time. This motivates the following definition of CBI-time-changed Lévy processes.

Definition 2.2. A process pX,Zq is said to be a CBI-time-changed Lévy process (CBITCL) if

(i) X “ pXtqtě0 is a CBI process, and

(ii) Z “ LY “ pLYtqtě0, where L “ pLtqtě0 is a Lévy process independent of X and Y “ pYtqtě0

denotes the process defined by Yt :“
şt
0
Xs ds, for all t ě 0.

The Lévy exponent Ξ of L admits the Lévy-Khintchine representation

(2.5) Ξpuq “ bZu` 1

2
σ2Zu

2 `
ż

Rzt0u

`
ezu ´ 1 ´ zu1t|z|ă1u

˘
γZpdzq, @u P iR,

where pbZ , σZ , γZq is the Lévy triplet of L, with bZ P R, σZ P R and γZ a Lévy measure on R. In

the following, we write that a process pX,Zq is a CBITCLpX0,Ψ,Φ,Ξq as a shorthand notation
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to denote the fact that pX,Zq is a CBI-time-changed Lévy process in the sense of Definition 2.2,

where Ψ and Φ are the immigration and branching mechanisms of the CBI process X, respectively,

and Ξ is the Lévy exponent of L.

2.1. CBITCL processes as solutions to stochastic integral equations. It is well-known

that a CBI process can be characterized in two equivalent ways: as the solution to the stochastic

integral equation of Dawson and Li (see [DL06]) and as the solution to a stochastic time change

equation of Lamperti-type (see [CPGUB13]). It can be shown that these two representations of a

CBI process are equivalent in a weak sense (see [Szu21, Theorem 2.12] for details). In the present

context of CBITCL processes, Definition 2.2 is closer in spirit to the Lamperti-type representation.

We now show that the Dawson-Li representation can be extended to CBITCL processes. To this

effect, let us introduce the following objects, assumed to be mutually independent:

‚ two standard Brownian motions B1 “ pB1
t qtě0 and B2 “ pB2

t qtě0;

‚ a Poisson random measure N0pdt, dxq on p0,`8q2 with compensator νpdxqdt;
‚ a Poisson random measure N1pdt, du, dxq on p0,`8q3 with compensator πpdxqdu dt;
‚ a Poisson random measure N2pdt, du, dxq on p0,`8q2 ˆR with compensator γZpdxqdu dt.

In the following, we shall always use the tilde notation to denote compensated random measures.

For X0 P R`, let us consider the following two-dimensional stochastic integral equation:

Xt “ X0 `
ż t

0

pβ ´ bXsqds` σ

ż t

0

a
Xs dB

1
s

`
ż t

0

ż `8

0

xN0pds, dxq `
ż t

0

ż Xs´

0

ż `8

0

x rN1pds, du, dxq,(2.6)

Zt “ bZ

ż t

0

Xs ds` σZ

ż t

0

a
Xs dB

2
s `

ż t

0

ż Xs´

0

ż

|x|ě1

xN2pds, du, dxq

`
ż t

0

ż Xs´

0

ż

|x|ă1

x rN2pds, du, dxq.(2.7)

On a given filtered probability space pΩ,F ,F,Pq satisfying the usual conditions and supporting

the processes introduced above, there exists a unique strong solution pX,Zq to (2.6)-(2.7). Indeed,

by [DL06, Theorems 5.1 and 5.2], there exists a unique strong solutionX to (2.6), which corresponds

to the Dawson-Li representation of a CBI process. Since the right-hand side of (2.7) does depend

only on the process X, this implies the existence of a unique strong solution Z to (2.7) as well.

The next theorem asserts that defining CBITCL processes as in Definition 2.2 is equivalent to

defining them as solutions to the stochastic integral equations (2.6)-(2.7).

Theorem 2.3. A process pX,Zq is a CBITCLpX0,Ψ,Φ,Ξq if and only if it is a weak solution to

the stochastic integral equations (2.6)-(2.7).

Proof. By [Li20, Theorem 8.1], a non-negative càdlàg process X “ pXtqtě0 with initial value X0 is

a CBIpX0,Ψ,Φq if and only if it is a weak solution to (2.6). Therefore, to prove the theorem, we

can restrict our attention to the process Z. Suppose first that Z “ LY , where L is a Lévy process
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independent of X and Y “
ş¨
0
Xs ds. By the Lévy-Itô decomposition of L, it holds that

(2.8) Zt “ bZ Yt ` σZWYt `
ż Yt

0

ż

|x|ě1

xNpds, dxq `
ż Yt

0

ż

|x|ă1

x rNpds, dxq, @t ě 0,

where W “ pWtqtě0 is a Brownian motion and Npdt, dxq an independent Poisson random measure

on R` ˆ p0,`8q with compensator γZpdxqdt. By the independence of X and L, there is no loss

of generality in assuming that Yt is a stopping time with respect to the filtration generated by

W and N , for every t ě 0. The process Y is therefore a change of time in the sense of [Jac79,

Definition 10.1]. By [Jac79, Theorem 10.27], we can perform a change of time in the random

measure Npdt, dxq, thus obtaining
ż Yt

0

ż

|x|ě1

xNpds, dxq “
ż t

0

ż

|x|ě1

xNpXs ds, dxq,
ż Yt

0

ż

|x|ă1

x rNpds, dxq “
ż t

0

ż

|x|ă1

x rNpXs ds, dxq,
@t ě 0.

By [IW89, Theorem II.7.4], on a suitable extension of the probability space there exists a Poisson

random measure N2pdt, du, dxq with compensator γZpdxqdu dt such that
ż t

0

ż

|x|ě1

xNpXs ds, dxq “
ż t

0

ż Xs´

0

ż

|x|ě1

xN2pds, du, dxq
ż t

0

ż

|x|ă1

x rNpXs ds, dxq “
ż t

0

ż Xs´

0

ż

|x|ă1

x rN2pds, du, dxq,
@t ě 0.

Similarly, by [IW89, Theorem II.7.1’], on a suitable extension of the probability space there exists

an independent Brownian motion B2 “ pB2
t qtě0 such that WYt “

şt
0

?
Xs dB

2
s , for all t ě 0. We

have thus shown that Z is a weak solution to (2.7).

Conversely, suppose that Z is a weak solution to (2.7). In order to show that Z “ LY , where

L is a Lévy process independent of X with exponent Ξ, we follow the proof of [Kal06, Theorem

3.2]. Observe first that the process Z is constant on each interval rr, ss Ď R` such that Yr “ Ys

a.s. Indeed, for any such interval, it necessarily holds that Xu “ 0 a.s. for Lebesgue-a.e. u P rr, ss,
and, therefore, (2.7) immediately implies that Z is a.s. constant on rr, ss. Let Y8 :“ limtÑ`8 Yt,

which is well-defined since the process Y is non-decreasing, and define the inverse time change

τz :“ inftt ě 0 : Yt ą zu, for all z ě 0. Define the time-changed process L1 “ pL1
zqzăY8

by

L1
z :“ Zτz , for all z ă Y8 (note that it may happen that Y8 ă `8, since zero is an absorbing state

for X when Ψ ” 0). By [Jac79, Lemma 10.14], Z is adapted to pτzqzě0 and it holds that Zt “ L1
Yt
,

for all t ě 0. Without loss of generality, we can assume that the stochastic basis already supports

an independent Lévy process L2 “ pL2
zqzě0 with Lévy triplet pbZ , σZ , γZq. Define then the process

L “ pLzqzě0 by

Lz :“ L1
z1tzăY8u ` pL1

Y8
` L2

z´Y8
q1tzěY8u, @z ě 0,

where L1
Y8

:“ limtÑ`8 Zt “: Z8 on tY8 ă `8u, which is well-defined since equation (2.7) implies

that Z is a semimartingale up to infinity on tY8 ă `8u, see [CS05]. Clearly, it holds that Zt “ LYt ,

for all t ě 0. To complete the proof, it remains to show that L is a Lévy process independent of
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X with Lévy triplet pbZ , σZ , γZq. To this effect, let FX
8 :“ σpXt; t ě 0q and consider the enlarged

filtration G “ pGtqtě0 defined by Gt :“
Ş
uątpFu _FX

8 q, for all t ě 0. Equation (2.7) together with

the independence between X and B2 and N2 implies that Z has semimartingale characteristics

pbZY, σ2ZY, γZpdzqY q in the filtration G (i.e., Z is a semimartingale with FX
8 -conditionally inde-

pendent increments, according to [JS03, Definition II.6.2]). Moreover, by [Jac79, Theorem 10.16],

the process L1 is a semimartingale in the time-changed filtration pGτzqzě0 on the stochastic inter-

val J0, Y8J. Similarly as in the proof of [Kal06, Theorem 3.2], [Jac79, Theorems 10.17 and 10.27]

together with the fact that Yτz “ z, for all z ă Y8, imply that the semimartingale characteristics

pB,A,Cq of L1 in pGzqzě0 are given by

Bz “ bZ Yτz “ bZ z, Az “ σ2Z Yτz “ σ2Z z, Czpdxq “ γZpdxqYτz “ γZpdxq z,

for all z ă Y8. Therefore, for every z ě 0 and u P R, making use of the definition of L together

with the dominated convergence theorem and [JS03, Theorem II.6.6], it holds that

EreiuLz |FX
8 s “ 1tzăY8uEreiuL1

z |FX
8 s ` 1tzěY8uEreiuZ8 |FX

8 sEreiuL2

z´Y8 |FX
8 s

“ 1tzăY8ue
Ξpiuqz ` 1tzěY8u lim

tÑ`8
EreiuZt |FX

8 sEreiuL2
t s
ˇ̌
t“z´Y8

“ 1tzăY8ue
Ξpiuqz ` 1tzěY8u lim

tÑ`8
eΞpiuqYteΞpiuqpz´Y8q

“ eΞpiuqz,

where the Lévy exponent Ξ is associated to the triplet pbZ , σZ , γZq as in (2.5). Since the right-hand

side of the last identity is deterministic, this shows that L is Lévy process with exponent Ξ as well

as its independence of X, thus completing the proof. �

In the rest of the paper, if a CBITCL process pX,Zq is directly defined as the unique strong solu-

tion to (2.6)-(2.7), we will say that pX,Zq is given through its extended Dawson-Li representation.

We point out that the representation (2.6)-(2.7) is especially useful for the numerical simulation of

CBITCL processes (compare with [FGS21b, Appendix B] in the case CBI processes).

Remark 2.4. One of the characteristic features of CBI processes is their self-exciting behavior.

As can be deduced from equations (2.6)-(2.7), this behavior is inherited by the class of CBITCL

processes. In particular, we can observe the following:

‚ The local martingale terms of the process X depend on the current level of the process

itself. This generates self-excitation since large values of the process increase its volatility.

In particular, a large jump of X increases the likelihood of further jumps of X.

‚ The volatility of Z is determined by X. Therefore, large values of X are associated to an

increased volatility of both processes, thus generating volatility clustering effects in pX,Y q.
As mentioned in the introduction, self-exciting and volatility clustering phenomena are often

present in financial time series. Together with their analytical tractability, this makes CBITCL

processes especially appropriate for financial modeling, as illustrated for instance in [FGS21a] in

the context of foreign currency markets with stochastic volatility.
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The next proposition characterizes CBITCL processes in terms of their semimartingale differen-

tial characteristics (see [Kal06] for additional information on this notion of characteristics).

Proposition 2.5. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq. Then, pX,Zq is a semimartingale (in its

own natural filtration) with differential characteristics pB,A, Cq relative to the truncation function

hpxq “ x1t|x|ă1u given by

(2.9)
Bt “

˜
β `

ş1
0
z νpdzq
0

¸
`Xt´

˜
´b´

ş`8
1

z πpdzq
bZ

¸
, At “ Xt´

˜
σ2 0

0 σ2Z

¸
,

Ctpdx, dzq “ νpdxqδ0pdzq `Xt´

`
πpdxqδ0pdzq ` δ0pdxqγZpdzq

˘
,

for all t ě 0. Conversely, if pX,Zq is a semimartingale with differential characteristics given as in

(2.9), with β P R`, b P R, σ P R and ν and π Lévy measures on p0,`8q such that
ş1
0
z νpdzq ă `8

and
ş`8
1

z πpdzq ă `8, then it is a CBITCLpX0,Ψ,Φ,Ξq, where Ψ, Φ, Ξ are determined by

pβ, b, σ, ν, π, bZ , σZ , γZq as in (2.1), (2.2), (2.5), respectively.

Proof. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq. In view of Theorem 2.3, the process pX,Zq satisfies

equations (2.6)-(2.7) on an extension pΩ1,F 1,F1,P1q (see [IW89, Definition II.7.1]). This implies that

pX,Zq is a quasi-left-continuous semimartingale on pΩ1,F 1,F1,P1q and its differential characteristics

as stated in (2.9) can be directly deduced from (2.6)-(2.7). In view of [Jac79, Remark 10.40], it

follows that pX,Zq is also a semimartingale on pΩ,F ,FpX,Zq,Pq, where FpX,Zq “ pF pX,Zq
t qtě0 denotes

the natural filtration of pX,Zq, with the same differential characteristics. Conversely, if pX,Zq is

a semimartingale, then its canonical representation is determined by its differential characteristics

(see [JS03, Theorem II.2.34]). Suppose that the differential characteristics of pX,Zq are given as

in (2.9). By considering the canonical representation of pX,Zq and arguing similarly as in the first

part of the proof of Theorem 2.3, it is easy to see that pX,Zq satisfies (2.6)-(2.7) on a suitable

extension of the original probability space. Therefore, the semimartingale pX,Zq is a weak solution

to (2.6)-(2.7). By Theorem 2.3, it follows that pX,Zq is a CBITCLpX0,Ψ,Φ,Ξq. �

2.2. CBITCL processes as affine processes. In this section, we regard CBITCL processes as

affine processes in the sense of [DFS03]. More specifically, we connect CBITCL processes to affine

stochastic volatility processes as considered in [KR11]. We first state the following proposition,

which provides the Fourier-Laplace transform of the joint process pX,Y, Zq, where Y :“
ş¨
0
Xs ds.

Without loss of generality, we suppose that pX,Zq is given by its extended Dawson-Li representation

on a filtered probability space pΩ,F ,F,Pq supporting the processes introduced in Section 2.1.

Proposition 2.6. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and consider the process pX,Y, Zq, where
Y :“

ş¨
0
Xs ds. Then, pX,Zq and pX,Y, Zq are affine procesess on the state spaces R` ˆ R and

R
2
` ˆ R, respectively, and it holds that

(2.10) E
“
eu1XT `u2YT `u3ZT |Ft

‰
“ exp

`
UpT ´ t, u1, u2, u3q ` VpT ´ t, u1, u2, u3qXt ` u2Yt ` u3Zt

˘
,
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for all pu1, u2, u3q P C
2
´ ˆ iR and 0 ď t ď T ă `8, where the functions Up¨, u1, u2, u3q : R` Ñ C

and Vp¨, u1, u2, u3q : R` Ñ C´ are solutions to

Upt, u1, u2, u3q “
ż t

0

Ψ
`
Vps, u1, u2, u3q

˘
ds,(2.11)

BV
Bt pt, u1, u2, u3q “ Φ

`
Vpt, u1, u2, u3q

˘
` u2 ` Ξpu3q, Vp0, u1, u2, u3q “ u1,(2.12)

where Ψ : C´ Ñ C and Φ : C´ Ñ C denote the analytic extensions to C´ of the corresponding

functions given by (2.1) and (2.2), respectively.

Proof. By [DFS03, Corollary 2.10], the process X is an affine process, since it is a CBIpX0,Ψ,Φq
by definition. In view of [KR09, Theorem 4.10], the process pX,Y q is also an affine process, with

functional characteristics ppΨ, pΦq given by

pΨpu1, u2q “ Ψpu1q, pΦpu1, u2q “ Φpu1q ` u2, @pu1, u2q P C
2
´.

Since L is by definition a Lévy process independent of X, [KR09, Theorem 4.16] implies that

pX,Y, Zq is an affine process on R
2
` ˆ R, with functional characteristics prΨ, rΦq given by

rΨpu1, u2, u3q “ pΨ
`
u1, u2 ` Ξpu3q

˘
“ Ψpu1q,

rΦpu1, u2, u3q “ pΦ
`
u1, u2 ` Ξpu3q

˘
“ Φpu1q ` u2 ` Ξpu3q,

for all pu1, u2, u3q P C
2
´ ˆ iR. By [DFS03, Theorem 2.7], the Fourier-Laplace transform of pX,Y, Zq

is given by (2.10) in terms of the solutions to the Riccati equations (2.11)-(2.12). Finally, the fact

that pX,Zq is an affine process on R` ˆ R follows from [KR09, Proposition 4.8]. �

The availability of the explicit characterization of the conditional Fourier-Laplace transform

stated in Proposition 2.6 is of great usefulness for the application of CBITCL processes in finance.

More specifically, many pricing applications require the computation of conditional expectations

of the form (2.10), where Y typically plays the role of a discount factor.

In line with [KR11], we say that a process pX,Zq taking values in R` ˆR is an affine stochastic

volatility process if it is an affine process and its Fourier-Laplace transform has the structure

(2.10) (with u2 “ 0), for some functions U and V. This terminology is explained by the fact

that, in financial applications, the process Z usually plays the role of the log-price process of

a risky asset, while X represents its instantaneous variance.1 Proposition 2.6 directly implies

that CBITCL processes are affine stochastic volatility processes. In the next result, we study the

converse implication. We recall that, if pX,Zq is an affine process on R` ˆR, then the compensator

of its jump measure is of the form νpX,Zqpdt, dx, dzq “ pm0pdx, dzq `Xt´m1pdx, dzqqdt, where m0

and m1 are Lévy measures on R` ˆ R satisfying
ş

pR`ˆRqzt0up1 ^ px ` z2qqm0pdx, dzq ă `8 (see,

e.g., [KR11, Section 2.1]).

1We point out that the notion of affine stochastic volatility process that we adopt in this paper is more general

than [KR11, Definition 2.8]. Indeed, we do not require that exppZq is a martingale nor impose a non-degeneracy

condition on Ξ (corresponding to conditions (A3)-(A4) in [KR11]). An explicit characterization of the martingale

property of exppZq will be given below in Corollary 4.3.
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Proposition 2.7. Let pX,Zq be an affine stochastic volatility process. Then, pX,Zq is a CBITCL

process if and only if the following three conditions hold:

(i) rX,Zs “ 0 (up to an evanescent set);

(ii)
ş

p1,`8qˆR
xm1pdx, dzq ă `8;

(iii) Z is a.s. constant on every interval rr, ss Ď R` such that
şs
r
Xu´du “ 0 a.s.

Proof. If pX,Zq is an affine stochastic volatility process, then by [DFS03, Theorem 2.12] it is a

semimartingale with differential characteristics pBpX,Zq,ApX,Zq, CpX,Zqq given by

B
pX,Zq
t “

˜
β1

β2

¸
`Xt´

˜
b1

b2

¸
, A

pX,Zq
t “

˜
0 0

0 α2

¸
`Xt´

˜
a11 a12

a21 a22

¸
,

C
pX,Zq
t pdx, dzq “ m0pdx, dzq `Xt´m1pdx, dzq,

where pβ1, β2q P R
` ˆR, pb1, b2q P R

2, α2 P R` and the matrix
`
a11 a12
a21 a22

˘
is symmetric positive semi-

definite. If condition (i) holds, then xXc, Zcy “ 0, which implies that a12 “ a21 “ 0. Furthermore,

always as a consequence of condition (i), the processes X and Z do not have common jumps, which

implies that the Lévy measures mipdx, dzq have the following structure:

mipdx, dzq “ mX
i pdxqδ0pdzq ` δ0pdxqmZ

i pdzq, for i “ 0, 1.

Condition (ii) therefore implies that
ş`8
1

xmX
1 pdxq ă `8. Moreover, if condition (iii) holds, then

the process Z is constant on all intervals rr, ss Ď R` such that Xu´ “ 0 a.s. for a.e. u P rr, ss,
which in turn implies that β2 “ 0, α2 “ 0 and mZ

0 “ 0. Recalling that
ş

p0,1q xm
X
0 pdxq ă `8,

since pX,Zq is assumed to be an affine stochastic volatility process, we have thus shown that the

differential characteristics pBpX,Zq,ApX,Zq, CpX,Zqq can be written in the form (2.9). By Proposition

2.5, it follows that pX,Zq is a CBITCL process. The converse implication is straightforward. �

3. Finiteness of exponential moments and asymptotic behavior

In this section, we study the existence of (discounted) exponential moments of CBITCL processes

and their asymptotic behavior. These properties are intimately connected to the maximal lifetime

of the solutions to the Riccati equations, explicitly characterized in Theorem 3.4 below.

3.1. Finiteness of exponential moments. In financial applications of CBITCL processes, the

finiteness of (discounted) exponential moments typically represents an indispensable requirement

(see, e.g., [FGS21a, FGS21b]). In order to make use of some results of [KRM15] for general affine

processes, let us define the convex set DX as follows:

(3.1) DX :“
"
u P R :

ż `8

1

euz pν ` πqpdzq ă `8
*
.

The set DX represents the effective domain of the functions Ψ and Φ, which can be extended as

finite-valued convex functions on DX . Similarly, let us define

(3.2) DZ :“
"
u P R :

ż

|z|ě1

euz γZpdzq ă `8
*
,
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which represents the effective domain of the Lévy exponent Ξ when restricted to real arguments.

By standard results on exponential moments of Lévy measures (see, e.g., [Sat99, Theorem 25.17]),

the Lévy exponent Ξ can be extended as a finite-valued convex function on DZ .

Adapting [KRM15, Definition 2.10] to the present setup, we introduce the following definition.

Definition 3.1. For pu1, u2, u3q P DX ˆ R ˆ DZ , we say that pUp¨, u1, u2, u3q,Vp¨, u1, u2, u3qq is a

solution to the extended Riccati system if it solves the following system:

Upt, u1, u2, u3q “
ż t

0

Ψ
`
Vps, u1, u2, u3q

˘
ds,(3.3)

BV
Bt pt, u1, u2, u3q “ Φ

`
Vpt, u1, u2, u3q

˘
` u2 ` Ξpu3q, Vp0, u1, u2, u3q “ u1,(3.4)

up to a time Tpu1,u2,u3q P r0,`8s, with Tpu1,u2,u3q denoting the joint lifetime of the functions

Up¨, u1, u2, u3q : r0,Tpu1,u2,u3qq Ñ R and Vp¨, u1, u2, u3q : r0,Tpu1,u2,u3qq Ñ DX .

Definition 3.1 extends the Riccati system (2.11)-(2.12) by allowing for the possibility of explosion

in finite time. In some situations, which will be precisely characterized in Theorem 3.4 below, the

lifetime Tpu1,u2,u3q turns out to be infinite, in which case (3.3)-(3.4) admit a global solution.

It is well known that the branching mechanism function Φ is locally Lipschitz continuous on

the interior D˝
X of the set DX , but it may fail to be so at the boundary BDX . Therefore, a

solution Vp¨, u1, u2, u3q to the ODE (3.4) may not be unique when it starts at BDX or reaches it

at a later time. This observation motivates the introduction of the concept of minimal solution

in [KRM15]. In our setup, for the sake of tractability, we prefer to impose an additional mild

technical assumption which guarantees uniqueness of the (local) solution to the ODE (3.4) for

every pu1, u2, u3q P DX ˆ R ˆ DZ . To this effect, we define

(3.5) ψ :“ sup
 
x ě 0 : Ψpxq ă `8

(
and φ :“ sup

 
x ě 0 : Φpxq ă `8

(
.

Since DX is a convex set containing R´, it can be written as DX “ p´8, ψ ^ φq, or p´8, ψ ^ φs
when Ψpψ ^ φq _ Φpψ ^ φq ă `8 (which is equivalent to

ş`8
1

epψ^φqzpν ` πqpdzq ă `8). The

function Φ is convex and, hence, differentiable almost everywhere on D˝
X , with derivative given by

(3.6) Φ1pxq “ ´b` σ2x`
ż `8

0

zpexz ´ 1qπpdzq, @x P D˝
X .

If ψ ^ φ “ `8, then DX “ R, in which case Φ P C1pR,Rq obviously holds. If ψ ^ φ ă `8, the

following assumption ensures that Φ1pψ ^ φq ă `8, which in turn implies that Φ P C1pDX ,Rq.

Assumption 3.2. If ψ ^ φ ă `8, then
ş`8
1

zepψ^φqzπpdzq ă `8.

The validity of Assumption 3.2 can be easily checked for each specific type of CBITCL process.

Moreover, as illustrated in Section 5, it is satisfied by a large class of models. Under Assumption

3.2, there exists a unique solution pUp¨, u1, u2, u3q,Vp¨, u1, u2, u3qq to the extended Riccati system

(3.3)-(3.4) up to time Tpu1,u2,u3q, for all pu1, u2, u3q P DX ˆ R ˆ DZ . This enables us to state the

following result, which extends Proposition 2.6 and follows directly from [KRM15, Theorem 2.14].
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Lemma 3.3. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and Y :“
ş¨
0
Xs ds. Suppose that Assumption

3.2 holds. Then, for all pu1, u2, u3q P DX ˆ R ˆ DZ and 0 ď t ď T ă Tpu1,u2,u3q, it holds that

(3.7) E
“
eu1XT `u2YT `u3ZT

ˇ̌
Ft
‰

“ exp
`
UpT ´ t, u1, u2, u3q ` VpT ´ t, u1, u2, u3qXt ` u2Yt ` u3Zt

˘
,

where pUp¨, u1, u2, u3q,Vp¨, u1, u2, u3qq is the unique solution to the extended Riccati system (3.3)-

(3.4) defined up to time Tpu1,u2,u3q.

The lifetime Tpu1,u2,u3q is closely connected to the finiteness of exponential moments of the

process pX,Y, Zq. Indeed, in view of [KRM15, Proposition 3.3], it holds that

(3.8) Tpu1,u2,u3q “ sup
 
t ě 0 : Ereu1Xt`u2Yt`u3Zts ă `8

(
.

The next theorem is the main result of this section and provides an explicit formula for Tpu1,u2,u3q,

for every pu1, u2, u3q P DX ˆRˆDZ . The proof is based on techniques similar to [KR11, Theorem

4.1], which covers the case of affine stochastic volatility processes. However, our theorem is specific

to CBITCL processes and avoids the additional assumptions of [KR11, Theorem 4.1]. In particular,

it allows for CBI processes X with an arbitrary (not necessarily strictly subcritical, i.e. b ą 0)

branching mechanism Φ. For pu2, u3q P R ˆ DZ , we introduce the following notation:

Spu2,u3q :“
 
x P DX : Φpxq ` u2 ` Ξpu3q ď 0

(
and χpu2,u3q :“ supSpu2,u3q P r´8, ψ ^ φs,

with the convention χpu2,u3q “ ´8 if the set Spu2,u3q is empty.

Theorem 3.4. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 holds.

Then, for all pu1, u2, u3q P DX ˆ R ˆ DZ , the lifetime Tpu1,u2,u3q is given as follows:

(i) if u1 ď χpu2,u3q, then Tpu1,u2,u3q “ `8;

(ii) if u1 ą χpu2,u3q, then

(3.9) Tpu1,u2,u3q “
ż ψ^φ

u1

dx

Φpxq ` u2 ` Ξpu3q .

Proof. For simplicity of notation, for fixed pu1, u2, u3q P DX ˆ R ˆ DZ , we denote by TU and TV

the lifetimes of the functions Up¨, u1, u2, u3q and Vp¨, u1, u2, u3q solutions to (3.3)-(3.4), respectively.

Making use of this notation, the lifetime Tpu1,u2,u3q can be decomposed as Tpu1,u2,u3q “ TU ^ TV .

Always for simplicity of notation, we omit to write the superscript pu2, u3q in χpu2,u3q and Spu2,u3q.

Let us first consider the case u1 ď χ. If Φpu1q ` u2 ` Ξpu3q “ 0, then the constant function

Vp¨, u1, u2, u3q ” u1 is the unique solution to (3.3), so that TV “ `8. Since u1 P DX , we also have

TU “ `8, which implies that Tpu1,u2,u3q “ `8. Suppose now that Φpu1q `u2 `Ξpu3q ă 0. Let us

define ξ :“ inf S, with ξ “ `8 if the set S is empty. Note that, in the present case, ξ ă u1 and, if

ξ ą ´8, then Φpξq`u2 `Ξpu3q “ 0. By convexity of Φ, it holds that Φpxq`u2 `Ξpu3q ă 0, for all

x P pξ, u1s. Therefore, equation (3.3) implies that the function Vp¨, u1, u2, u3q is strictly decreasing

and we can write

t “ ´
ż u1

Vpt,u1,u2,u3q

dx

Φpxq ` u2 ` Ξpu3q , for all t ě 0.
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Letting t Ñ `8 on both sides of this identity, we obtain that Vpt, u1, u2, u3q Ñ ξ as t Ñ `8, while

ξ ă Vpt, u1, u2, u3q ď u1 for all t ě 0. This shows that TV “ `8. Moreover, making use of the

structure of Ψ, we obtain ´8 ă Upt, u1, u2, u3q ď tΨpu1q for all t ě 0, implying that TU “ `8. We

have thus shown that Tpu1,u2,u3q “ `8. If u1 ď χ and Φpu1q ` u2 `Ξpu3q ą 0, then we necessarily

have u1 ă ξ P DX and Φpxq ` u2 ` Ξpu3q ą 0, for all x P ru1, ξq. Arguing similarly as above, this

implies that u1 ď Vpt, u1, u2, u3q ă ξ for all t ě 0, which in turn leads to Tpu1,u2,u3q “ `8.

Let us now consider the case u1 ą χ (which includes the case χ “ ´8). By using the convexity of

Φ, we have Φpu1q ` u2 `Ξpu3q ą 0, implying that the function Vp¨, u1, u2, u3q is strictly increasing

with values in ru1, φs. The function Vp¨, u1, u2, u3q can be extended to a maximal interval of

existence r0,T˚q such that one of the following two cases occurs:

(i) T˚ “ `8;

(ii) T˚ ă `8 and limtÑT˚ Vpt, u1, u2, u3q “ φ.

In case (i), since Vp¨, u1, u2, u3q is strictly increasing, the limit l :“ limtÑ`8 Vpt, u1, u2, u3q is well-

defined with values in pu1, φs Y t`8u. Suppose that l ă `8, i.e., the line y “ l is a horizontal

asymptote for Vp¨, u1, u2, u3q as t Ñ `8. This implies that BV
Bt pt, u1, u2, u3q Ñ 0 as t Ñ `8.

Letting t Ñ `8 on both sides of (3.3), this yields Φplq ` u2 ` Ξpu3q “ 0, contradicting the fact

that Φpxq ` u2 ` Ξpu3q ą 0 for all x ą χ. Therefore, the limit l must necessarily be infinite, which

can only happen if φ “ `8 and, in this case, limtÑ`8 Vpt, u1, u2, u3q “ φ, analogously to case (ii).

In case (ii), let pTnqnPN be an increasing sequence such that Tn Ñ T˚ as n Ñ `8. Similarly as

above, making use of equation (3.3), we can write

(3.10) Tn “
ż

VpTn,u1,u2,u3q

u1

dx

Φpxq ` u2 ` Ξpu3q , for all n P N.

Letting n Ñ `8 on both sides of (3.10) yields

T˚ “
ż φ

u1

dx

Φpxq ` u2 ` Ξpu3q ,

which represents the lifetime TV of the function Vp¨, u1, u2, u3q. To complete the proof, it suffices

to observe that, if φ ď ψ, then
şt
0
ΨpVps, u1, u2, u3qqds is always finite whenever Vpt, u1, u2, u3q is

finite, so that Tpu1,u2,u3q “ TV . If φ ą ψ, then Tpu1,u2,u3q “ inftt P R` : Vpt, u1, u2, u3q “ ψu.
Without loss of generality, we can assume that there exists n P N such that Tn “ Tpu1,u2,u3q and

VpTn, u1, u2, u3q “ ψ. Inserting this into equation (3.10) and combining the two cases φ ď ψ and

ψ ă φ gives formula (3.9). �

Remark 3.5. (1) The result of Theorem 3.4 is of great importance in financial applications. Indeed,

many derivatives can be efficiently priced by resorting to Fourier representations of their payoffs and

exploiting the knowledge of the conditional characteristic function of the joint process pX,Y, Zq (see,
e.g., [Fil09, Section 10.3]). This requires an extension of (3.7) to the complex domain. As shown in

[KRM15], the feasibility of this extension crucially depends on the fact that the lifetime Tpu1,u2,u3q

is greater than the maturity of the derivative to be priced, for suitable pu1, u2, u3q P DX ˆRˆDZ .
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(2) In asset pricing models, the finiteness of the lifetime Tpu1,u2,u3q, for pu1, u2, u3q P DXˆRˆDZ ,

is intimately related to the shape of the implied volatility smile at extreme strikes, see [Lee04] and

[KR11, Section 5.1]. Therefore, the availability of an explicit description of Tpu1,u2,u3q in Theorem

3.4 permits to characterize the tail behavior of the implied volatility smile in financial models

driven by CTBICL processes, as will be illustrated in the examples considered in Section 5.

(3) In the case of classical CBI processes, a characterization of the time of explosion of exponential

moments has been obtained in [FGS21b, Theorem 2.7]. The latter result can be recovered as a

special case of Theorem 3.4 by taking u2 P R´ and u3 “ 0.

The following corollary provides a necessary and sufficient condition for the finiteness of expo-

nential moments for all u1 P DX , for fixed but arbitrary pu2, u3q P RˆDZ . Whenever ψ^φ “ `8,

we denote Φpψ ^ φq :“ limuÑ`8 Φpuq, which is well-defined with values in t´8,`8u.

Corollary 3.6. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 holds.

Assume furthermore that, if ψ ă `8 and ψ ď φ, then
ş`8
1

eψzνpdzq ă `8. Let pu2, u3q P RˆDZ .

Then, Tpu1,u2,u3q “ `8 holds for all u1 P DX if and only if Φpψ ^ φq ` u2 ` Ξpu3q ď 0.

Proof. Note first that, under the present assumptions, DX “ p´8, ψ ^ φs whenever ψ ^ φ ă `8.

Suppose first that Φpψ ^ φq ` u2 ` Ξpu3q ď 0. In this case, χpu2,u3q “ ψ ^ φ (in both cases

ψ ^ φ ă `8 and ψ ^ φ “ `8). By Theorem 3.4, it follows that Tpu1,u2,u3q “ `8 for all u1 P DX .

Conversely, suppose that Tpu1,u2,u3q “ `8 for all u1 P DX . If ψ ^ φ ă `8, then ψ ^ φ P DX and,

therefore, Tpψ^φ,u2,u3q “ `8. Arguing by contradiction, suppose that Φpψ ^ φq ` u2 ` Ξpu3q ą 0.

In that case, by the properties of the function Φ, we would have χpu2,u3q ă ψ^φ. But then formula

(3.9) would imply that Tpψ^φ,u2,u3q “ 0, thus leading to a contradiction. On the other hand, if

ψ ^ φ “ `8, then Tpu1,u2,u3q “ `8 for all u1 P DX “ R. Arguing by contradiction, suppose that

Φpψ^φq `u2 `Ξpu3q ą 0. In this case, there exists M ą 0 such that Φpxq `u2 `Ξpu3q ą 0 for all

x ě M . In turn, this yields χpu2,u3q ă M , which by Theorem 3.4 would imply that TpM,u2,u3q ă `8,

thus leading to a contradiction. �

3.2. Asymptotic behavior of CBITCL processes. In this section, we study the long-term

behavior of a CBITCL process pX,Zq. If the CBI process X is strictly subcritical (i.e., b ą 0),

then it converges in law to a unique stationary distribution η, with Laplace transform Lη given by

Lηpλq “ exp

ˆż 0

λ

Ψpxq
Φpxqdx

˙
, for all λ ď 0,

see [Li20, Theorem 10.4]. In general, the time-changed Lévy process Z does not admit an ergodic

distribution. However, similarly as in [KR11, Section 3.2] but under weaker technical assumptions,

we can prove that the rescaled cumulant generating function 1
t
logEreuZts converges to a limit that

corresponds to the cumulant generating function of an infinitely divisible random variable.

Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 is satisfied. We recall

from Lemma 3.3 that

E
“
euZt

‰
“ exp

`
Upt, 0, uq ` Vpt, 0, uqX0

˘
, for all u P DZ ,



14 C. FONTANA, A. GNOATTO, AND G. SZULDA

where pUp¨, 0, uq,Vp¨, 0, uqq is the unique solution to the following extended Riccati system:

Upt, 0, uq “
ż t

0

Ψ
`
Vps, 0, uq

˘
ds,(3.11)

BV
Bt pt, 0, uq “ Φ

`
Vpt, 0, uq

˘
` Ξpuq, Vp0, 0, uq “ 0,(3.12)

for all 0 ď t ă Tpuq, where Tpuq :“ Tp0,0,uq denotes the maximal lifetime of pUp¨, 0, uq,Vp¨, 0, uqq.
The next corollary follows directly from Theorem 3.4 and provides an explicit description of Tpuq.
In the following, for simplicity of notation, we denote χpuq :“ χp0,uq.

Corollary 3.7. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 holds.

Then, for all u P DZ , the lifetime Tpuq is given as follows:

(i) if χpuq ě 0, then Tpuq “ `8;

(ii) if χpuq ă 0, then

(3.13) Tpuq “
ż ψ^φ

0

dx

Φpxq ` Ξpuq .

By Corollary 3.7, Tpuq “ `8 for all u P DZ such that χpuq ě 0, meaning that the functions

Upt, 0, uq and Vpt, 0, uq are finite for all t ě 0. The study of the asymptotic behavior of EreuZts
therefore requires analysing the asymptotic properties of the functions Up¨, 0, uq and Vp¨, 0, uq for

all u P X :“ tu P DZ : χpuq ě 0u. This is the content of the next proposition, which specializes

[KR11, Theorem 3.4] to the case of CBITCL processes. More precisely, by relying on Corollary 3.7

and exploiting the specific structure of a CBITCL process, we obtain an asymptotic result which

only requires the CBI process X to be strictly subcritical, besides the technical requirement of

Assumption 3.2, thereby weakening the assumptions of [KR11].

Proposition 3.8. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq with b ą 0 and suppose that Assumption

3.2 holds. For all u P X , define ξpuq :“ inftx P DX : Φpxq ` Ξpuq ď 0u. Then, it holds that

lim
tÑ`8

Vpt, 0, uq “ ξpuq and lim
tÑ`8

1

t
Upt, 0, uq “ Ψ

`
ξpuq

˘
, for every u P X .

Proof. The branching mechanism Φ satisfies Φp0q “ 0 and is continuous and convex. Moreover, if

b ą 0, then limxÑ´8 Φpxq “ `8. Making use of these properties, for each u P X , the fact that

tx P DX : Φpxq `Ξpuq ď 0u ‰ H implies that the quantity ξpuq is finite-valued and belongs to DX .

In addition, by continuity of Φ, it holds that

(3.14) Φ
`
ξpuq

˘
` Ξpuq “ 0, for all u P X .

For u P X , let us consider separately the three cases ξpuq “ 0, ξpuq ă 0, and ξpuq ą 0. If ξpuq “ 0,

then Ξpuq “ 0 by (3.14) and the function Vp¨, 0, uq ” 0 is the unique solution to (3.12), so that

Vpt, 0, uq Ñ ξpuq as t Ñ `8 trivially holds. If ξpuq ă 0, then we necessarily have that Ξpuq ă 0.

By convexity of Φ, it holds that Φpxq ` Ξpuq ă 0 for all x P pξpuq, 0s. Equation (3.12) therefore

implies that the function Vp¨, 0, uq is strictly decreasing and satisfies ξpuq ă Vpt, 0, uq ď 0 and

t “
ż 0

Vpt,0,uq

´dx

Φpxq ` Ξpuq , for all t ě 0.
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Letting t Ñ `8 on both sides of this identity and recalling (3.14), we obtain that Vpt, 0, uq Ñ ξpuq
as t Ñ `8. If ξpuq ą 0, then we necessarily have that Φpxq ` Ξpuq ą 0 for all x P r0, ξpuqq, which
implies that the function Vp¨, 0, uq is strictly increasing and satisfies 0 ď Vpt, 0, uq ă ξpuq and

t “
ż 0

Vpt,0,uq

´dx

Φpxq ` Ξpuq , for all t ě 0.

Analogously to the preceding case, letting t Ñ `8 on both sides of the latter identity and making

use of (3.14), we obtain that Vpt, 0, uq Ñ ξpuq as t Ñ `8. Finally, for all u P X , the convergence

of the function t ÞÑ p1{tqUpt, 0, uq directly follows from equation (3.11):

1

t
Upt, 0, uq “ 1

t

ż t

0

Ψ
`
Vps, 0, uq

˘
ds ÝÑ

tÑ`8
Ψ
`
ξpuq

˘
.

�

Proposition 3.8 yields the following long-term behavior of the time-changed Lévy process Z:

1

t
logE

“
euZt

‰
“ 1

t
Upt, 0, uq ` 1

t
Vpt, 0, uqX0 ÝÑ

tÑ`8
Ψ
`
ξpuq

˘
, for all u P X .

Similarly as in [KR11, Theorem 3.4], it can be shown that ξp¨q and Ψpξp¨qq are cumulant generating

functions of infinitely divisible random variables. We can therefore conclude that the marginal

distributions of Z are asymptotically equivalent to those of a Lévy process with characteristic

exponent Ψpξp¨qq. Notice that Ψpξp¨qq corresponds to the exponent obtained by subordinating

a Lévy process with exponent ξ by an independent Lévy process with exponent Ψ, see [Sat99,

Theorem 30.1]. In particular, this subordinator is equivalent to the one appearing in the Lamperti-

type representation of the CBI process X (see [CPGUB13] and also [Szu21, Section 2.5]).

4. CBITCL-preserving changes of probability

In this section, we describe a class of equivalent changes of probability that leave invariant the

class of CBITCL processes. More precisely, we consider Esscher-type changes of measure under

which a CBITCL process remains a CBITCL process, with modified branching and immigration

mechanisms and Lévy exponent. The results of this section are motivated by financial applications,

where one typically wants to ensure that a model preserves its structural characteristics under both

the statistical and the risk-neutral probability, as well as under risk-neutral probabilities associated

to different numéraires (see [FGS21a] for an application to a multi-currency market).

Let us fix two constants ζ P R and λ P R and consider the process W “ pWtqtě0 defined by

(4.1) Wt :“ ζpXt ´X0q ` λZt, @t ě 0.

In view of [JS03, Proposition II.8.26], the process W is an exponentially special semimartingale if

and only if ζ P DX and λ P DZ . In this case, W admits a unique exponential compensator, i.e., a

predictable finite variation process K “ pKtqtě0 such that exppW ´ Kq is a local martingale. The

following lemma provides the explicit representation of the exponential compensator K.
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Lemma 4.1. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq. Consider the process W defined by (4.1), with

ζ P DX and λ P DZ . Then, the exponential compensator K of W is given by

(4.2) Kt “ tΨpζq ` Yt
`
Φpζq ` Ξpλq

˘
, @t ě 0.

Proof. In view of [KS02, Theorems 2.18 and 2.19], taking into account that CBITCL processes are

quasi-left-continuous, the exponential compensator K coincides with the modified Laplace cumulant

process of pX,Zq computed at θ “ pζ, λq. The latter can be explicitly expressed in terms of the

semimartingale differential characteristics of pX,Zq, given in Proposition 2.5. Hence, for all t ě 0,

Kt “
ż t

0

ˆ
θJBs ` 1

2
θJAs θ `

ż

R2

peθJx ´ 1 ´ θJx1t|x|ă1uq Cspdxq
˙
ds

“ t

ˆ
βζ `

ż `8

0

peζx ´ 1qνpdxq
˙

` Yt

ˆ
´bζ ` 1

2
σ2ζ2 `

ż `8

0

peζx ´ 1 ´ ζxqπpdxq
˙

` Yt

ˆ
bZλ` 1

2
σ2Zλ

2 `
ż

R

peλx ´ 1 ´ λx1t|x|ă1uqγZpdxq
˙

“ tΨpζq ` Yt
`
Φpζq ` Ξpλq

˘
.

�

The process W introduced in (4.1) can be used to define an equivalent change of probability

that leaves invariant the class of CBITCL processes. We consider a time horizon T ă `8 and

assume that pX,Zq is directly given through its extended Dawson-Li representation (2.6)-(2.7) on

a filtered stochastic basis pΩ,F ,F,Pq. In view of Theorem 2.3, this entails no loss of generality.

Theorem 4.2. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 holds.

Consider the process W defined in (4.1), with ζ P DX and λ P DZ , and its exponential compensator

K given by (4.2). Then, the process pexppWt ´ KtqqtPr0,T s is a martingale. Moreover, under the

probability measure P
1 „ P defined on pΩ,Fq by

(4.3)
dP1

dP
:“ eWT ´KT ,

the process pX,Zq remains a CBITCL process up to time T , with parameters β1, ν 1, b1, σ1, π1, b1
Z ,

σ1
Z , and γ

1
Z reported in Table 1.

Proof. By Lemma 4.1, the process exppW ´ Kq is a local martingale and, by Fatou’s lemma, also

a supermartingale. Therefore, to prove the martingale property of pexppWt ´KtqqtPr0,T s, it suffices

to show that ErexppWT ´KT qs “ 1. More specifically, making use of equations (4.1) and (4.2), we

will prove that

(4.4) e´ζX0´T Ψpζq
E
“
eζXT ´pΦpζq`ΞpλqqYT `λZT

‰
“ 1.

Recalling the notation introduced in Section 3.1, we have that ζ ď χp´Φpζq´Ξpλq,λq. Theorem 3.4

therefore implies that Tpζ,´Φpζq´Ξpλq,λq “ `8, thus showing that the expectation in (4.4) is finite.

Moreover, under Assumption 3.2, there exists a unique solution to the extended Riccati system

(3.3)-(3.4) with pu1, u2, u3q “ pζ,´Φpζq ´ Ξpλq, λq. The solution to (3.4) is given by the constant
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CBITCL parameters under P1

β1 :“ β

ν 1pdzq :“ eζzνpdzq
b1 :“ b´ ζσ2 ´

ş`8
0

zpeζz ´ 1qπpdzq
σ1 :“ σ

π1pdzq :“ eζzπpdzq
b1
Z :“ bZ ` λσ2Z `

ş
|z|ă1

z peλz ´ 1qγZpdzq
σ1
Z :“ σZ

γ1
Zpdzq :“ eλz γZpdzq

Table 1. Parameter transformations from P to P
1

for the CBITCL process pX,Zq.

function Vp¨, ζ,´Φpζq ´ Ξpλq, λq “ ζ, which in turn implies that Upt, ζ,´Φpζq ´ Ξpλq, λq “ tΨpζq,
for all t ě 0. The validity of (4.4) then follows directly from Lemma 3.3. We have thus shown that

(4.3) defines a probability measure P
1 „ P with density process pexppWt ´ KtqqtPr0,T s.

In order to show that pX,Zq is a CBITCL process under P1, we first express pexppWt´KtqqtPr0,T s

as a stochastic exponential, making use of [JS03, Theorem II.8.10] together with the extended

Dawson-Li representation (2.6)-(2.7) of pX,Zq:

eW´K “ E

ˆ
ζσ

ż ¨

0

a
Xs dB

1
s ` λσZ

ż ¨

0

a
Xs dB

2
s `

ż ¨

0

ż `8

0

peζx ´ 1q rN0pds, dxq
˙

ˆ E

ˆż ¨

0

ż Xs´

0

ż `8

0

peζx ´ 1q rN1pds, du, dxq `
ż ¨

0

ż Xs´

0

ż

R

peλx ´ 1q rN2pds, du, dxq
˙
.

By Girsanov’s theorem, the processes pB1,1
t qtPr0,T s and pB1,2

t qtPr0,T s defined by

B
1,1
t :“ B1

t ´ ζσ

ż t

0

a
Xs ds and B

1,2
t :“ B2

t ´ λσZ

ż t

0

a
Xs ds, @t P r0, T s,

are independent Brownian motions under P
1. Again by Girsanov’s theorem, under P

1 the com-

pensated Poisson random measures associated to N0pdt, dxq, N1pdt, du, dxq, and N2pdt, du, dxq are
respectively given by

rN 1
0pdt, dxq :“ N0pdt, dxq ´ eζxνpdxqdt,

rN 1
1pdt, du, dxq :“ N1pdt, du, dxq ´ eζxπpdxq du dt,

rN 1
2pdt, du, dxq :“ N2pdt, du, dxq ´ eλxγZpdxq du dt.

Therefore, under the probability P
1, the extended Dawson-Li representation (2.6)-(2.7) of pX,Zq

can be rewritten as follows:

Xt “ X0 `
ż t

0

pβ1 ´ b1Xsqds` σ1

ż t

0

a
Xs dB

1,1
s
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`
ż t

0

ż `8

0

xN0pds, dxq `
ż t

0

ż Xs´

0

ż `8

0

x rN 1
1pds, du, dxq,

Zt “ b1
Z

ż t

0

Xs ds` σ1
Z

ż t

0

a
Xs dB

1,2
s `

ż t

0

ż Xs´

0

ż

|x|ě1

xN2pds, du, dxq

`
ż t

0

ż Xs´

0

ż

|x|ă1

x rN 1
2pds, du, dxq,

where the parameters β1, b1, b1
Z , σ

1, σ1
Z are given as in Table 1. By Theorem 2.3, it follows that

pX,Zq is a CBITCL process under P1, thus completing the proof. �

As pointed out at the end of Section 2.2, in financial applications the component Z of a CBITCL

process pX,Zq is typically related to the log-price process of an asset. In order to ensure absence

of arbitrage, it is useful to have conditions characterizing the martingale property of exppZq. To

this end, by exploiting the previous results, we can state the following corollary.

Corollary 4.3. Let pX,Zq be a CBITCLpX0,Ψ,Φ,Ξq and suppose that Assumption 3.2 holds.

Then, the process peZtqtPr0,T s is a martingale if and only if 1 P DZ and Ξp1q “ 0.

Proof. If 1 P DZ and Ξp1q “ 0, by making use of (4.1) with pζ, λq “ p0, 1q together with Lemma 4.1

and Theorem 4.2, we directly obtain that peZtqtPr0,T s is a martingale. Conversely, if peZtqtPr0,T s is

a martingale, then EreZT s “ 1. By [KRM15, Theorem 2.14-(a)], it follows that 1 P DZ . Moreover,

in view of (3.8), we have that Tp0,0,1q ą T . By Lemma 3.3, the martingale property of peZtqtPr0,T s

necessarily implies that Vpt, 0, 0, 1q “ 0, for all t P r0, T s. Since the ODE (3.4) admits a unique

solution under Assumption 3.2, it follows that Ξp1q “ 0. �

5. Examples and applications

In this section, we present some examples of CBITCL processes that are particularly appropriate

for financial applications and that possess a self-exciting behavior. In Section 5.1, we analyze the

alpha-CIR process recently studied in [JMS17, JMSZ21] from the viewpoint of CBITCL processes.

In Section 5.2, we discuss the CBITCL process adopted in [FGS21a] for the modelling of multi-

currency markets with stochastic volatility.

5.1. Alpha-CIR process and geometric Brownian motion. Let us consider a process pX,Zq
such that

(i) X is an α-CIR process;

(ii) Z “ LY , where the Lévy process L is given by the drifted Brownian motion Lt :“ Bt ´ t{2,
for all t ě 0, and the change of time process is given by Y “

ş¨
0
Xs ds.

We recall from [JMS17] that an α-CIR process is defined as the unique strong solution to the

following SDE (see [FL10, Corollary 6.3]):

(5.1) Xt “ X0 `
ż t

0

pβ ´ bXsqds` σ

ż t

0

a
Xs d sBs ` η

ż t

0

α

a
Xs´ dLαs ,
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with b ą 0, η ą 0, β, σ P R` and where sB is a Brownian motion independent of B and Lα is

a spectrally positive compensated α-stable Lévy process independent of sB and B, with stability

parameter α P p1, 2q and Lévy measure Cα z
´1´α1tzą0udz, where Cα is a suitable normalization

constant (see [JMS17] for additional details). It can be easily verified that X is a CBI process

with ν “ 0 and πpdzq “ ηαCαz
´1´α1tzą0udz. The immigration mechanism is simply given by

Φpuq “ βu, while the branching mechanism is

(5.2) Φpuq “ ´bu` 1

2
pσuq2 ` Cα Γp´αqp´ηuqα,

where Γ denotes the Gamma function extended to RzZ´ (see [Leb72]). With this specification, we

have φ “ 0 and ψ “ `8, implying that DX “ p´8, 0s. Since
ş`8
1

zπpdzq ă `8, Assumption 3.2

is satisfied. As a consequence of Theorem 3.4, the process X does not admit exponential moments

of any order, i.e., EreuXts “ `8 for all u ą 0 and t ą 0. This fact will motivate the study of

tempered α-stable processes in Section 5.2.

In this example, the process Z is defined as a time-changed Brownian motion with drift. This

specification ensures that exppZq “ EpBY q is a martingale (see Corollary 4.3). In view of financial

applications, Z can therefore represent the discounted log-price process of a risky asset under a

risk-neutral probability measure. The Lévy exponent of L is given by Ξpuq “ upu´1q{2 and, using

the notation introduced in Section 3.2, we have that
$
&
%
χpuq “ 0, for u P r0, 1s,
χpuq “ ´8, otherwise.

Corollary 3.7 therefore implies that Tpuq “ `8, for every u P r0, 1s, while Tpuq “ 0, for every

u R r0, 1s. In other words, for an α-CIR-time-changed geometric Brownian motion it holds that

EreuZts ă `8 for all u P r0, 1s and t ą 0, while EreuZts “ `8 for all u R r0, 1s and t ą 0.

As explained in part (2) of Remark 3.5, these results on the finiteness of exponential moments

of Z can be used to study the behavior of the implied volatility smile. Let us denote by σpT, kq the
implied volatility of a European Call option written on an asset with price process exppZq, with
maturity T and strike exppkq. By applying [Lee04, Theorems 3.2 and 3.4], we can deduce that the

asymptotic behavior of σpT, kq at extreme strikes is explicitly described as follows:

lim sup
kÑ˘8

σ2pT, kq
|k| “ 2

T
, for all T ą 0.

Concerning the long-term behavior of the process Z, by applying Proposition 3.8 we obtain that

1

t
logE

“
euZt

‰
ÝÑ
tÑ`8

β ξpuq, for u P r0, 1s.

Moreover, making use of equation (3.14), the quantity ξpuq is explicitly given by

ξpuq “ Φ´1

ˆ
up1 ´ uq

2

˙
,

where Φ´1 denotes the inverse function of the branching mechanism Φ given by (5.2), which can

be easily seen to be a bijection from R´ to R`.
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Remark 5.1. The α-Heston model recently introduced in [JMSZ21] extends the above model by

allowing for negative correlation between the Brownian motions B and sB, in order to capture

the leverage effect between the price process of a risky asset and its volatility. The results stated

above continue to hold in the same form even in the presence of correlation, as shown in [JMSZ21,

Proposition 4.1 and Corollary 4.2].

5.2. Tempered α-stable CBI process and CGMY process. The CBITCL process considered

in the previous subsection has the drawback that its CBI component does not possess exponential

moments. In finance applications, the existence of exponential moments often represents an essen-

tial modelling requirement. For this reason, we now present a CBITCL process that enjoys good

integrability properties. The example considered in this subsection relies on tempered α-stable

CBI processes, as introduced in [FGS21b] in interest rate modelling (see also [Szu21, Section 2.7]).

We recall from [FGS21b] that a CBI process X “ pXtqtě0 is said to be tempered α-stable if the

Lévy measures appearing in (2.1)-(2.2) are respectively given by

ν “ 0 and πpdzq “ Cα z
´1´α e´θz1tzą0udz,

where θ ą 0, α P p1, 2q and Cα ą 0 is a suitable normalization constant. Under this specification,

the immigration mechanism reduces to Ψpuq “ βu, while the branching mechanism can be explicitly

computed as

(5.3) Φpuq “ ´bu` 1

2
pσuq2 ` Cα Γp´αq

`
pθ ´ uqα ´ θα ` αθα´1u

˘
, @u ď θ.

It can be easily verified that DX “ p´8, θs and Assumption 3.2 is satisfied (see also [Szu21, Lemma

2.19]). The existence of exponential moments of X can be characterized by relying on Corollary

3.6 (noting that, in the present case, φ “ θ and ψ “ `8). Indeed, taking u2 “ u3 “ 0 in Corollary

3.6, it follows that EreuXT s ă `8 holds for all u ď θ and T ą 0 if and only if Φpθq ď 0, namely, if

and only if

(5.4) b ě σ2

2
θ ` Cα Γp´αq θα´1pα ´ 1q.

We have therefore shown that, in the case of tempered α-stable CBI processes, the existence of

exponential moments amounts to a simple condition on the parameters characterizing the process.

Remark 5.2. Tempered α-stable CBI processes can be constructed from non-tempered α-stable

CBI processes by means of an equivalent change of probability. More specifically, if X is a non-

tempered α-stable CBI process and W is defined as in (4.1) with ζ “ ´θ and λ “ 0 (so that

W “ θpX0 ´Xq), then Theorem 4.2 implies that the probability P
1 defined by (4.3) is well-defined

and X is a tempered α-stable CBI process under P1, with tempering parameter θ (and a different

parameter b). This technique has been also employed in [JMS17, Proposition 4.1]. Alternatively,

tempered α-stable CBI processes can be directly defined as solutions to a certain stochastic time

change equation (see [Szu21, Section 2.7]).

To construct a CBITCL process, let us then consider a process pX,Zq such that

(i) X is a tempered α-stable CBI process;
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(ii) Z “ LY , where the Lévy process L is a CGMY process (see [CGMY03]) and the change of

time process is given by Y “
ş¨
0
Xs ds.

We recall that L is a CGMY process if its Lévy measure γ is of the form

(5.5) γpdzq “ CY
`
z´1´Y e´Mz1tzą0u ` |z|´1´Y e´G|z|1tză0u

˘
dz,

where the normalization constant can be chosen as CY “ 1{Γp´Y q. The parameters G ą 0 and

M ą 0 temper the downward and the upward jumps, respectively, while the parameter Y P p1, 2q
determine the local behavior of the process L, similarly to α above. The Lévy exponent Ξ associated

to a CGMY process L with Lévy triplet p0, 0, γ
˘
is given by

Ξpuq “
ż

R

pezu ´ 1 ´ zuqγZpdzq, @u P iR.

It can be easily checked that DZ “ r´G,M s and the Lévy exponent Ξ takes the explicit form

Ξpuq “ pM ´ uqY ´MY ` pG` uqY ´GY ` uY pMY ´1 ´GY ´1q, @u P r´G,M s.

For simplicity of presentation, let us assume that G “ M . In this case, Ξ : r´M,M s Ñ R` is

a convex function with minimum Ξp0q “ 0 and maximum Ξp´Mq “ ΞpMq “ 2MY p2Y ´1 ´ 1q. If

2MY p1 ´ 2Y ´1q ě Φpθq, which can be rewritten in the form

(5.6) M ď
ˆ

Φpθq
2
`
1 ´ 2Y ´1

˘
˙1{Y

,

we have that χpuq “ θ ě 0 for every u P r´M,M s, using the notation introduced in Section 3.2.

Corollary 3.7 then implies that Tpuq “ `8 for every u P r´M,M s, while Tpuq “ 0 for every

u R r´M,M s. Similarly as in Section 5.1, these results on the finiteness of exponential moments

of Z can be used to characterize the tail behavior of the implied volatility smile. Indeed, under

condition (5.6) and assuming M ą 1, an application of [Lee04, Theorems 3.2 and 3.4] yields that

lim sup
kÑ´8

σ2
`
T, k

˘

|k| “ 2

T

`
1 ´ 2p

a
M2 `M ´Mq

˘
,

lim sup
kÑ`8

σ2
`
T, k

˘

k
“ ´ 2

T

`
1 ` 2p

a
M2 ´M ´Mq

˘
,

for all T ą 0.

The long-term behavior of the process Z can be determined by relying on Proposition 3.8. Under

conditions (5.4) and (5.6), we have that

1

t
logE

“
euZt

‰
ÝÑ
tÑ`8

β ξpuq, for all u P r´M,M s,

where ξpuq is defined in the statement of Proposition 3.8.

The quantity ξpuq can be explicitly determined under the following additional condition:

(5.7) b ě σ2θ ` CαΓp´αq θα´1α.

Condition (5.7) is stronger than condition (5.4) and, together with the convexity and continuity of

Φ, it implies that Φ is decreasing on p´8, θs. In this case, making use of (3.14), we have that

ξpuq “ Φ´1
`
2MY ´ pM ` uqY ´ pM ´ uqY

˘
,
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where Φ´1 denotes the inverse function of the branching mechanism Φ given by (5.3), which under

condition (5.7) is a bijection from p´8, θs to rΦpθq,`8q.

Remark 5.3. (1) Note that the present specification does not necessarily guarantee the martingale

property of the process exppZq (compare with Corollary 4.3). Therefore, in view of financial

applications and similarly as in [FGS21a], the CBITCL process pX,Zq may be used to model the

discounted price process S “ pStqtě0 of a risky asset as follows:

logSt :“ λZt ` ζpXt ´X0q ´ Kt, @t ě 0,

where K denotes the exponential compensator (see Lemma 4.1), with ζ ď θ and λ P r´G,M s. Un-
der this specification, the CBI process X plays the role of stochastic volatility, while the parameter

ζ determines the correlation between the log-price process and its volatility. A direct application of

Theorem 4.2 yields that S is a martingale, thereby ensuring absence of arbitrage. Moreover, since

Assumption 3.2 is satisfied, the existence of moments ErSut s can be characterized by Theorem 3.4.

(2) As a direct consequence of Theorem 4.2, the class of CBITCL processes considered in this

subsection is stable with respect to equivalent changes of probability of the form considered in

Section 4. This property has been used to construct risk-neutral measures that preserve the

structure of the model in [FGS21a], where CBITCL processes have been applied to the modelling

of multi-currency markets in the presence of stochastic volatility and self-exciting jumps.
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