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Abstract

In this paper we develop asymptotic theory for a similarity-based spatial autoregressive (SAR)
model. The model is hybrid in the terminology of Gilboa et al. (2006), with the data generating
process for a dependent variable y; containing a rule-based linear component, such as 3} z; for some
exogenous observables z;, and a case-based term with a similarity structure. The weight of the
similarity structure is allowed to vary in the unit interval and to be estimated explicitly. We prove
consistency of the quasi-maximum-likelihood estimator and derive its limit distribution. This paper
contributes to the literature on SAR and empirical similarity by incorporating a regression-type
component in the data generating process, by allowing the similarity structure to accommodate
non-ordered data and by estimating explicitly the weight of the similarity, allowing it to be equal
to unity. The model we consider is formally similar to a standard SAR model with exogenous
regressors and a data-driven weight matrix which depends on a finite set of parameters that have to
be estimated. Our setup accommodates strong forms of cross-sectional correlation that are normally
ruled out in the standard literature on spatial autoregressions, and also includes as special cases the
random walk with a drift model, the local to unit root model (LUR) with a drift and the model for
moderate integration with a drift.

Keywords: Spatial Autoregression; Similarity Function; Weight Matrix; Quasi-Maximum-Likelihood.
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1 Introduction

‘We consider the model
y1 = Boz1 + e, (1.1)
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n
Y; = ﬁézz + )\Ozhi’jyj +e5,1=2,...,1n, (1.2)
=1
g

where €;, i = 1,....,n, are i.i.d. random variables with zero mean and variance O'g, z; is the transpose

of the i—th row of an exogenous n X m matrix Z of standard covariates, which may include a column

of ones,
s (i, 55 wo)

Z#i s (@i, x5 wo)’

hi; = (1.3)

with s (z;, 2;;wo) being a similarity function which belongs to Ry and x;, z; being the transpose of
1 — th and j—th rows, respectively, of an n x k matrix X of fixed explanatory variables. The model is
spatial except that, unlike the way it is formulated in the vast literature, the weights, h; ;, are driven
by some explanatory variables and parameterized by wg that needs to be estimated alongside the other
parameters of the model. Moreover, the weights are similarity based.

Examples of well-defined similarity functions are given by the exponential and inverse similarity

functions, viz.,
k
s (x4, x5 wo) = exp (— Zth (it — azjt)2> (1.4)
t=1

and
1
2 5
L+ g wor (Tit — xjt)

respectively. In both formulations as well as in others, the closer are the ith and the jth cases, through

, (15)

s (x4, z5;wp) =

the x; and x; values, the larger will be the the value of h;; and as a consequence, the larger will be
the weight assigned to y; in (1.2). It is a similarity model in this sense then - more similar cases result
in larger weights attributed to y; in the construction of y;. In contrast, in most of the literature on
spatial autoregression the weights are determined a priori and are fixed.

The unknown parameters of the full model in (1.2) are the scalar A\g € [—1,1], the k x 1 vector
wo = (w10, ..., Wgp)', which is assumed to belong to a subset of R’i, the m x 1 vector By and o3, assumed
to belong to suitable subsets of Ry and R™, respectively. Note that the possibility that A\g = 1 is not
negated. The “initial” condition in (1.1) is analogous to the requirement that a process starts from the
origin in the time series literature, when 5y = 0.

The model (1.2) contains two parts. In the literature on similarity based modeling, originally
axiomatized by Gilboa et. al. (2006), the model is hybrid, with a ‘rule based’ component, 3 z;, and
a ‘case-based’ counterpart, E;‘l:lu‘ £i hijy. When Ao = 1 and By = 0 a priori, model (1.2) represents
an extension to the spatial setting of the similarity process, whose asymptotic properties have been
established in Lieberman (2010), in the case where the data is ordered, so that the sum in (1.2) extends

over j < 1.



The literature on models such as (1.2) has propagated along two separate paths over the years.
The much larger body of literature on SAR modeling includes, just to mention a few contributions,
Lee (2004), who established asymptotic theory for the (quasi-) maximum likelihood estimator (QMLE,
henceforth), two-stage least squares theory, by Kelejian and Prucha (1998), generalized method of mo-
ments theory, by Kelejian and Prucha (1999), higher order SAR, by Gupta and Robinson (2015, 2018),
and many more. Most of the theoretical work on standard SAR models rely on a conventional number
of technical assumptions, including the spatial parameter lying typically in (—1, 1) or, equivalently, in
the interior of a compact subset that depends on the eigenvalues of the weight matrix (e.g. Kelejian
and Prucha (2010)), and a suitably normalized weight matrix which is known a priori. Also, although
several definitions of weak/strong spatial dependence are given in the literature (e.g. Robinson (2011),
Chudik and Pesaran (2015) and Bailey et al. (2016)), standard SAR assumptions imply that the largest
eigenvalue of the variance-covariance matrix of the dependent variable is bounded, such that every form
of strong dependence is automatically ruled out. Related to the purpose of this project, Lee and Yu
(2013) offered some insight on asymptotic theory for QMLE in SAR models with a spatial parameter
that is local-to unity, under the condition that the weight matrix is diagonalizable, which rules out
the LUR model of Phillips (1987) and Chan and Wei (1987). In this line of literature, Baltagi et. al.
(2013) derived asymptotic theory for ordinary least squares and generalized least squares estimators
for a cross-sectional model with SAR errors with spatial parameter that tends to unity as sample size
increases.

On the other hand, the literature on similarity based models, include, inter alia, Gilboa et. al.
(2010, 2011), Gayer et. al. (2007), Lieberman (2012), Lieberman and Phillips (2014) Gayer et. al.
(2019), Kapetanios et. al. (2013), and Teitelbaum (2013). Recently, Rossi and Lieberman (2021,
henceforth, RL) made the first attempt to bridge the two streams of literature, when they considered
a special case of (1.2) with Sy = 0. The more general setup with 8y # 0 corresponds to a hybrid model
that includes a rule-based component, as discussed above, it poses some interesting technical challenges
and the results in this case are very different from the Sy = 0 case.

In this paper we focus on developing the asymptotic theory for inference on

2
90 = (ﬁ(/b go, )\07 W10y -+ wk‘()),

in model (1.2). The setup is sufficiently general to include as special cases the random walk with a
drift model, the local to unit root model (Chan and Wei (1987), Phillips (1987), henceforth, LUR),
moderate deviations from a unit root model (Phillips and Magdalinos, (2007), henceforth, MI), and
standard SAR models, as in Lee (2004). As the norming rates for the asymptotic theory are very
different across the special cases, we employ random norming that treats all scenarios in a uniform

manner. For instance, our random norming collapses to the well known n3/2-rate for the QMLE of )\



in the random walk with a drift model (see, for instance, Hamilton (1994, equation (17.4.47)).

The plan for the rest of the paper is as follows. In Section 2 we provide the setup, assumptions, and
identification and consistency of the model parameters. The limit distribution follows in Section 3 and
discussion follows in Section 4. Concluding remarks are given in Section 5. Supplementary lemmas

and all proofs are provided in the Appendix.

2 Setup, Assumptions, Identification and Consistency

For any generic p x ¢ matrix A, we denote by a;; its (4, j)—th element and by a; the transpose of its
i—th row. Also b* denotes the (i,7)—th elements of B~! for any generic, square, invertible matrix
B. Furthermore, || ||, || - ||co, and || - || represent spectral, uniform absolute row sum and Frobenius
norms, respectively, A’ is the transpose of A, and K > 0 is an arbitrary finite constant whose value
may change in each location. For a generic square matrix, nmin(B) and 7max(B) denote minimum and
maximum eigenvalues of B, respectively, while | B| indicates the determinant of B. Throughout, the
subscript (-)o indicates true values, or quantities evaluated at the true parameters’ values, while the
absence of such subscript denotes parameters that are free to vary within the parameters’ space or
quantities evaluated at generic values of the parameters.

Model (1.2) can be written in matrix form as

SnoYn = Znfo + n, (2.1)
where
1 0 .. 0
Sno = Sn(Ao,wo) = ~Hoh2. 1 o —Aohen
N
= T 2Cn(o,w0) = I — ACho. (2.2)

In (2.1), as well asin (1.2), y = yn, € = ep, X = Xy, Z = Z,, Cy = Cyp and Sy = Sy are, in general,
triangular arrays, but we omit the subscript n in the sequel for brevity. This means, in particular, that
hij = hijn, fori,j =1,....,n.

The reduced form of the model (2.1) is

y="5y"(Zbo+e). (2.3)

provided that Sy ! exists. For |\g| < 1 and for given wp, under the well-known condition known as



“weak dependence”, e.g. Kelejian and Prucha (1998),
Sgp(HS_lHooJrHS_l'Hoo) <K, (2.4)

model (2.1) formally corresponds to a SAR model with exogenous regressors, and the theory for devel-
oping inference on \g is well established under some suitable additional conditions.

We introduce the following Assumptions.
Assumption 1 For alln and fori =1,...,n, the {¢;} are a set of independent random variables, with

mean zero and unknown variances o> > 0. In addition, for some § > 0,
Ele[**? <K for i=1,...,n.

Assumption 2 There exists 0% > 0, O'%{ < o0 and wyg < oo such that O'% < 0(2) < U%{ and, for all
i=1,..,k 0<wyp<wyg. Also, =1 < g <1 and \g # 0'.
Assumption 3 The matriz X is allowed to lie in the set of all n X k non-random, real matrices such
that for all sufficiently large n

S'S # 8,8y for 0+ 6. (2.5)

Assumption 4 For all n, Sy is non singular and 0 < |(S'S)~'| < K for all § € ©.

Assumption 5 For all n, S’S has bounded and continuous derivatives, uniformly in 0o € ©o.

Let C, = Cp(wy, ..., wy) = M forr=1,..., k.

Assumption 6
a) sup (||C(0)[|oc + |C"(0)]|oc) < K.
0O

b) Sup (ICH(O)]loo + [IC7(0) o) < K

Assumptions 1-6 have been discussed extensively in RL in the context of a simpler model that does not
include fz; in (1.2). In particular, the first part of Assumption 4 guarantees that the reduced form in
(2.3), while the second part ensures that the log-likelihood function remains well defined for all § € ©.

In the following we impose a condition on the covariates Z.

Assumption 7 For all n, each element zj; of Z (n x m) is non-random and |z;;| < K. Also, for all

n case Ao = 0 we are not able to identify wio, ..... S Wko-



sufficiently large n,
AN
O<e< Mmin (n> s (26)

where ¢ is any arbitrarily small constant.
Assumption 7 could be relaxed to strictly exogenous z;; with fairly minor modifications. We also
impose an asymptotic no-collinearity condition similar to that of, e.g., Lee (2004).

Assumption 8

1
lim ——————B,2'Sy ' CyM7Co Sy Z By > 0,
n=voon|S5 %

1
HILI&Wﬁéz/SO_l/S/MZSSO_lZBO >0 fOT S 75 Zl:SO,
0 lloo

1
lim —————3,2'S; " Sy 280 > 0. 2.7
sy i, o %0 o B 20
By Lemmas 1 and 4(a), 8)2'Sy ' ChMzCo Sy Z o = O(n||Sy ' [%,), BLZ' Sy M CiMzCoSy "t Z By = O(n|S5 |12,
and By Z'Sy Y Sy 1 ZBy = O(n]|Sy '||%) and are non-negative. Our Assumption 8 is similar to Assump-
tion 8 of Lee (2004) and implies that the aforementioned rates are exact.
As in RL, we aim to consistently estimate 6 via a quasi-maximum-likelihood (QML) function that

allows us to accommodate
Sup 57! oo = O("), 5 € [0,1] (2.8)

within a unified framework. The case v = 0 corresponds to the standard SAR setup, while in case
~ > 0, the condition in (2.4) does not hold and standard limit theory for SAR models is not available.
We furthermore assume ||S™V||o = O(||S7Y|oo) such that, in case = (||S™!|e) = O(n?) with v > 0,
|S™"||s could be bounded or increasing without bound. By allowing v > 0 we relax the standard
assumption of weak dependence across y and we are also allowing y;, for ¢ = 1,....,n, to have a
variance that increases with sample size, as in unit root models, since it is straightforward to see that
Var(y;) = O[S |)-

Let 0 = (8,02, \,w') = (0},0,), with ; = (ﬁ’,a2)/ and 6, = (\,w')’. Given y, and letting
S = S(03) we define the shifted, normalized and negative pseudo-log-likelihood function as

(2.9)

£(0) =log (0?) — %1% 5|4 By=28Y(Sy=28) <yny>

no?

and 0 = argminf(6). The shifting term — log (3'y/n) is introduced to allow us to accommodate both
0cO
v =0 and v > 0 cases, without affecting arg min £(6), where 7 is defined in (2.8).

Given 65, we obtain
Blos) =B =(2'2)"" Z'Sy (2.10)



and as

(sy-28) Sy~ 25) = y/'S'Mz5y,

with
My=1-2(2'2)"27,
we have 'S0 S
52 = 6% (9y) = 127220 (2.11)
n
We remark that 62 is the estimator used in equation (2.6) of Lee (2004). Let
'S'MzS
5*2 = 5% () = 2222, (2.12)
vy
Plugging (2.10) and (2.11) into (2.9), the profile, shifted, quasi-log-likelihood is equal to
2 'S'MzS !
LP(05) = log (6°) — = log |S| + % — log (yy> , (2.13)
n no n
which, up to constant terms becomes
'S'MzS 2 2
LP(03) = log (y/zy) — Zlog|S| = log (6*%) — = log S| (2.14)
y'y n n
The QML estimator of 0o is defined to be Oy = arg minLP(6s).
02€02
From (2.3), the numerator and denominator of (2.12) can be written respectively as
y'S'MySy = €Sy VS’ MzSSy e+ B,Z'Sy V' S' Mz SSy 1 Z By + 28,7’ Sy V'S Mz S Sy e (2.15)
and
Yy =Sy Sy e+ ByZ Sy M Sy Z B0 + 285Z'Sy M Sy e (2.16)

From Lemma 1, ||S’MzS||,, < K and thus, by Lemma 2(b) the first term on the rhs of (2.15) is
Op (n HS_lHOO) and by Lemma 4 the second and third terms on the rhs of (2.15) are O, <n HS_lHiO)

and O, <\/7L HS‘lHiO), respectively. Therefore, (2.15) becomes
y'S'MySy = ¢Sy VS MyzSSy e+ B)Z'Sy V'S’ MzSSy ZBy + Op (V) = Oy (n), if v =0 (2.17)
and if 0 < v <1,

y'S' My Sy = B02'S5"S' My S5 280 + Oy (max (n 7 . v/ [S72) ) = 0p (n]IS7H1%) -
(2.18)



Similarly, by Lemmas 2(b) and 4, (2.16) satisfy
y'y =S5V Sy e+ BLZ'Sy Y Syt Z By + Oy (V) = Op (n) , if v =0 (2.19)
and

W'y = G625 S5 260 + O (max (n|S7V| o VR | STHZ,) ) = Op (n[S72,) s ifO <y < 1.
(2.20)

More concisely,

y'S'MzSy = O, (n HS’_1H20> =0,(n'™) and y'y = O, (n HS_1H20> = O,(n'*), ¥y € [0,1].
(2.21)
Moreover, in view of (2.15) and as MzZ = 0,

Y'SoMzSoy = €SyV S MzSoSy e + ByZ' Sy Y Sy Mz SoSy t ZBo + 285 7' Sy Y Sy MzS0S, te
= Mgye

and we have,
€Mze < ée|My||=€ée=0,(n).

It follows that
y'S(’)MZSOy = Glee = Op (n) N (2.22)

and it is emphasized that the rate holds in (2.22) for 0 < v < 1, whereas for S # Sy it follows from
(2.21) that y'S'MzSy = O, (n'+%7).
In view of (2.12) and (2.21), 6*2(62) = O, (1), Vv € [0,1]. We further define

5*%(09) = plim (6*%(62)) . (2.23)

n—00

In order to ensure existence of the limit objective function and to be able to establish consistency of

92, we introduce the following assumption.

Assumption 9

5*(02) = plim 6*2(6;) ewists for all 6, € O,

n—oo

plimg&*Q(eg) and plimi6*2(92), for 3 =1,...., k, exist for all 6y € O,. (2.24)

n—o00 OA n—o0 OWj

We stress that 6*(62) is strictly positive under Assumption 8, while its existence is guaranteed under



Assumption 9.

The limit objective function is given by

. . 2 'S'MyS 2
LP(0;) = log (6 2) - log | S| = log <y/zy>

— —log|S 1
n Og’ ’+OP( ))

with a9 = argminLP(6y).
02€02

(2.25)

Remark 1 We emphasize that |S'MzS||,, < K by Lemma 1. Using (2.15), in the v = 0 case, by

Lemma 3 with the generic matriz A replaced by S'"MzS and HS‘IHOO =0(1),

odtr (SyV'S'MzSSy ) N BLZ'Sy VS My S Syt Z By o

Pl (°09) = " 7 0
Now,
tr (SgS'MzSSyY) e (SyVS'SSyt) e (Sy VS PzSSy )
n n n
where
Pr=2(22)" 7.

We notice that
tr (S;V'S'SSy ") < Kn

but
tr (SgVS'PzSSy") = || P2SSy |5 < 1Pz I3 |85 ||* < m|SS3 |2 < Kom.

Hence, in the v =0 case

ogtr (Sy V' S'SSy ) + ByZ' Sy VS Mz S Sy Z B

52(92) = n +o0p (1),

(2.26)

in line with (3.2) of Lee (2004). The last displayed expression is non-singular under Assumptions 3

and 8.

In Appendix A we shall prove the following,.

Theorem 1. Assume that model (2.1) and Assumptions 1-9 hold. Under the condition (2.8) with

0 <~ <1, Oy is identified and ég N 020.

It is emphasized that identification and consistency of égo hold under 0 < v < 1, so that the

13

weak

dependence” condition given in (2.4) and used in the literature (e.g., e.g. Kelejian and Prucha (1998))



is not needed. Consistency of 3 and of 62 follow from (2.10) and (2.11), respectively. Theorem 1, in
addition to contributing to SAR literature by relaxing the usual constraint on the parameter space
and, even more importantly, by establishing consistent estimation allowing forms of strong dependence
across spatial units, extends results in Lieberman (2010) to a bilateral hybrid model where there is no
natural ordering of observations and the strength of the similarity structure, embedded in Ag, can be
estimated explicitly similarly to what established in RL in the context of a simpler model.

In the next section we shall derive the asymptotic distribution of 05. The distribution of 6 and 6;

will be deduced from it by standard arguments.

3 Limit Distribution

In Theorem 2 below we will show that central limit theorem holds, with rates depending on O (HSO_ ! HOO)
For any matrix A, let A=A+ A/,

80(101, ceeey wk)

Cr,O = a—wr|90, for r =1, ....,kj
and 520 )
W1y eeeey W
Crso = 0,00, g, for r,s =1,...., k.

and a similar notation is used for C,.s(6).

Assumption 10
a) sup (||Crs(0)||oo + ||Crs(0)|]oc) < K for r,s=1,...., k.
0cO

b) sup (||Crst(0)]|oo + [|C)s:(0)]|oc) < K for rys,t=1,..... k.
0cO

Assumption 10 extends Assumption 6 to uniform boundedness in row and column sums of the second-
and third-order derivatives of C(-), as in Assumption 9 of RL.
We let
Vo = Y10 + Y20 + 230 + 240, (3.1)

where Y19, Y99, X309 and X4 are defined in (A.8), (A.9), (A.10) and (A.11), respectively. Under
Assumption 6, the elements of Yo are O(1/||Sy '||%,) by Lemma 4(e) and (B.8), each element of ¥y is
O(1/|S5*|ls) by Lemma 4(f) while each element of %49 is O(1/|S;"||oc) by Lemma 4(e) and (B.8)2.
The elements in 339 are O(1) by Lemma 4. Also, let Dy be the (k+ 1) x (k+ 1) matrix with elements
given in (A.12), (A.13) and (A.14). For v = 0, all elements of Dy are O(1) from Lemma 4, while

2Details are provided in the proof of Theorem 2 in Appendix A.

10



for v > 0, Dy reduces to l~)0 with elements defined in (A.15). We stress that elements of Dy are the

probability limits of the elements of the normalized Hessian

1 02L(0)
1150 1|12, 962005

(3.2)

which are well defined from Lemma 9. Finally, let Fy to be defined as in (A.16).

We introduce an additional condition to ensure that the variance-covariance matrix of the suitably
normalized s, exists and it is non singular in the limit.
Assumption 11 The limits in 319, Yoo, 230, 2ao and Dg exist. Furthermore nmin(X30) > 0 and
Nenin (Do) > 0.
We establish the following.
Theorem 2. Assume that model (2.1) and Assumptions 1-11 hold. For each ~ € [0,1],

(IS5 12 )2 (62 — B20) < (0, V), (3.3)

where Vo = Dyt FoVoFo Dyt

Thus, unlike Theorem 2 in RL, the presence of exogenous regressors allows a unified approach to
establish the limit distribution even for the boundary case of v = 1 in (2.8). We stress that when
Bo = 0 a priori, Assumption 11 is violated since Y3y = 0 and Theorem 2 is well defined only for the
trivial case with v = 0. In the latter case, the limit distribution given in Theorem 2 is identical to
that derived in RL. The result of Theorem 2 will be further discussed in the following section with
illustrations through some key special cases.

We conclude this section by briefly focussing on inference on 3y, given results in Theorem 2. Let 52]- an

intermediate point such that ’égj — bO904] < |é2j — B994] for j =1,....,k + 1. By the MVT we can write,

3 _(Lyy 7112’ Ly 7112’(7 A=) — A s Ly 7112’0 0
B—pBo= I o € — n " y( - 0)— Z n " jy(wj—UJOj)
7j=1
-1 -1

:<1Z’Z> lz’e<1z’z> lZ’C‘SngﬁO(Xf)\O)

n n n n

k _
—XZ Lz llZ’C“-S*Zﬁ(“— )+ 0 ! (3.4)
n n 720 0{W; — Woyj A .
j=1

where the second equality follows from the rates in Theorem 2, Lemma 2 and Lemma 4. The leading
terms in (3.4) are of order O,(1/4y/n), again from standard arguments and Lemma 4. Thus, from (3.4)
it is clear that the rate of convergence of B remains the standard y/n for any 0 <~ <1 in (2.8).

In what follows we omit much of the technical details to avoid repetition. We can derive the joint

11



distribution of the suitably normalized 0 by writing

N )

1/2 %
(IS0l %) (A = o) Sl
(nl|S0l12.)/? (oy — win) R
..... = RO +Op(1)7
(nl12%) " (2. — o) i
nl/? B— 1
( Bo) \/ﬁZ €

where Ry is a (k+m+ 1) x (k+ m + 1) matrix given in (A.17).
Let Foﬁ and VO/B be (k+m+ 1) x (k+m + 1) matrix defined as (A.19) and

Vg = o + Zho + 5 + Sl (3:5)

with Efo, Ego, Ego and Efo reported in (A.20), (A.21), (A.22) and (A.23), respectively.

To complement Assumption 11, we impose the additional
Assumption 12 The limits of elements of Ry, Ego and Efo exist. Furthermore nmin(Ego) > 0.
Similarly to Theorem 2, we can prove

Theorem 3. Assume that model (2.1) and Assumptions 1-12 hold. For each v € [0,1],

(nl1Soll%) "2 (A = Xo)
(”HSngo)l/2 (1 — wor)
..... 4 N(0,V9), (3.6)
(nl1Sol[2)"? (i, — wor)

n'/2(3 — Bo)

where Vi = RyFyVEFYR).

4 Discussion

The rate of convergence in Theorem 2 collapses to /n in standard SAR models in which [A\g] < 1
and ||S; !l = O (1), and it agrees with that derived in Lee (2004). Theorem 2 represents a novel
contribution to the SAR literature since we derive the asymptotic distribution of QML estimators

without the usual requirements on admissible values for Ag and by allowing forms of strong cross

12



sectional dependence.

We can further discuss the generality of our results in view of the time series literature. In the

random walk with a drift model, the convergence rate is n3/2, because in this case

0 0 0
1 0 0
Co = 0 1 0 )
0 0 1 0
from which it follows that
1 0 0
1 1 0
Sgt=11 1 :
0
1 1 .- 1 1

so that |[Sy!||sc = 7. This agrees with a well known result in, for instance, Hamilton (1994, equation

(17.4.47)). In addition, the time series model
Y= Bo+ Ayi—1te, t=2,..,n, Ay =1 —c/knp, (4.1)

with ¢ > 0, is called local to unit root (LUR) when k, = n and a moderate integration (MI) model
when k, = n®, and a € (0,1). See, for instance, Phillips (1987) and Phillips and Magdalinos (2007),

respectively. Here,

1 0 0
n 1 0
0
Apmboan=2 oo, 1
implying that
1 k
1 n
0)|]|oo = = —. 4.
157 Ol = T = 2 (13)

It follows that in the LUR case, ||S7(0)||ooc = O (n) whereas in the MI case ||S7(0)]]oc = O (n%),
a € (0,1), and the norming rates in (3.6) are n3/2 and n®*t1/2 for the two models, respectively, when
a drift term is included in (4.1). The result for the LUR model is discussed in Phillips (1987, Section
6), noting that the limit distribution in this case is non-Gaussian when a drift does not exist and is

Gaussian otherwise. We are not aware of similar discussion for the MI model in the literature.

13



The conclusion is that our setup is indeed very general, covering many special cases, from the SAR,
similarity and nonstationary time series literature, with rates of convergence characterized by the order

of magnitude of HS&lHOO.

5 Final Remarks

We established in this paper asymptotic theory for the similarity based SAR model with exogenous
regressors (1.2) under weak conditions. In particular, unlike the standard literature hitherto which has
been done under the assumptions that HSO_ IHOO < K and |\g| < 1, our work allows for HSO_ IHOO =
O (n7), with v € [0,1] and A\g = 1. The result is a framework consisting of a very large class of models,
with special cases including models behaving as a random walk with a drift, or even LUR or MI models
with drifts, and, of course, standard SAR models with or without additional exogenous regressors. All
cases are treated in a unified manner, with rates of convergence depending on the order of magnitude
of HSO_ IHOO, that is, on the value of v. Extensions of our study to models including heteroscedastic

errors seem challenging but highly desirable.

Appendix A

Proof or Theorem 1. To prove the identification condition, we write, for 0y # 6o,

¢ ; y'S'MSy 2 9
L (02) L (020) og <y,S(/)MZSOy n og |S| —+ - og |SO| + Op( ) ( )
g (VI MzSY N [ 1y grg g g
=lo <y/S(/]MZS(]y + n 10g |S SOSOS ‘ + 0p(1). (A2)

For identification it is required that (A.1) (or (A.2)) is strictly positive. We shall deal with the cases
v =0and 0 < v <1 separately.
Case 1: 0 <~ < 1. For this case, it follows from (2.18) and (2.22) that

y'S'MzSy —12
y’S()MzSoy - OP (HS Hoo)

which tends to +oo in this case. The second term on the rhs of (A.1) is bounded for all 2 € ©3 since,
by the geometric-arithmetic mean inequality and under Assumption 4,

1

1
1=—t > 19|17 = |98/ = |2 s (I
~tr(S) > |S]/" = |5'S] T = O (V)5 = o7

> 0, (A.3)
where ) = (5'S)~!. The third term at the rhs of (A.1), in turn cannot diverge to —oo under A4, as
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Sp is non-singular.
Case 2: 7 =0. In view of (2.17), (2.22) and (2.26),

nly'S'MzSy  nt(odtr (SgVSSSy) + ByZ' Sy VS My S Sy ZBo)
n~ly'SiMzSoy n=1 (e Mze)
_ogtr (SyVS'SSy) + By 2! Sy NS M S Sy Z B
- 2 +0p (1)
o (n—m)
tr (8o VS'980 1) (|, B6Z'Sy'S' Mz, 2o

= + 1).
" ( oatr (5575555 T) ) o (1)

Let A = S;"S"SSy . Tt follows from (A.2) and the last line that

+ 0, (1) (A.4)

. . 1 _ 8172 STV S M, SSTZ By
LP(82) — LP(B20) = log | —tr (A) [A]7Y/™ |14 22220 0 1).

(62) (620) = log (n m(A) A ( o2t (5. V5'55,7) op (1)
From the proof of Lemma 4 of RL,

Liray a2 > 1,
n

with equality iff S’S = 5(Sy. Thus, tr (A) /n IA|”Y" > 1 under Assumptions 3 and 4. Furthermore,

under Assumption 8,

/7l g—11 Q1 —1
. BOZ2SO Sﬁi\?gSSoilZﬂo =0,
n=oo  ggtr (SO 5’58, )

with equality iff fs = o9, under Assumption 3. Hence, for large enough n, £P (02) — LP (020) > 0, with
equality iff 65 = 9.

In order to show consistency of 6 we proceed along the lines of the proof of Theorem 1 of Delgado
and Robinson (2015). Let N5 = {0 : |62 — 620]| < 6} for some § > 0, and N5 its complement. We have,

P(6 € Np) < IP’(iAI%f LP(02) < LP(620)) < P(sup|LP(62) — LP(62)] > i/?[f 1LP(02) — LP(020)]).  (A.5)

SP}

For consistency of 6 we need to establish the following statements:

i/\r_}f (/:p(ﬁg) — EP(GQO)) > ¢, for all sufficiently large n and for somee > 0, (A.6)
)
sup |[LP(02) — LP(02)| B0, as n — oc. (A7)
SD}

The proofs of (A.6) and (A.7) are given in Lemmas 6 and 7, respectively. l
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Relevant quantities and matrices for Theorems 2 and 3.

We report here some matrices and lengthy expressions to avoid cumbersome notation in the body of

the paper and in the proofs of Theorems 2 and 3.
We define

tr((CoSq ')?) tr((CoSy ) (C1,055 1)) tr((CoSy ) (Cr09 1))
A tr((Cr0S™)(CoSy ™)) tr((Cr.0S5)?) tr((C10S5 ) (Cr0S5 ™))

g,
Y= lim —2% . .. tr((Ca.0S71)2
10 n—002n|[S5 1|2, (G205 ")%)

tr((CroS, )%

(A.8)
> ((CoSe )i > (CoSg ii(CroSy i - 2(CoSg )ii(CroSq Vi
(Y — 308y | 2(CroSs i(CoSy i > ((CroSe ' NF e 2(Cr08 )ii(CroSy i
EQ(] = lim IS 7 s 7
S ((Cr055 )7
tr2(CoSyt) tr(CoSy tr(CroSy ) . tr(CoSy Htr(CroSy™t)
- (S — oy | tr(CroSy  tr(CoSy ) tr2(C1.0S5 )
n=voo 4?5, 1%, ’
trz(Ck,OS(;l)
(A.9)

BhZ' Sy CoMzCoS™ ZBy  BoZ'Sy " CoMzCh0S5 " ZBo

> i 1 ﬂ(/)ZIS()_llC{yoMchASilZﬁo ﬁ()Z’Sgl’CLOMZCLOS’lZﬁo
= lmm ————

P nseen||S Y%

BoZ' Sy CroMzCri0S™ " ZBo

(A.10)
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and

M<3)
Y40 hm$1
~nooon||Sy &
S (MzCyS5 ' ZB0)i(CoSy ) S(MzC4 0S5 ZB0)i(CoSy )

S (MzC)S5 ZB0)i(Cro8; ) S (MzCi 0S5 ' ZB0)i(CroSy )

3 7

S (MzCi 0S5 ZBo)i(Cr09 1)
3)
i O
n—oonl|Sy |,

S (MzCyS5 ' ZB0)i(CoSy ) S(MzChSy ' ZBo)i(CroSy )

k3 (3

S (MzC1 055 ZBo)i(CoSy e 3 (MzC1 oSy ZBo0)i(Cr08y " )E;

@ [

S (MzC3 0S5 ZBo)i(Cr09 )
(A11)

where 1) = E(€}), u) = E(e}) and A% = a;; — tr(A)/n for any n x n matrix A.

Also, we let

1 21 28,2' Sy ' CyMzCo Sy ' Z
dll,O lim —————— (t?" ((So—l/c(l) +OOSO —tT(COS ) n> ) + BD SO C'O 2ZCOSO /80) ’

n=o0n[ S5 |I3 o
(A.12)
dijo = dji0 lim i s 1”2 (2tr(Cij085") = Aotr(Sy V' CpCioSy ) + tr(Sy ' Ci0S5 ' Cio))
0
— lim L%ltr(Cjosal)tr(CmS Y+ lim Llﬁoz’ 0 Cl oMz Ci0Sy " Z o,
nmoon?[lSy I n=eoagnl] Sy 13 ’
,j=2,....,.k+1, (A.13)
and
d1i70 :dil,O = nl_{EOW (/\otr(Sallc(/)CLoSJU + tT(SalCi7osalcQ))
. 4)\0 -1 ) _ 2)\ 17
_nh_g)lomtr(COSo )tT(C%OSO ) nl;%mﬁoz S COMZC’L OS ZB(],
1=2,....,k+1. (A.14)
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Furthermore,

284 7' Sy ChMzCoSyt Z 50
agnl|Sy 2,

dn,o = lim
n—00

20084 2' Sy ChM 2 Ci 08yt ZBo

dii0 = dio = lim a2n||Sy 1%

fori,j =2,....k+ 1, and

_2
g
0
Iy =
0
We define
dll,O
0
n—00
0
(Z/Z)il dti,0 Z/COSalz,BO <

=1
n n[Sy " |loo

z'Z

)

ij,0 = dji,o = lim

n—oo

23802 Sy V' Cl M2 Ci 05y Z o

-1
agnl[Sy 1%

0

qUe+1)(k+1),0

Aod?%:0 Z,Cl,OSal Z/BO

—1
1|15 " |leo

9

(A.15)

(A.16)

(

lem

O1><m
Z’Z)’l

n

(A.17)

where we denoted by d“"0 the (i, j)—th element of the (k + 1) x (k + 1) matrix Dy whose elements are

defined in (A.12), (A.13) and (A.14), given

. 1
0y — 02 = — Dyt ——
155 113
as shown in (A.28). Furthermore, we let

_2
%

0

g

F() = ..

0

0

0L (0n) (

002
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\/ﬁ||50‘1]|00>’

(A.18)

(A.19)




4
E’fo = 11m 0-7212
oo 2n|5q 713
(4) o 4
8 = lim (o~ = 300)

n—oo 4n||S5 1%

n—ood4n2|| 81|12

L2
Ego = lim og
n—oo

tr((CoS; *)?) tr((CoSy ') (C1,05: 1)) tr((CoSy ') (Cro55 ")) Oixm
tr((C1,08~ 1) (CoSy 1)) tr((C1,08 ')?) tr((C1,09 ) (Cr095 1)) O1xm
tr((C2,085 )% 01xm
01><m
tT((Ck,osal)Q) O1xm
07n X1 O‘"L X1 07n xXm
(A.20)
Z((COS()_l))?i Z(Cosgl)ii(cl,oso_l)u Z(COSO_I)z‘i(Ck,OSU_I)ii O1xm
>2(C1085 ii(CoSg i > ((CroSy )i Y (Ch085 )ii(Cro85 i O1xm
lem
> ((CroSq )i O1xm
Om><1 Omxl Omxm
tr2(CoSy ) tr(CoSy ) tr(C1,0S; %) tr(CoSy )tr(Cr055 ") Omx1
tT(Cl,osgl)tT(Cosal) tTZ(Cl,osal) Om><1
tTQ(Ck’()SO_l) 0m><1
Omxl 0m><1 0m><m
(A.21)
BLZ' Syt ChMZCoS ™ Z B0 BLZ' Sy CoMzC1,055 * ZBo 0
nllSy 12 nllSy M2, xm
B42'Sy ' CY oMzCoST 2By BLZ' Sy CL oMz C1,0S ZB0 0
N N m
B6Z' S5 Ch oMz Cl0S ™' ZBo 0
N L
Omxl 0'm><1 %
(A.22)

19



and

' ZB0)i(Cr,085 )%

>-(CoSy

7

)ll [

nl|Sg ! oo
3 (Cr085 )i
17

e

Z(Ck,os )zdz 7{
i

EBO = lim ,u,(3)
n—oo
Z(MZC’ S5 tZB0)i(CoSy M S (MzC oSy ZB0)i(CoSy e,
nllSy 1% nHSo 1126
S (MzCy S, o ZB0)i(Cr,08, G S (MzCY oSy ZB0)i(CroSy Y
IEES nllSy 1%
Z(Mchlc,oso_
0m><1
+ hm ,u( )
S (MzCySy " ZB0)i(CoSy M, S (MzC4Sy 'ZB0)i(Cr,085 M)
nlSy i 1S 1%
Z(MZC{’DSO‘ Z,Bo)i(COSO_I)?i Z(Mzci OS Zﬁo) (Cl oso )
nl1S;5 11 nl1Sy 112
Z(MZC]IC’O

>(CoSy =i

7

I

Proof or Theorem 2.

-1
n|1Sy 113

S5 ZB0)i(Cr,08y M)E

> (CroSg iz

I

—1
n[[Sy 1%

e

Ome

01><m

O1><m

O1><m

Ome

(A.23)

We let 0LP (ég) /005 denote OLP(02)/002 evaluated at ég, with a similar notation for analogous quan-

tities. Let f; an intermediate point such that |fa; — fag;| < |f2; — Oa0;] for j = 1, ...,
k + 1, we obtain

MVT, for each 7 =1, ....,

o _ OL7(0:) _0Lr(6) ’““020(920) O — o)
T 00y 06y < 00500, 2
k+1 k+1
a%p (6s) -
+= ZZ 802]8021892,”(921 — O201) (02m,

For each 0 <~ <1 in (2.8), from Lemmas 8 and 9, respectively,

OLP(020)

_ 5 (IS5 o
oo, < vn

20

- 620771)

k 4+ 1. By the

(A.24)

(A.25)




and

1 0%LP(0) »p

2 Dy, A.26
15T omos, (420
where Dy is nonsingular under Assumption 11. Also, by Lemma 10, for each j,I,m =1,.....k+ 1,
1 P3LP(6:
(62)  _ 0,(1) (A.27)

1S 1|2 0020021002y,

so that we can write in vector form

. 1 82,61’(920))1 1 dLP(Bx) < 1 a2£p(920)>1 B )
o= oo =~ - 0,(1 S |oo

? 20 (||Sol||go 89289’2 ||5’0*1||go 00, ||S(;1||go (99239’2 :D( /(\/ﬁH 0 lloo)”)
1 0L0w) (1)

CSe TR 90 T\ VallSy e/

(A.28)

where the first equality follows since the leading term is O,(1/(v/n|[Sy ! ||e)) from (A.25) and (A.26),
and by replacing each component of (8o — 6a01)(f2m — O20m) by Op(1/(v/7]]Sy  |ee)?). The second
equality follows from replacing (A.26).

We need to show that

1 8[?(920)
[E

1 8[}7(920)
[EE

(1S5 1) . o N0, Vo), (A.29)

1 (9[«‘”(920)
1155 1112, Ow

where 1} is a positive definite variance-covariance matrix given by (3.1) and Fy defined in (A.16). The

proof of Theorem 2 will then follow by Cramer’s theorem.

In order to show (A.29), from the derivation reported in the proof of Lemma 8, we define

¢ (50_1/06 — %tr(COSO_l)> e+ BhZ'SyCLMye

1 ¢ (50*1/0{,0 — %tr(CLoS(;lD e+ By 2'Sy Cl g Mze

Upy=U=—
(n)1S5112) 2

¢ (851 Cho = Ltr(CroSyh)) e+ By2'S5 ' Mze
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so that (A.29) can be written as

1 8£P(920)
[EE

1 8&1’(920)
1S H1%  Owa

_ 1/2
(nl1S5112)" § — U + o(1). (A.30)

1 (9[)7(920)
1S5 1112, 9wk

Let A= A+ A’ for any generic matrix A. We define v¢;; = i, and ¢;; = ¢ijn the (k+ 1) x 1 vectors
(V135 V(1)) and (B1i5, .- Pe41)i5)’ such that, for each 4,5 =1,....,n,

(CoSy Mij (MzCoS5 )i
1| (CioSTYYi MzCh0SaY)i

’l]Z)fL] _ 5 ( 1,090 ).7 and ¢)Z] _ ( Z“1,0°0 ).7 , (A31)
(Cr0Sg )i (MzCr oSy )i

respectively. Also, let ¥, and ®4 be the n x n matrices with 1);; and ¢4 for s =1,....,k + 1 as their
n

respective(s, j)—th component. We can write U = ) u;/ (nHSalﬂgo)l/z, with
i=1

1 n n
— . = (2 _ 452 P - ) . )
U; = Uin = (62- UO) Vi nzw]] + 2ezz¢z]€] + EZZ¢ZJZj/807 (A32)
Jj=1 Jj<i J
where z; is the m x 1 vector containing the j—th row of Z. So, {u;,1 < i <n,n=1,2,...,..} is a

triangular array of martingale differences with respect to the filtration formed by the o-field generated
by {€j;7 < i}.
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In the sequel, all the summations will range from 1 to n, unless otherwise specified. Let

Q=Q, =Var(U) = Var(u;)
nl[Sy 1\|2 Z

00 =1

/ / 1 /
n||S 1||2 § E E ¢2] ﬁ0502t¢it + (M(() HS 1||2 E ¢zzwu - ﬁ § § wiﬂ/}jj
i

A

3) 5N ’
n||S 1||2 4221/}1]1/}1] HS 1” Z wu_ﬁzwﬂ Z¢itztﬂ0

1 j<i
(

—300 B
’rlHS ng szﬂﬁu 2||S 1|| Zzwzﬂﬁ”%— HS 1H2 Zzwlﬂ’bw
3) n
n||S 1||2 ZZZ@] ﬁoﬂozt@t qul”z Vi — %ijj Z(bétz;ﬁo, (A_33)
/ j=1 t

and v; = 25, = ('Q7 V20 / (n]|S \00)1/2, with ¢ being any deterministic (k4 1) x 1 vector that satisfies
¢'¢ = 1. By Theorem 2 of Scott (1973), > v; = N(0,1), as long as
i=1

ZE v2|ej,j < 9) —1 (A.34)
=1
and .
> E (v71(jvi| > 6)) =0, V5 >0, (A.35)
i=1
where 1(+) is the indicator function.
We define
Vo = nh_{go Q= X0 + X0 + 230 + 240, (A.36)
with
o0 itz DoD Wijag
i J i
254 o> V2irgi DoD eijag
Y10 = lim i i , (A.37)

won| 55

Zzw(k+1)z’j¢(k+1)ﬁ
i j
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Sty it
( M((;l) —30d) | 2t P

220 = lim —
n—=o0 || Sy t[Z,
le(%c—&-l)ii
o> ity DD Wiitag;
i g i j
(Wl — oy | Xveiithny 2D vniitha
i Mo Z00) | 55 7 . (A38)
n=oon?|[So |5
22 (k)i 1)
i j
BhZI®\ D120 B2, By 7
2 AL N IWA AL IR YA
30 = lim — 0 PoZ' @120 foZ 22220 (A.39)
BoZ' @) 1 P12 B0
and
S (ris — T (@1Z2B0)i S (Wi — T ) (@2250)
(3) i — 2Dy, Z0), i — T2y (9, 780);
S0 — Tim 1 ;(wz 2 ) (@12 o) ;(wz ) (P22 Bo)

n=oon|S; H|E

Z("/}(kJrl)ii - %)(@cﬂzﬂo)i
S (ris — T (@1Z2B0)i (2 — TR ) (@1250)
) 1 S (Wi — T (@2ZB0)i 3 (i — TE2) (92250
+ lim %2 i i
n—oon||Sy I3,

> (Wkr1yis — %)((ﬁkwtlzﬁo)i

i

(A.40)

where the explicit forms of X9, 229, 230 and 349 are given in (A.8), (A.9), (A.10) and (A.11), respec-
tively. Also, elements of Y3y are O(1) from Lemma 4(a) and it is nonsingular under Assumption 11,
while each element of $19 is O(1/|S5!||s) by Lemma 4(f) and each element of Yoq is O(1/]|Sy *[|%)
by Lemma 4(e). Elements of ¥4 are O(1/]|Sy!||c) from Lemma 4(e), (B.8) and since, for any n x n
generic matrix A such that ||A||e + ||4'||cc < K and any bounded n x 1 vector a,

|ASy tali < Ksupy _[s7|supy _|ai;| = O(||S5 ]oo)- (A.41)
J t ? j

The proof of (A.34) and (A.35) are reported at the end of Appendix B.
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Therefore > v; = N(0,1) implies U - N(0,V), and (A.29) follows from Cramér’s theorem. The
i=1

statement in Theorem 2 follows then from (A.26) and Cramér’s theorem, with Vo = Dy IFOVOFODO_ 1

Proof or Theorem 3.
The proof of Theorem 3 follows closely from that of Theorem 2 and much of the details are omitted to
avoid repetitions. We can write

Vv OLP(020)
155 oo~ OA

Vi OLP(0)
1S5 oo Own

= FPUP +0,(1), (A.42)

\/ﬁ ALP (020)
1S5 loo  Owk

1
%ZIE
with
1 1 .
We (So Ch — Lir(CoS; )) €+ W%Z’% ChMye
1 —1/ I —1 1 1
WE/ (S(] C’i,(] - EtT'(Cl,OSO )) €+ W/B{)Z,SO C{,OMZG
Ul =U" =
e (S5 Chg — Ltr(CroST ")) €+ ———L 783255 Ch g Me
(nllSg 1% soon ’ (nllS5 '12,) ,
1
%2/6

(A.43)
and Fg defined in (A.19). The proof of Theorem 3 will then follow by Cramer’s theorem.

Similarly to the proof of Theorem 2, we define A = A + A’ for any generic matrix A. We define
prj — wﬂ ¢fj = ¢fjn and Tf = 751 the (k+m+ 1) x 1 vectors such that

iyn’
(Coso_l)ij (Mzcosal)z‘j
(Cl,OSo_l)ij (MZCLOSO_1>1ZJ'
vy = S S ¢ = S and 77 = L[ O
Y 2(n[Sq [2)1/? . U () |Sg Y [2,) /2 B NG %
(Cr050 )is (MzC0Sq )i
0m><1 O7n><1
(A.44)
respectively. Also, let \Ifg and @f be the n x n matrices with wf;-j and qﬁfij fors=1,...k+m+1 as
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n
their respective(i, 7)—th component?. We can write U? = Zuf, with

i=1
Uzﬁ = Ulﬁn = (63 — 0'8) ¢,’5 — *Zw‘jﬁ] + 26127[)1’]6] + € ﬁ + ZQZ)” j . (A45)
J<t
As in the proof of Theorem 2, we define
B _ b B _ BB _ 4 _ BB BB
O =Qp =Var(U?) ZVCL’F 30 Zd} S0 00 ZZ¢ Z@D +2UOZZ¢ 1/)

%

+022 Z(bw B0 _|_T (Zﬂoztgbzt + 7 > + QM[()?))Z wg _ %Zwi (Zgbﬁ’zgﬁ +7‘i5/> ’
j=1 t

(A.46)

and vl-ﬁ = zim = ('QP _1/2’&?, with ¢ being any deterministic (k+m+1) x 1 vector that satisfies ¢'¢ = 1.

The rest of the proof follows by routine arguments and is omitted, after defining

Vg = Jim Q° = B, + 55 + 5 + T, (A.47)
with
Zz¢mwui ;;wij¢§ji 01xm
Zz%ij%ji Zzwijngﬁ 01xm
E?Oznlgﬁo%é - . o . . : (A.48)
Zi:%:wfkﬂ)zjw?kﬂ)ji O15m

Omxl oo s ceee Ome

3We note that for s = k + 2, ....,k +m + 1 both ¥? and ®? are matrices of zeros.

26



4
ZBo = lim (g

n—oo

— lim_(yf'

n—oo

B g
Yigg = nh—>HoloU

and, by letting 11)5 = @ZJB — tr(\IIB)/n for each s =1, ....

s s1%

Efo = lim u(()g’)

n—oo

+ lim ué?’)
o0

n—

0

> ()2 zwmwm
ngmwfu Z(%n’)z
— 307)
Om><1

ZZ¢2%¢@] 22w2u¢§”
i g v ]

— )

0m><1 Om><1

(VAL Sk S AC NG TVAL S SV A
BLZ' DS DY 7By BLZ DS DL Z By

29 ZBo/\/n Z'ZBo/\/n

z@z}hx@ﬂzzﬁo)
Z%”(q)ﬂzﬁo)

Zwlm(q)fzﬁ())i
ngu@?mo)i

0m><1

zwmﬁm )i
zwm(@ﬂzxfo)

Om><1

Zwm@fzm
Zwm@?zm

Zwm'%/\f szmzz/f
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ZZ%MW EZ%Z%JJ

lem

01><m

Z(d}?k-i-l)ii)Q O15m

(2

Ome
01><m
O1><m
P Otxm | | (A.49)
Zi:%zw(k+1)iiw(kz+l)jj O1xm
Ome
BhZ'® D) ZBy  BoZ'®Y Z/\/n
BhZ'®Y Ry, ZBy  PoZ'®y Z)/n
%Z,(I)QZACDQHZBO ﬁOZ/(I)g:ﬂZ/\/ﬁ
Z'®}),\ ZBo//n Z'ZIn
(A.50)
Jk4+m41,

Sl @ ZB)i  Svn/vn
SUo(®pZB0)i  YveaE/v/n
Zw k+1)zz((pk+12/80) Zw (k+1)id z/\r

Ome
Zw (@1 ZB0)i Otm
-wa S(®5ZB0)i O1m
. (A51)
Zw k+1)zz(q)k+1zﬁ0) O15m
Zw(k_g_l “Zi/\/ﬁ Omxm




where the explicit forms of ¥5, X5 £5 and X7, are given in (A.20), (A.21), (A.22) and (A.23),

respectively. We outline that each element containing Z’ A , for each s = 1,....k 4+ 1, is a null matrix

from (A.44).

Appendix B.

Lemma 1. For all n, each element z;; of Z (n x m) is non-random and |z;| < K. Also, for all

sufficiently large n,
(%)
0<c<Nmin|—1,
n

where ¢ is any arbitrarily small constant. It follows that

1Mzl < K.

(B.1)

(B.2)

Proof of Lemma 1. We show that ||Z(Z2'Z)"'Z'||c < K, and thence the claim in (B.2) follows

trivially. Let z, the i—th row of Z, in line with our usual notation. The arbitrary constant K can

change its value from step to step, as usual. We have
n

12(2'2) 72 |loo =maxy |22/ Z) 2| < maxd 2/ 2) 1]

j=1 j=1
Z2'Z\ ! 2
<ma><!|zz'|!‘ (Z2) | < ™= <
(2% n
since
ZZ\7| 1 _1
n - Nmin(Z'Z/n) ~ ¢
and
max||z|| = max(z/z)Y? < (mK?*)'? < K.
A A
[ |

In order to prove the following Lemmas we introduce the following assumption.

Assumption A1 Let € be an n x 1 vector of i.i.d. random variables, satisfying

E(e) =0, E(g)*'<K Yi=1,...,n.

Also, let A = A(f2) be an n X n generic matrix, such that ||A||ec + ||A'||ec < K for all 2 € O2. Thus,

we also have, |A4;;| < K for all 4,5 = 1,....,n and for all 5 € ©2. The proofs of Lemmas 2, 3 and 5 are
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given in the Online Supplement of RL.

Lemma 2. Under Assumption Al, for all 5 € Og:
a) ¢'S~1(02) Ae = O,(n).
b) €S7H02) ASTH02)e = Op(n]|S™H]s0)-

Lemma 3. Under Assumption A1, for all 65 € Oq:

; ( /(5—1(9 )/AS_1(0 )) e — o2ty (5—1(9 ),AS_I(H ))) _0 <1>1/2
nllSTEE ’ 2 D=\ GlisTois) )

(B.6)

Lemma 4. Let a an n x 1 vector such that |a;|] < K for all i =1,...m and A an n X n matriz such
that ||Alloo + ||A||c < K. Let B = B(f) = (S~YA+ A'S™1)/2. For all 03 € O5:

a) /STVAS la = O (n||SY);
b) €SVAS™ a = Op(vnl|S7[3);
c) €AS™a = Op(v/nl|S™|0);

d) a'S™VAa =0 (n||S7 o)

e) tr(B) = O(n);

f) tr(B*) = O(n[|S™|w);

g) tr(B*) = O(n||S7[%)-

Proof of Lemma 4 We let B = B(f;) = (S™VYA+ A’S™1)/2. We have

1B]loe = OIS~ [Is0), (B.7)
|bij <KZ\8“|I%\ <Ksup|s“|sup2\am| =0(1) Vi, j (B.8)
t=1 J =1
and
[(BS™1)] <KZ|anIS“| <Ksup|bzt|supZ\s”| =015 Mloe) Vi, j. (B.9)
t=1 J =1
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By standard norm inequalities

157 AS ™ |oo = O(1S™H[)- (B.10)

Proof of part (a). We have

ja/SVAS  al =) Y "aiai(STVAS T <)Y Tadllagl|(STVAS )il < Knl[STVAS |

i=1j=1 i=1j=1

=0 (nlls712). (B.11)

which concludes part (a).

Proof of part (b). ¢S~ AS~'a has mean zero and variance bounded by

Kiiimﬂ\%\|(S_1/AS_1)z'j\|(S_1'A5_1)w\SKmaXEn:’(S_l’AS W\ZZI STVAS™),|

i=1j=1v=1 v=1 i=1j5=1
<Knmax) [(S~"AS™! w|maxZ| STVAS™H =0 (n||STHIL) - (B.12)
! v=1

The claim in part b) follows by Markov inequality.

The proof of parts (c¢) and (d) follow from very similar arguments to those used to prove parts (b)
and (a), respectively, and it is omitted to avoid repetitions.
Proof of part (e). We have

<K T aj; <Knsupsﬂ sup al = B.13
j J

i=1j=1
Proof of part (f). We have
tr(B%) <Y > Ibillbis| < Knl[Sy |l = O(n1S™]oo)- (B.14)
i=1j=1
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Proof of part (g). We have

tr(B3) SZZZ|b¢ijjt||bti| < K”Supzzwthbtﬂ

i=1j=1t=1 j=1t=1

SKnsng\bjt!SupZIbﬁl =0 (nl|1S7M5) - (B.15)
j=1 vo=1

Lemma 5. Under Assumption Al, for all 65 € Oy:

#6/ PR, _{T n v . 1 1/2
a5 e <S (62 A~ ~tr (s (@)A)) _Op<<ny|so‘1\|oo> ) (B.16)

Lemma 6. Under Assumptions 1-9,

inf (LP(62) — LP(02)) > e, (B.17)

Ns

for all sufficiently large n and for somee > 0, with LP(-) defined in (2.25).

Proof of Lemma 6. We prove the Lemma by using the inequality

inf LP(0y) — LP(620)) > (L£P(6)) — £P(8
oforalen 9269( (02) — £7(0a0) ) = (£7(61) — £7(020))
— sup LP(6y) —/jp(ﬁg) , (B.18)
621620} | <s 0260

where 7 is a positive constant, 9; € ©2\0y, and B4 is compact under Assumption 2 and hence it has
a finite subcover. We need to show that the RHS of (B.18) is strictly positive for large n. From the
proof of Theorem 1, the first term on the RHS of (B.18) is strictly positive for v = 0 and diverges to
+oo for 0 < v <1 asn — co. We continue to analyze the second term on the RHS of (B.18). Consider
first the case 0 < v < 1. Let ST = S(H;). Since the first term of the RHS of (B.18) diverges to +o0o as

n — oo, we only need to ensure that the second term at the RHS of (B.18) remains bounded in the
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limit. We have

'S"MzS 2 2
o) = 21og[S(60)] + 2106 5T +0,(1)

AP _ ~p Ii =] Z - eI )
£7(0n) — (0} = tog (B2 ) - 2

' 7'SV S M, SST 7 2 2
=Io ( ’éo / Pll 11 - Tofl i ) — —log[S(02)| + —log]ST] +0p(1). (B.19)
BLZ'Sy M SV Mz STSy 78, n n

The first term on the RHS of (B.19) is bounded, since by Lemma 4(a), both numerator and denominator
in the argument of the logarithm are O,(n||Sy'||%), uniformly in s, so that the first term is O,(1).
Also, let Q = (5S)™! and write, for each 6, € O,

1y . 1
IS = 1SS = Q7Y < e @71 = o < K (B.20)

where the last displayed bound follows under Assumption 4. Similarly,

_ 1
ISP > i (Q71) = —) >0, (B.21)

again under Assumption 4, such that the second and third terms at the rhs of (B.19) remain bounded.
We therefore conclude that the RHS of (B.18) increases without bound as n — oo, when 0 < vy < 1.
Next, we prove that the second term on the RHS of (B.18) tends to zero for v = 0. In this case,

odtr(Sy1'S'SSy ) + By Z' Sy S M 4SSyt Z By
odtr(Sy V' SVStSy ) + B2 Sy M S M4 STS 7 By
562’561'5’M25561250>
tr(Sy 1Sy 1 S'S) (1 T (s, Vs, )
tr(Sy 1Sy Vst St ( ﬁ/Z/S*“ST'MzSTS*Zﬁo>
(505 ) 1+ Oagtgn(sglsgl’sf%f)
BhZ'Sy VS MzSSy t ZBo )
_ ) tr (QoQ271) +ll ‘QT_lﬁ‘ +1 <1+ o2tr(Sy1'S555 )
— og r (QOQT_l) n og 0og (1 N BéZ’Sgl/ST’MszO‘IZ,BO) ,
o2tr(Sy 1Sy stst)

~ ~ 1 _
LP(65) — LP(6)) = log ( ) + —log ‘ST’ST (5'S) 1‘ + 0p(1)

— log + %mg ‘ST’ST (s'5)7"

(B.22)

where Q = (5’S)". The term in the curly brackets in the rhs of (B.22) was shown in Lemma 5 of RL
to be as small as as desired. Specifically, fixing § > 0, there exists ( > 0 such that for large enough n

-1
log (tr(QOQ)> + %log ‘QT%Q)

sup < 4.

92:)‘92_@“07 tr (Q()QJffl)

Let 63 such that |\* — | < [A—AT| and ]w}‘—wﬂ < \wj—wj-] foreach j =1, ..., k, and S* = S(6;), with
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analogous notation for similar quantities. We consider the argument of the logarithm in the second
term at the rhs of (B.22). By the MVT,

BoZ'Sy VS' Mz S Sy 2By _ ByZ' Sy 'SV M STSy 2By 262" Sy ' CY My S* Sy Z o
agtr(so V5SSt agtr(s 1’ST’STS ) agtr(s 1’5*'5*50 )
2

tr(SyS¥ 5% Sy

2502' 1’5*'MZS* 12@)
ogtr?(Sy 1’5*'5*5 Y

2 Z/ -1 Vi *g 1Z
2202 (5. 5575

(A= AT

ZBOZ So VO M 48" Sy Z Bo(w; — w!)

tr(Sy 1Sy (CY'S* + S*C*)) (A — At)

1S 1/ C*/S* S*/C*))( ij)

(B.23)

Under Assumption 6, in view of Lemmas 1, 4(a) and equation (S.26) of RL,

BhZ'Sy VS My SSy 't Z B, _BOZ’ Sy V'SV M StS; 1 Z By
3 (S 1’5’55’0 ) 0 r(Sy 1’5T/ST5‘0 )

+0(n) (B.24)

over the support HHQ—@H < 1, with the first term on the rhs being O(1), because 5,2’ Sy V' S'"MzSS; ' Z 5y =
O (n) and tr(S;'S'SS; ") = O (n), uniformly in ©9, by Lemma 4(a) and equation (S.26) of RL. Tt
follows that the second term on the rhs of (B.22) reduces to

log(1+ O(n)) = O(n) (B.25)

and thus, for each > 0 we can choose n > 0 such that

14 BLZ'Sy S MzSSy ' ZBo
o2tr(Sy 8185t

14 BhZ'Sy Y St M ;S8 Z 8o
o2tr(Sy 1Sy Vst st)

sup log < 0. (B.26)

21| 02—68 | <n

We conclude that in the v = 0 case the rhs of (B.18) remains strictly positive as n — oo, as required.
|

Lemma 7. Under Assumptions 1-9,

sup [LP(02) — LP(03)| B0, as n — oo, (B.27)
(SD)

with £P(-) and £P(-) defined respectively in (2.14) and (2.25).
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Proof of Lemma 7. The approach in the proof of Lemma 7 is similar to that of the proof of Lemma 6
in RL, with substantial differences in the orders of magnitude of the various terms due to the inclusion
of the linear part in (1.2). Let N (62, 0) a d-neighborhood of #3 such that

N (62,6) = {05 - [N — N < 6/(k +1), |0} — wj| <§/(k+1) foreach j=1,...,k}. (B.28)

Let f2 such that: [A — A| < [\ — A, [@; — w;| < [w} — w;| for each j. Let S* = S(65) and S = S(6s),
with analogous notation for C(-) and C,(-) for r =1, ...., k. Since O3 is compact under Assumption 2,

it has a finite sub-covering and we focus on

sup  [LP(05) — LP(05)| < sup  [LP(05) — LP(B2)] + | LP(62) — L(62)
04 €N (62,6) 04 €N (62,6)

+ sup |LP(65) — L£P(6y)). (B.29)
0% EN (02,6)

Pointwise convergence in probability of LP(63) to LP(f2) holds by definition of 5*2(f;) so that the
second term at the RHS of (B.29) is 0,(1).
We start with the first term at the RHS of (B.29). By the mean value theorem, we may write

0y'S' M S "0y S'M,S
'Y AL, Sty =i S' M Y ZRY ¢ Y ZoY 8
Y'SHMz 5ty =y S' Mz Sy + ——5 (A /\)+;8wj (w) —wj)
B k
=y'S'MzSy — 2y S'MzCy(N — \) — 20>/ §' M Chy(w' — wy), (B.30)
j=1
so that
y'SY My Sty — /' S' My Sy 2 - _ I _
A, (92,95) - | s [ _ @yy'S'Mch(Aﬁ — N+ A Y S MCry(wh — wy)|
j=1
K o b
S ly' S MzCyl|(N = N+ Y|y S Mz Cyl|wh — wy] | - (B.31)

J=1

In the 0 < v <1 case, by Lemmas 1,2 and 4, as HS”MZC’ + C"Mzguoo < K,

S'M;C +C'MzS
2

ylSlMZéy — ,B(/)Z,SO_II
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and similarly,
Yy =0y (" HSO_IHZo> and y'S'MzCjy = Op (nl|S5 " [1%) -

It follows that in this case, for each ¢ > 0 there exists a § > 0 such that

sup A, (92, ) <(.

05EN (62,5)
Next, consider the case v = 0. Here,

LS M4+ C/MZS
2

S'M;C +C'MzS

yS'MyCy=¢Sy 5

+ByZ'Sy Y

Syt ZBo + 0, (Vn) = Oy (n)
and similarly,

y'y =0, (n) and y'S'MzCjy = O, (n).

From the definition of stochastic equicontinuity (Andrews (1994)), (B.31) implies that for all ¢; > 0
and (3 > 0 there exists a § > 0 such that

lim sup Pr sup  Ap (92, ) > (G | < (o (B.32)
n—00 04EN (62,5)

where (1, (2 and 0 do not depend on 5. This proves that the first term of LP(3) in (2.14) is stochastic
equicontinuous.
Now we consider the second term of £P(f2) in (2.14). We have

—2log |S¥| = —21log |S| + 2tr(S~1C)( )+ ZAZtr w — wj) (B.33)

Under Assumption 6, by Lemma 4(e)
|tr (S~ C)| O(n) and |tr (5~ C_')‘ O(n) Vj=1,...k. (B.34)

Hence, for every v > 0 there exists a neighborhood N (6,6) that does not depend on n such that for
alln > N,

2log | 57| ~ 2log|9|
n n

sup
04EN (62,5)

k
SKE[WVW=N+> (W —w) | <Ki<w. (B.35)
7=1

Thus, the second term of of £LP(62) in (2.14) is uniformly equicontinuous. The implication is that we
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are done for the first term on the rhs of (B.29) for both the v =0 and 0 < v <1 cases.
In order to conclude the proof we need to focus on the third term at the RHS of (B.29) and show
stochastic equicontinuity of G*(fs) in (2.25), as equicontinuity of the second term in £P(6s) follows as

in (B.33) - (B.35). By the MVT, under Assumption 5 and since the module is a continuous function,

k
_ _ NSy S My Ciy(w' — w;
| =2y S M Cy(NE = N ]; syl = ;)
sup |plim —

BLEN (62,6) [0 Yy vy

_ _ i - B
<K sup plim ‘y,S/MZCy”)‘ﬁ_)" _,_Z‘y,S,Mch?/ng—wﬂ

0LEN (02,8)" 7 Yy j=1 vy
(S Mz Cy| |y S M Cy
<Ko pkm 7 + E 7 (B.36)
n oo

J=1

where K, as usual, denotes a constant that can change value from step to step. Under Assumption 6,
from Lemmas 1,2,4, for each ( there exists a A such that
, 'SIM,Cyl |y S'MC;
Pr | plim ‘ylizm + ZwliZﬂﬂ >A | < (. (B.37)

n—o00 yy =

Let (1 = 0KA. We have

k

_ _ QXZy’S'MZC'jy(wﬁ- — wj)
—2'S' M )\ﬁ Y - J
Pr sup |plim yS Z/Cy( ) _ = ; > (1
0L EN (02,0) |V vy vy
[y'S'MzCy| | - 1y'S'MzCyy|
<Pr | plim ot > - 2l >A) <G, (B.38)
n—oo

J=1

concluding the proof. B

Lemma 8. Under Assumptions 1-11, we have

0L (00) _ 15 oo 0L (00) _ 155 1l \\ 5 _

For 0 <~y <1 in (2.8).
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Proof of Lemma 8. By standard algebra,

8£p(920) y'C'(’)MZSOy 2 -1
=—2 —tr (S, "C
O\ y’SE)MZSoy + n " ( 0 0)
€S VChe + BLZ'SyVC M ge — €S,V CLZ(Z2'Z2) 1 2 2
_98%0 %o 04 20 “o 0 Yo 2 (51
de—eZ(Z'Z) 172 +n (8o Co)

_26'50—1’066 + BLZ' Sy M Ch M ge — €SV ChZ(Z' Z) 1 7 e L2, (S51C0)
de—€Z(Z'Z) 172 n o ~0

/ 1\\ !2 I
- (6”6 + 0, <n>> ~ <e’ (50—1’03 — nt'r(CoSo_l)> e+ ByZ'Sy tCiMye + O, (HSO_IHOO)> ,
(B.40)

where the last equality follows since €Sy 'ChZ(Z'Z) ™1 Z'e = O,(||Sy *||o0) since

E(Sy1C2(Z2'2) " Z'€) = ojtr (S, 1 CoZ(Z'2) 1 Z") = tr (2'Sy ' CyZ(Z'Z) 1) = O(]|Sg M| o)
(B.41)
from each component of Z'S;'ChZ = O(n||Sy!||o) by Lemma 4(d) and Z’'Z ~ n. Rearranging terms

we obtain

D yall
9L Ox) _ _ oy CoMzdoy | 2, (SyCo)

oN y'SyMzSoy  n
2 (et _ I _ _ 1155 | oo
=— <n) (e’ (SO vl — ~tr(CoS, 1)> e+ B8y7'S; 1C’6Mze> + Oy <0n>
1155 11155% 115 Mlloe 1155 Hloc
=0, (max < 2 i + 0O, ) (B.42)

where both terms in the max(-, ) contribute as long as v = 0 and the second one dominates for v > 0.

The remainder O, (||Sy Yoo/ n) vanishes as long as v < 1 and it is dominated by the leading term,

which is Op(||Sg ! |oo/v/n), V7 € [0, 1]. Thus, using (¢'e/n) = a3 +0,(1/y/n), for v = 0, (B.42) becomes
0LP(00) 2

- I _ B 1
o _nag (e/ (SO VCh - ;tT(COSO 1)> e+ ByZ'S, 106Mze> + Op <n> , (B.43)

while for 0 < v <1 we get

OLP(620)
o\

n

2 e 155 100 \ 2
= =525y CoMze+0p | (727 : (B.44)
0
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Similarly, for j = 1,....k and under Assumption 10

8E;ii20) =— QAOW + %tr (So_le,o)
= % <€:)_1 (e’ (Sol’c;’o - itr(cj,osol)> e+ ﬁ()Z’Sole’-ﬂoMZe> +0, <”&JF>
_o, (max <\|s§11/\2|);42, Hsnall/goo» vo, (180 ), (5.45)
which becomes
aﬁ;ff;(’) = _nig <e’ (So—l’c;.,o - itr(Cj,OSO_l)> €+ ﬁgz’Sglc;,OMze> +0, <i> (B.46)
for v =0, and o,
85;5220) = _nig 867"y CloMze + Oy ((W") / ) (B.47)
for0<y<1. N
Lemma 9. Under Assumptions 1-11,
1 02LP(fy) 2 Py >0, (B.48)

15512, 962005

where the elements of Dy are given in (A.12), (A.13) and (A.14).

Proof of Lemma 9. Let, as usual, S = S(62), with the same notation for similar quantities. Using

standard algebra we derive

1 9*LP(B) _ 2 yCGMzCoy/n 4 (' CoMzSoy/n)? 2. ((S51Co)?)
155113, 90X 155 112 ¥"SoMzSoy/n ISy % (¥'SoMzSoy/n)* — nl|Sy 1% ’
(B.49)
1 02LP(0) 2 y'Cli oMz Soy/n 223 Y'CioMzCioy/n
155 12 Owidw; 155 1% ¥'SoMzSoy/n (|52 ¥'SeMzSoy/n
_ 40 y/C],‘,oMZSOZUy/CZ{70MZSO3//n
155 1% (y'SoMzSoy/n)?
2
220 . (S Cij0) + 220, (S5 Ci0Sy 1 Cjo) (B.50)

nl| S5 1% nl]S5 113
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and
1 62£p(020) _ 2 y,CZ{70MZSOy/n 2o y’C{)MZCZ-70y/n
150 112, OwidA 155 1% ¥'SoMzSoy/n— ||Sg 12, ¥'SoMzSoy/n
4Ny Y'CoMzSoyy' Cf oMz Soy/n?

_|_
1551113 (W'SeMzSoy/n)?
+———tr (57" Cio) + ——— -t (S5 ' Ci05; ' Co) - (B.51)
nl]S5 113 nl|Sg 1%
The denominator in (B.49), (B.50) and (B.51) is
l 'S" M, Soy = l "Moe = 2 l
Yy SoMzSoy = —€ Mze =05+ O, (B.52)
n n n

We focus on (B.49), although the same argument can be applied to (B.50) and (B.51). The numerator
of the first term in (B.49) is

———— Y CyMzCoy =———1— (¢'Sy "CoMzCoSy e + By Z' Sy V' CyMzCoSy ' Z o)
n[|Sy 113 nl[So 1%
+W€/S(;1/C(/)MZCOS&1Z50
0 00
2 1
=TS (¢S5 V" ChM 7 Co Sy e + ByZ' Sy M CyMzCoSy ' Z Bo) + O, <\/ﬁ> ,
0 00
(B.53)

where the last equality follows from Lemma 2, Lemma 4(a) and Lemma 4(b). Furthermore, the first

term at the RHS of the last displayed expression is

2 1 o—11 v —1 1 o—1/ v -1 1 a—11/ 1 / —1 —1
STV MOy ST e = STV CyST e - — 2 STVl Z(Z' 2) " 20, S,
IS 0 oM T e g oA e

1
= = STV CyST e+ O () B.54
nHSo‘lH%O6 R AN? (B.54)

where the last equality follows from an argument similar to that applied to derive (B.41). Therefore,
the numerator of first term in (B.49) can be written as
1
(¢/Sg V' ChCoSy e + BLZ' Sy ChiM 2 Co Sy ZBo) + O, (\/ﬁ> :
(B.55)
with the first term being O, (1/||Sy !||oo) by Lemma 2(b), and the second term being O,(1) by Lemma

4(a). Thus, it is only when v = 0 that the first term in the last displayed equation does not vanish

Y CoMzCoy =

nl[ S5 1% nl1S5 |1
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and, for n — oo?, by Lemma 3,

2 202 2
— = /C M C = lim ——9 ¢ (STYC CoSTH) + lim ——— B Z'STVCH M, Co St Z By
s Y CoMaCou 2 i iy tr (S CoCoSy ™)+ ltn Cresry o2 CoMzCaSy " 2y
(B.56)
When v > 0, as n — oo,
#y’c ZCoy—> lim #6’2’5_1’06MZCOS_1Zﬁ0 (B.57)
— 0 0 0 . .
nl|Sy 1% n—oon||Sy [

By combining (B.52) and (B.56)/(B.57), we conclude that the first term in (B.49) is O,(1) and it

converges to

tr (Sy 'CHCoSyt) + lim #5025 VCIMzCoSy ' ZBy for v=0 (B.58)

im ————
n=oon||S5 13, n=oon||S5 |30

and

2
lim —————8,2'5; "' CouMzCoSy ' Z o for > 0. (B.59)

m
n=oon||Sg 2,03

Under Assumptions 6 and 10, the square root of the numerator of second term in (B.49) involves

1 1
yall 1 o—11 v / 17 17
—————y/C{MzSoy = —————€' S5 'Cle — —————€ S, "CoZ(Z2'Z2) " Z'e + O, ( ),
1|15 oo nl[S5 oo 1155 oo vn
where the last displayed equality follows since
%6/5071/066 =0, (_11> by Lemma 2(a), (B.60)
nl[Sy loo 1156 [1oo
1 €Sy VCLZ(Z'Z) 7 e = O, <1> by (B.41) (B.61)
1155 oo n
and
1

1
BZ'Sy Y Mze = O, <> by Lemma 4(c).

nl1S5 [l Vin
Therefore, as n — oo, by Lemma 5,

2

y' CHM 7Sy —> lim —20 4 (361’06) for v=0 (B.62)

n]155 oo p n=oon|[Sg oo

“Note that the term in [|Sy |2, = O(1) for v = 0, but it is retained to deal with both cases in a unified approach.
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and

————y'CoMzSoy — 0 for ~> 0. (B.63)
nl[Sg " loo P

Collecting (B.49), (B.52) and (B.62)/(B.63), the second term in (B.49) is Op(1) for v = 0 and it
converges to A
. 2 —1
”ILHSOTLQHSO_ngOtT (CoSy ), (B.64)
while it is op(1) for v > 0.
A similar argument follows for the third term of (B.49), since, by Lemma 4(f), tr ((56100)2) =

0,(n]]Sy"||s0) and thus
1

Tt
nl|S5 1A

r((Sy'Co)?) =0 < ! > , (B.65)

1155 oo
which is O,(1) for v = 0 and vanishes otherwise.
Thus, collecting (B.58)/(B.59), (B.64) and (B.65), and by standard algebra, we obtain,

1 9°L7(02) p . 1 1t ,1 1,2
im — _ 24
HSO‘II%O e —>n1_>rglonHSO_1Hgotr <SO Co + CoS, tr(CoSy ) n>

+ lim 2B4Z'Sy M CLMzCo Syt ZBo
e agnllSy 11 ’

(B.66)

with the first term vanishing for v > 0.
In order to avoid repetition we omit a similar argument for (B.50) and (B.51) and by standard

algebra of quadratic forms in i.i.d. random variables, we obtain

1 82£p(9_2> 2)\0 -1 —1r — — —
im—————— (2tr(Cy;,05; 1) — Motr(Sy V' Cl o Ci0Sy 1) + tr(Sy 1 Ci oSy 1 C
15512 Gwdw; w7 (Goas ) = Aot TGy Cuofiy o)
— 1m47>\(2)tr(0- 08y Mtr(CioSyt) + hmiﬁ’ Z'S; V! (M zCi oSyt Z By
R[Sy g R s g e T
(B.67)
where all terms contribute for v = 0 and only the last one does not vanish if v > 0. Also,
1 0%LP(6y) 1 _ _ _
— lim —————— (Aotr(Sy VCh 0S5 1) + tr(Sy 1Ci oSy L C
15,1 dwdn "y, Dot OGS0 iy Crooco)
— lmAtr(cosﬂ)tr(a 0S; 1) + lim27)\0ﬁ’ Z'S; YOl M4Ci 08, Z By
n= 02|55 1%, ’ B020 T sz, o7 o HeaT0R0 2R
(B.68)

where again all terms contribute for v = 0 and only the last one does not vanish if v > 0.
Thus, the elements of Dy reduces to Do in (A.15) if ¥ > 0in (2.8). W
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Lemma 10. Under Assumptions 1-11,

1 03Lr(6y)
155 1% 003

= 0,(1) (B.69)

Proof of Lemma 10. We present in detail the argument for 93£(6,)/0\3, although a similar argument

follows for the remaining derivatives under Assumption 10. By standard algebra, we derive

1 0L0) 1 4 (y’C_"]WZC_’y)2 1 8y'C'MzCyy'C'MzSy 1 (y’C_”MZS’y)3
15512 OA*  1ISg A (yS'MzSy)?  I1So 1A (y'8'MzSy)® 156 112 (/5" M4 Sy)°
4 _ _
+———tr ((5710)? (B.70)
1155 oo ( )

From (2.3) and from Lemmas 2(b), 4(a) and 4(b), the quadratic forms in y at numerator and denom-
inator appearing in first three terms at the rhs of (B.70) are O,(n||Sy!||s0), such that the first three
terms of (B.70) are Op(1/[Sy"||sc)- The last term in (B.70) is Op(1) from Lemma 4(g).H

Proof of (A.34)

We start by showing (A.34) by proving, equivalently,
n
D E (vflej, 5 < i) — Q720712 >0, (B.71)
P
i=1

which is

m_w<nus g 2Bl <0~ Q) e

!/

:”HSoiP, Q- Z Z%GJ ZWJ'EJ' —0322%1'1%

% i<t i<t i j<t

+ ,u() Z <wu - Zwtt> waﬁ Q_l/QC

7<t

S (RS TSTS Bhe6th + dadhye | 97 0.

ey
ISy I e

Since © = O(1) as n increases and it is non singular in the limit under Assumption 11, we need to

42



show (for a typical element of the following matrices) that

!/

nllSy 1”2 o0 | D | | D | —o0p > vy | 50

1 j<t J<i 1 j<i

and

1
WMO Z (1/%1 - Z¢tt> le)weg > 0

7<i

and

n||S 1”2 ZZZM Gij iy + Vit di; et - 0

i j t<t

We begin by showing (B.72). We consider the typical elements of the lhs of (B.72)

S 1 2 szjsw € — 00 + Z Z qpsz]wszkzejﬁk , s=1,... Jk+1,
nllSo 13 | 5795 e
J#k

and

nHS 1H2 Zzwsmwtz] €5 —UO +Zzwsm'¢mk€]6k , s,t=1,.,k+1, s#t.

i j<Z 7 ]’k<1
jk

The first term in (B.75) has mean zero and variance bounded by

n2\|5 1||4 ZZZ%%J%»’M - 2||S 1||4 Zzzwmwsm

1k j<ik
1
: W ( Z%]> Zz%m <nHSO_1Hoo> :

where the last equality follows from Lemma 4(f), since

ZZ% ((CoSy " + 85 Co)?). ZZ%@ (CioSyt + Sy 1T j=1,...
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(B.72)

(B.73)

(B.74)

(B.75)

(B.76)

(B.77)

k,

(B.78)



and letting e; to denote the n x 1 vector with 1 in the j—th position and zero elsewhere,
Y Wk = €Wie; < ||W|1P = O(I1S5I13)- (B.79)
i

By Markov’s inequality, for each 0 <~ <1 in (2.8), the first term in (B.75) is o0p(1).

The second term in (B.75) has again mean zero and variance bounded by

n2HS H4 ZZ Z Z |¢51stzkwsp]wspk|

i p j<i,pk<i,p

TL2HS 1H4 ZZZZMbszﬂbszk’ /(/)Spj + ¢Spk)
<’I7,2||S 1||4 < pz#@m‘) (SL;DZW@@) Zzwzpj
7 P j
K | s o1
+TL2HS 1”4 pzw}szﬂ (Sip¥|wszk|> zp:;wspk =0 <nHSO_1HOO) , (BSO)

again from Lemma 4(f) and since, for s = 1,.....k + 1, ||¥4||oo = O(||Sy *||co). For each 0 <y < 1, we
conclude that the second term in (B.75) is 0,(1).

The proof that (B.76) is 0, (1) is virtually identical and it is omitted to avoid repetitions. We prove
(B.73) by observing that the the typical element at the lhs of (B.73) is

WIE=ITER 21/15”2%5”63, s;t=1,. k+1, (B.81)
e
where )

Vsii = Vsii — n;wstt- (B.82)

The term in (B.81) has mean zero and variance bounded by

n2||S 1||4 ZZZ’wszz¢skkwtzjwtk]‘ = 2”5 1H4 ZZZ|¢1€%]H¢M] ¢su+'¢skk)
ik j<ik

K ~ -
= 215572 (Sljlp Ek !¢tkj|> SLQPE el | D 05 + SipE |t (sng |¢tz’j\> Ek Dk
o0 j i j i

—0 <M> , (B.83)
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where the last equality follows since

2
S0k < YN R = () = o ((w ~ur(w)?) ) = 0 (max(n, 1155 [1=)) = OlIS5 1),
A )

(B.84)
from Lemma 4(e) and Lemma 4(f). Thus, for all 0 <y < 1 the term in (B.73) is thus o,(1).
We finally need to show (B.74) for a typical element, i.e. we consider
nHS 1H2 S Bozidsijtbvirer  for  st=1,.. k+1. (B.85)

oo g gttt

The latter has mean zero and variance bounded by

TlQHS 1H4 Zzzzqusw?bsuhdjmt@bvut > QHS 1H4 ZZZZZ|¢SZ]¢suh¢vztwvut‘

u  h t<t,u
TZHS 1H4 pz‘gbsz]|Supz‘¢shu|sup2|¢mt‘sup2|wvut| = <> (B.86)
where the last equality follows since from Lemma 1 and basic norm inequalities, we have
1o lloe = O[S o) 1@slloc = O(ISg Hloo)  for s,0=1,.....k+1. (B.87)

By Markov’s inequality (B.74) holds, concluding the proof of (A.34). B

Proof of (A.35)
We prove (A.35) by showing the sufficient Lyapunov condition

ZE]UiF""S — 0, forsome >0 (B.88)

i

and showing, for a typical standardized element of u;, s=1,.....,k + 1,

1 246 s 1 2468 s
—_ Efug |0 = (_) E (Elusi|**lej,j <i) = 0. (B.89)
((nHSolH%oﬂ”) Z (n]Sy L] |2,)1/2 Z ( g )
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We have, by the ¢, inequality,
1 146/2 e
<nl\501||%o> ;E (Bl 15,5 < i)
< (oo T 0 (— o E 240
() 2l Garm)  SEE vl

% Jj<i
246

K 146/2

The first term of (B.90) is

K 146/2 . , )

since the second factor is O(1), given (B.8) and Lemma 4(e), and the third factor is O(n||S;*||s0) from
(B.84).
The second term in (B.90), by the Burkholder and Von Bahr/Esseen inequality, is bounded by

K 146/2 , 1+5/2 K 14+5/2 res
<nHSo‘1H%o> 2 EI) Vil ( ST > DD Vi

VA ioj<i
K 144/2 1+3/2 K 144/2 o/
< <S—12> Z Z¢sm < <S_12> UPZ%” Zzwsm
nise) & R
1
=0 <n5/2||50_1|| > =o(1) (B.92)

using (B.78), Lemma 4(f) and (B.79).
We show that the third term in (B.90) is o(1) by observing that, under Assumption 7,

!ZB{)Zj(bsz'j #+0 < Ksup|Bjz; ’2+6Z|¢sij |2+ (B.93)
j / j
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and thus the third term in (B.90) is bounded by

K 145/2 ) K 145)2 146/2
Sl19=12 K 20 < [ ——— K 2
<n|1551|3o> Z;ZJ:W j‘ - <n||50—1||go> EZ: Ej:¢s’bj
5/2

é
< (K>H Uk (e, S5 =0 (i) (B.94)
= \llsy i i 2 51 =\ 2185 e

7

where the last equality follows from an argument identical to that used to derive (B.78) and (B.79),

using again Lemma 4(f). W
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