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Drift burst test statistic in a pure jump semimartingale model

Cecilia Mancini!

Abstract

We complete the investigation on the asymptotic behavior of the drift burst test statistic devised in
Christensen, Oomen and Reno (2020). They analysed it for an Ito semimartingale containing a Brownian
component and finite variation jumps. We also account for infinite variation jumps. We show that when
there are no bursts in drift neither in volatility, explosion of the statistic only can occur in the absence
of the Brownian part and when the jumps have finite variation. In that case the explosion is due to the
compensator of the small jumps. We also find that the statistic could be adopted for a variety of tests

useful for investigating the nature of the process, given discrete observations.

JEL classification codes: Primary 62M99, 62F05; secondary 60F17, 91B70, 60E07, 60E10.
Keywords: Test statistic, Ito semimartingale, infinite variation jumps, jump activity index, asymptotic

behavior.

1 Introduction

On a filtered probability space (Q,F,{F;}¢cjo,r], P), we consider a cadlag pure jump semimartingale (SM)
defined by

¢ t
X :/ / 6(x, s)fi(dz, ds) +/ / 5(x, s)u(dz,ds), t € [0,T), (1)
0 et 0 Jsas)>1

for a fixed time horizon T > 0, where u(dz,ds) is a Poisson random measure on (R x [0,7]) endowed with
a compensator of type v(dz,dt) = A(z)dzds, and i = p — v is the compensated Poisson random measure.
Formal conditions on X are given in Section 2. The first term in (1) sums the compensated small jumps of
X while the second term sums the not-compensated big jumps.

For fixed ¢ € (0,T'), we focus on the asymptotic behavior of

rOKGAX
o ok ®
Zi:l Ki(AiX)z
where: for any integer n > 0, {t; = tEn),i = 1,..,n} gives a non-random partition of [0,7]; A;X =

Xy, — X, K= K(’;Zi’l ); K:R — Ry is a kernel continuous function and h is a bandwidth parameter.

We are interested in the framework where
n — 400 while h — 0 in such a way that nh — +o0, (3)

and we assume that the partition asymptotically does not differ too much from the equally spaced one, in a
way made explicit later.
The statistic 77" is devised in [5], where the considered model is an Ito semimartingale (SM) including

drift and Brownian components, the jumps have finite variation (FV) and are represented as compensated
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small jumps added to not compensated large jumps. There, T is shown to explode any time when there
is a burst in the drift larger than a burst in the volatility, while the statistic converges stably in law to a
Gaussian random variable if either there are bursts and the one in volatility is larger than the one in drift, or
no bursts occur at all. However one wonder what role infinite variation (IV) jumps would play, for instance,
whether the explosion observed in the empirical implementation of T} on finite samples may or may not be
due to a jump component of IV, possibly present in the data generating process (DGP). Or, how the statistic
would behave if the DGP did not contain any Brownian components. For this reason we specifically address
a pure jump process.

Recently pure jump models for financial asset prices are being revaluated. Empirical evidence that large
jumps can improve pricing models for many financial assets is documented since long time. Initially the
focus was on adding large, finite activity (FA) jumps to existing models with continuous paths. By contrast,
since the nineties infinite activity (IA) pure jump Ito SMs have been considered. The latter models contain
large jumps, and a dense set of small jumps replace the Brownian motion to reproduce the small movements
of asset prices: Eberlein and cohautors (e.g. [9]) considered Hyperbolic and Generalized Hyperbolic Lévy
motions, Barndorff-Nielsen ([3]) Normal Inverse Gaussian Lévy processes, Madan and coauthors (e.g. [12])
Variance Gamma models, Carr, Geman, Madan and Yor (e.g. [4]) CGMY processes. Such models would be
also economically well justified as stochastic time changed Brownian motions, where the discontinuous time
change can be interpreted as a measure of the economic activity, and makes the model arbitrage free.

We now dispose of several tests to check for whether a record of an asset prices is compatible or not with the
presence of a Brownian part in a SM model ([7], [2], [16], [20], [10], [13]). Note that [17] warns to correctly
account for price staleness, in order to avoid possible wrong conclusions.

In any case, knowing the asymptotic behavior of T} in a pure jump framework allows to immediately obtain
its limit in a model including both Brownian motion and infinite variation jumps.

In the present pure jump framework it turns out that the behaviour of 77" is different in the two cases
where ¢ is a jump time or it is not. In fact the numerator tends (w-wise if the jumps have FA, in probability
if they have IA) to K (0)AX7, and the denominator to /K (0) - |AXz|. Thus if AXz # 0 the statistic has a
well defined finite limit, otherwise both numerator and denominator tend to 0, and, as soon as 77" is defined,
the limit is determined by the dominant terms.

The asymptotic distribution of the statistic is substantially different depending on whether the jumps
have finite or infinite variation. In the former case the dominant element at both numerator and denominator
is the compensator of the small jumps, which acts as a drift and determine explosion of 7. In the latter

case, instead,

Tf”‘ converges in distribution to a r.v. Z, depending on the magnitude of the jump activity
index « of X.

To get an insight into how things are going, let us mention the case where the kernel function is given
by a continuous approximation of the indicator I {lz1< 1} and the observations are evenly spaced. With FA

jumps and compensator at, all the jumps are shown to have a negligible impact on T}, and, indicating by



~ that two expressions have a.s. the same limit, we have Y . | K;A;X ~ > " | K;(—aA) ~ —ah, while
S Ki(AX)? =30 Ki(—aA)? ~ a?hA. Since & — oo, then [T — +o0.
For the infinite activity jump case, consider for now a model where the small jumps behave like the ones of
a symmetric a—stable Lévy process. If the jumps are of FV (@ < 1) the sum of the jumps, J, contributes
as follows

D KT =30 conny DT 2 T — SRS
where L indicates that the two expressions have the same limit in distribution, and

Y Ki(Aid)? = 30 cipn gny (D)
~ (Jf+% - Jf—g>2 = Dtk tin e reli-b e Did Ak % (JH% - Jz—g)2 SR

The compensator part of the model, instead, contributes as a drift, as in the previous case. Then at the
numerator of |T7| the contribution of the compensator dominates and tends to 0 at speed h, while the
denominator tends to 0 more quickly, and again the statistic explodes.
In the case of IV jumps, instead, we cannot separate the jumps from the compensator, and it turns out that
S KiAX Lpt Zieand Yo Ki(AX)? Lk Z3 o, With given r.v.s Z1 o, Z2 o, and, as mentioned, ’T;"|
converges in distribution.

The finite activity jump case is dealt with under more general conditions on the partitions choice and on
the jump sizes. For the infinite activity case, instead, we assume evenly spaced observations and that the
small jumps behave like the ones of an (not necessarily symmetric) a-stable Lévy process. In the latter case
we separately studied the asymptotic behavior for the characteristic functions of the statistic numerator and
squared denominator, and, for o > 1 also the characteristic function of the joint law of squared numerator
and squared denominator. We obtained closed form expressions for the limit characteristic functions.

Our results are consistent with the ones in [5]: in our case ¢ is zero (no volatility burst), and when the

jumps have finite variation the compensator of the small jumps makes |77| to explode. Such a compensator
can be interpreted as a bursting drift with respect to the absent Brownian part.
If we add a non-zero Brownian term to our model X then T} never explodes: it is asymptotically normal in
all cases, because the leading terms at numerator and denominator are all dominated by the Brownian part.
Now the picture given in [5], that was missing the case of IV jumps (« > 1), is complete. Further, we have
a new potential test for the presence of a Brownian motion in a DGP.

Actually, T} could be exploited for many different tests. Assuming model (1) possibly added with a
Brownian part, we firstly check whether T3 is asymptotically Gaussian or not. In the first case the DGP
contains a BM, while in the second case it is a pure jump SM, and if |Tt—”| — oo then the DGP has FV
jumps, otherwise ’Tt—"‘ 4 Zq, and then the DGP has IV jumps. In the former case, |T7| offers a potential
test for whether a jump occurred at ¢ (in which case |77'| — /K (0)) or not (in which case |T}'| — +00).
Assessment on whether through 77 we can further distinguish FA from IA jumps is on going.

The paper is organized as follows: Section 2 describes the details about the considered model and sets

some notation; Section 3 deals with the case in which the process only has finite activity jumps: the necessary



assumptions are set and the first main theorem is stated. Section 4 deals with the case of infinite activity
jumps: further assumptions are set and the second main result of the paper is stated. Section 5 accounts
for the behaviour of T} in a SM including also a Brownian component. Section 6 contains the proofs of the

Theorems and the necessary Lemmas.

2 Setting

We start with introducing our setting and some notation. We assume that the density A within the com-
pensator v in model (1) does not depend on w, nor on s. For any (z,s), é(x,s) = d(w,z,s) is the random
jump size occurring when p(w,{z},{s}) = 1, and we assume that §(w,z,s), from Q@ x R x R} to R, is a
predictable function, i.e. it is measurable with respect to P x B(R), where P is the predictable o-algebra of
Q x Ry andLévy B(R) is the Borelian o-algebra of R.> Further, we assume that [ 82 (x, s)\(r)dx

is locally bounded, and that if y(w, R, {s}) # 0 then [, 0(w,z,s)u(dz,{s}) # 0.

118 (x,5)] <1

The measurability conditions above are required to make fot flxlgl §(x,s)ji(dz, ds) and fg f‘z|>1 5(z, s)\(z)-
dzds well defined.
The local boundedness assumption is fulfilled e.g. each time when § does not depend on s nor on w, in fact
since fOT [ 6%(x, s) A1X(z)dzds is a.s. finite for any semimartingale, then [ 6%(z) A 1\(z)dz is finite. That is
the case, for instance, of any Lévy process, where 6(x) = x. Actually, for the TA jump case we will restrict
to a-stable Lévy processes.
The last requirement above simply means that if a jump occurs at s then the size is non-zero.
Notation 1. - Ky = [ K(u)du, K- = [°_ K(u)du;
- for any random process b,

bE = br Ky 4 by K (4)

- when X has FV jumps, we define a; = fl d(z, s)\(z)dz.

8(x,s)|<1

For fixed ¢ € (0,T) the statistic 7} of our interest is well defined when the denominator is non-zero. As
it will be clear from the proofs of our Lemmas, this is the case at least when X jumps at ¢ or when X has
TA Lévy jumps (in which case in any small interval some jumps occur). When no jumps occurr at ¢ and X

has FA jumps, the statistic is well defined at least when af # 0 (see (15)).

Defined A = A, = L and Aoz = Apas,n = maxi—1., |t; — t;—1| we assume that

for a fixed constant C, which means that the partition should not differ too much, asymptotically, from the
equally spaced one. The framework (3), under which we look for our asymptotic results, implies that A — 0

and % — 0.

2Tt is well known that we can equivalently write X; = fot f\z\<1 i’ (dzx, ds) + fot f‘m|>1 zp'(dx,ds), where p’ is a random

counting measure with compensator v/ (dz,ds) = Fs(dz)ds and Fs(dz) = Fs(w,dxz) is random (see [14], Sec. 2.1.4).



As mentioned in the Introduction, it turns out that for a fixed w the behaviour of T} is different in
the two cases where ¢ is a jump time or it is not, and the statistic asymptotic distribution is substantially
different depending on whether the jumps have finite or infinite variation. We tackle the finite activity jump

case first, while the infinite activity case is dealt with in Section 4.

Notation 2. - C always indicates a constant. Within the algebraic expressions we keep the same name C'
even if for the two sides of an equality we have different constants.

- Given two functions f, g, then f(h) ~ g(h) indicates that limp_,o f(h) = limp,_,0 g(h), while f(h) ~ g(h) indi-
cates that limy,_,q % = C, f(h) < g(h) indicates asymptotic negligibility of f w.r.t. g,i.e. limy_ % =0;
given two sequences 1", U™ of random variables, T L U™ means that they have the same limit in distribu-
tion.

- A X indicates the size of the jump possibly occurred at ¢ (under our framework AX; = 0 iff u(w, R, {t}) = 0)
- For any o > 0, Koy = [ K*(u)du

Ry =(0,+0), R_=(-00,0)

CAMR)= [ Ma)da;

- p(dz,ds), fi(dx, ds) can be abbreviated using dy, dfi, respectively;

- sometimes we write d in place of d(z, s).

3 Finite activity jumps
We now consider the case in which fOT Je Ww(dz,ds) =T [, AM(x)dx < co. Then we have that

t t
/ / O(zx, s)v(de,ds)| < / / Az)dzds < A(R)T
0 Jz,s:|6(x,s)|<1 0 Jz,s:|6(x,s)|<1

is finite, and then X can be written as

¢ ¢
X :/ /5(3:,5),u(d33,d5)—/ / 0(z, s)v(dx,ds).
0 JR 0 Ja,s:|6(z,s)[<1

The latter term, — fot fl5(fr <10z, $)A(x)dads, is a random drift also named — fot asds, and its absolute value

is bounded by A(R)t. On the other hand fot Jz 6(x, s)u(dzx, ds) coincides with Z;}V:tl ¢p for any t € [0, T, where

N is the process counting the finitely many jumps, occurring at some random times S1(w), ..., Sy, (w)(w) on
[0,T], and ¢, = cp(w) = [ 6(w,z, Sp)p(dz, {Sp}) = 6(w, xp, Sp) is the random finite size of the jump at S,.

Thus we also can write X as
N, t t
X; = Zcp —/ a.ds = J; —/ asds.
p=1 0 0

Assumption Al. Kernel function.
A1l.1 K : R — R, is a Lipschitz continuous function with Lipschitz constant L and satisfies

limg, o0 K(2) = 0,lim,, o K(2) =0 and [, K(x)dr = 1.



A1.2 K satisfies the following:
-if a < bthen K(2) << K(%)
- for any fixed x # 0, K(%) << hA, as h — 0, under (3).

2

Remark 1. i) The Gaussian kernel K(x) = e\;;zﬂ satisfies Assumption A1 for instance with h = A7 with

€ (0,1). This is the case if for instance h = k,A with k, = CvA.

i) To know how T} behaves asymptotically if the kernel was an indicator function, one can use our

results where the kernel is a Lipschitz continuous approximation of the indicator function.

Assumption A2. Partitions of [0,7]. Defined
1
HM = £ Z A%,
we assume that:
- for any ¢t € (0, 7] the lim,,_, Ht(") = H; > 0 exists and is finite,
- H is Lebesgue differentiable in (0,7 except for a finite and fixed number m > 0 of points 71, .., 7, and

H’ is bounded,

- defined Igl) ={i: 3k, 7 € [ti—1,t;)}, then SUD ;) y SUDseft s 1) |H. — TA/’n| — 0, as n — 0.

Remark 2. The previous Assumption A2 is similar to Assumption 2.2 in [18] but less restrictive.
When we have equally spaced observations all the A; coincide with % and H' = 1. When the observations
are more (less) concentrated around t, we have Hy <1 (Hy > 1).
Note that, where it is defined, H' > 0, however if e.g. we had n - min; A; — C then H' > 0.

As an example, consider the sequence of partitions where the amplitude of the first [n/2] intervals [t;—1,t;)
n1+[ AT and, for any t € (0,7], Hy =
%Itgﬁ + (% + —)It>71 where 71 = 2T/3. This function H is not differentiable at 71, so m = 1 and for

is 2® and the one of the remaining n — [n/2] is ®. Then & =

any n, I( is the only i for which [t;—1,t;) contains 7. Further, the interval [t;_1,t;) for which i € Igl)

is the first interval having length ®. As for the third condition in Assumption A2, for any n we have that

! AL
s T/n

if tic1 < 71 < t; then sup,c, — 2/3, but if both t;_1,t; are on the same side of 7 (thus

11,)

i¢ IH)) then sup,ep, ¢y [Hy — T/ | — 0. Further, s SUD o pmy SUPselt, _y t,) |H! — T/n| |% 1+[” T | — 0,

and Assumption A2 is satisfied.

Assumption A 3. Jump sizes. For §(w,z,s), with as = 0(x, s)A(x)dx, at least one of the

f|5(x,s)\31
following conditions holds true:

(i) a.s. SUDP;—1,...n SUPselt; 1,t:) las —at,_,| = 0;

. P

(i) SUP;=1,..,n SUPse[t;_1,t;) las —ag, _,| = 0;

(iii) there exists p > 0: Vs, u such that |s — u| < A then Ef|as — ay|] < CAP.

Remark 3. i) The above requires reqularity of the paths of the drift coefficient a.



ii) Condition (i) amounts to requiring that a has a.s. continuous paths. In fact, if a has continuous paths
then on [0,T] each path is uniformly continuous in t, and then (i) is satisfied, while as soon as on a path of
a some jumps occur, then (i) is not satisfied.

iii) If & does not depend on s then a; collapses on the r.v. a = f\é(z)\gl d(x)Nx)dzx for any t, and trivially
all the three conditions (i) - (iii) are satisfied. In particular A3 is satisfied if X is an a-stable process, any
a € (0,2) is.

i) If, rather than through a truncation function I{|; <1y, X is represented as
X; = fot Jg 5(0(x, 8))a(dx, ds) + fg J ' (6(, s))pu(dx, ds), where r(x) is a deterministic continuous function
of x € R, bounded, with compact support, with k(x) = x in a neighbourhood B of 0 and k' (z) = x —k(x), then
A3 (i) is satisfied, in this framework of finite activity jumps, as soon as, for any x, §(x, s) is a.s. continuous
in s, with as = [5, cp (@, s)Mz)dz.

v) Condition (ii) amounts to saying that the sequence of processes
al = Soii(as — ay, ) sep, 1,y tends to 0 ucp.

vi) Condition (iii) is similar to a requirement given at Assumption 2.1 in [18].

The following definition helps to focus on the asymptotic behavior of T} : given a deterministic function

f(x) we set

FM(X) =) Kif(AX), ()

With f(z) = 2 we obtain the numerator of T}, with f(z) = 2 the squared denominator. Note that here we
only are interested in the r.v. F"(X) (rather than in a process), which is computed using all the increments

A; X with t; from ¢; to t,. The next Lemma describes the asymptotic behavior of F"(X).

Lemma 1. If A\(R) < oo and J = (f(ffé(x,s)u(dw,ds)) then under (8), if K is continuous at 0 and

>0

lim, 40 K(z) =0, then for any real function f(x) continuous on R we have
Fr(J) =3 F(J) = K(0)f(AJp).

From the Lemma, the limit of 77" is almost immediately obtained if AJg # 0. On the other hand, if
AJp = 0 both the numerator and the denominator of T} tend to 0, and we need some work to catch the

leading terms. The behavior of T3 in this framework is as follows.

Theorem 1. Under model (1) and conditions (3),
a) If K satisfies Assumption A1.1 and h% — 0, we have a.s. that if t is a jump time then
T — /K(0) - sgn(AXy).
b) Under Assumptions A1, A2 and A3(i), under % — 0 and if (as)s>0 is ladlag then we have that a.s.,
if AX; =0 but a¥ #0 and H;_ > 0, then
TP — sgn(—ay) - 0o,

where a* is defined as in (4).



If, within b), Assumption A3 (i) is replaced by either Assumption A3 (i) or Assumption A3(iii) then the

result is in probability.

Remark 4. i) If, on w, a is continuous at t then a = aj.

ii) Note that, since our process X is an Ito semimartingale, it has "no fized times of discontinuities,”
namely P{AX; # 0} = 0. That notwithstanding, point a) of the theorem is relevant from the practical point
of view, because we only have at hand one specific path {X;(w),s € [0,T]}, on which at t a jump could well

be occurred.

Remark 5. If the jump process is represented in the form
Ji=) e
p=1
without compensation, then the drift coefficient as; = 0, and part b) of the theorem above does not apply.

However, the limit behavior of T (J) does not change if t is a jump time, because for small A we have (with

the notation given within the proof of the Theorem)

S Ko | KO
\/ZNT K;,c2 \/K(O)cg

In the case where t is not a jump time, the absence of a drift in J could imply that T7*(J) is not defined.

T#(J) = K(0) - sgn(cg).

This is the case for instance when Np = 0; or when Np > 1 but the support of K is bounded. If e.q.
K(x) is a Lipschitz continuous approzimation of I{\mIS%} then for sufficiently small h we have that both
S KAX =0and Y Ki(AiX)? =0, thus T} (J) is not defined.

Note that it is always true that if Y | K;(A;X)? =0 then also Y | K;A; X = 0.

If Np > 1 and spt(K) = R, then T}*(J) — 0. In fact, let us indicate: by [t;,_1,1;,[ the unique interval of the
partition containing the time of the p-th jump; and by p the number such that [t — Sp| = miny, [t — Sp| > 0.
Then, for small A,

T3 (J) =

t=Sp f—
B o
pp

Note that in this framework of FA jumps T} could offer a test for the presence of a drift part in the DGP:
if a drift [ ayds is present in X then either |T}'| — \/K(0) or |T}'| — oo; if not then T}* — 0. We comment

of the potential use of T* as a test for a jump at t in the next Section.

In this paper we conduct our analysis for model (1), which coincides with the jump component in [5], and
is always well defined. On the contrary, dealing with only the jump process J is not possible when jumps
have IV, and when we apply the test statistic to some data we do not know whether the jumps of the DGP

are of FV or of IV, so we do not know whether we can separate the jumps from the compensator part.



4 Infinite activity jumps

When the jumps have infinite activity, it turns out that if AX; # 0 (again an event of zero probability),
then 77" has the same limit as in the FA jumps case. While when AX; = 0, as above both the numerator
and the denominator tend to 0 in probability, and the freneticity of the small jumps activity is crucial in
determining how quickly they converge. For that we need to account for a jump activity index, and it is
natural to focus on the very representative case where the compensated small jumps of X behave like the
ones of a Lévy a-stable processes X. Note that the large jumps are always of FA, thus their jump activity
index is 0 and they do not contribute in determining the convergence speeds. For the stable processes, «
coincides with the Blumenthal-Getoor jump activity index, so that the higher the o the wilder the jump
activity. In particular we show that the speed of convergence of numerator and denominator of T} heavily
depends on «, in particular the limit of 77" is different when o < 1 (finite variation jumps) or a > 1 (infinite
variation jumps).

In this part, for the cases when AX7; = 0 we specify the a-stable assumption IA3 on the compensated
small jumps and for simplicity we concentrate on the case of equally spaced observations (assumption IA2).
Further, we add the technical requirement IA1 on the Kernel function, which is satisfied at least in the

Gaussian kernel case.

Assumption IA1. Kernel. Given a deterministic function ¢ defined on R, we say that K satisfies IA1
for ¢ if K is monotonically non-decreasing on R_ and non-increasing on R and there exists a deterministic

function &5, such that as h — 0

€n K (%)
en—0, — — 400 and
h o(h)

— +o0. (6)

Remark 6. For instance, with ¢ equal to any one of the speed functions p.(h) or ¥ (h) at (9) below, with

/ 1
en = hy/loglog 7 (7)

the above conditions (6) are satisfied for any « € (0, 2).

the Gaussian kernel, and with the function

Assumption TA2. Partitions. We take A; = A for all n, for all i = 1, .., n.

Assumption TA 3. Small jumps. The compensated jumps of X, with size smaller than 1 in absolute

value, are a-stable, that is

t t
X=J+J" where J,= / / xi(de,ds), J} :/ / §(xz, s)u(dx, ds),
0 J|z|<1 0 J|6(z,s)|>1

where the compensating measure of the jumps smaller than 1 has the form v(dz,ds) = A(z)dzds, with

A

Az) = ﬁf{omgl} + WI{—1§x<O}7

where A, A_ >0 and a € (0,2), while §(w, z, 5)[|5(w,2,5)|>1 i a predictable function as in Section 1.



Remark 7. i) Assumption IA3 requires in particular that the jump activity index of X defined in [1]
(p.2) is constant with respect to t and w. The prototypical example of process having constant jump activity
indezx « is the a-stable process. In [1], Assumption 2, the jump activity index is constant but X\ is replaced

by a richer Fy(w,x) where A Iiy~0y, A_I{z<0y are replaced by (1 + |x|“ff(t,x))a§+) and (1 +

Noeat0)y
|a:|'*f(t,x))agf)f{me[izt(f)m} where f(-,x),a® and also the boundaries ') of the jump sizes are random
processes, and v > 0. The latter processes however are uniformly bounded and the boundaries are also
bounded away from 0, while the contribution of |x|” f(t,x) vanishes when x approaches 0. Thus we ezxpect
that if the compensated small jumps obeyed such assumptions our results would be substantially the same.
it) We would obtain the same results if we chose to model as a-stable jumps the ones of X having size

smaller than any boundary ¢ > 0 in place of 1. We recall that a-stable processes necessarily have o € (0, 2]

and the only 2-stable process is the Brownian motion.

Notation 3. - E;_1[Z] = E[Z|F:,_,].

- For each a € (0,2) let Z; o, i = 1,3, be stable random variables characterized by

E[eileﬁa] — e—\s|‘1K(a) |F(—a) cos(%)|~(A++A,)(1—iBtan(%)sign(s))

; (8)

Al —A_
where 8 = A1+A7;

e—s%-%K(a/m(AJr—i-A_)F(O‘T“”F(—a) cos(%”7 ac (0, 1) U (172)
Z27a > 07 E[e_SZQ’a] =

e—s%.2a—1\/;K(a/2)(A++A_)F(aT“), ol
- For each a € (0,2) let us define on R the speed functions of our interest
h if o € (0,1),
Pa(h) =4 hlog:  ifa=1, Ya(h) = h=, ()
ha if o€ (1,2);

where ¢, is shown to be the speed (of convergence to 0 when AX; = 0) of the numerator of 77 and ), the

speed of the squared denominator.

Remark 8. The random variable Z1 , is a-stable of type Su(c, 3,0), with scale parameter ¢ = K, [I'(—a)| -
|cos (%H (Ay + A_), skewness parameter § and zero shift parameter (parametrization of [19], thm 14.15).

By contrast, the law of Z3 o, cannot be stable, in that Z; ., is non-negative with positive jump sizes, so it
would have to be 8 = 1 but then the characteristic function of an S, /2(c,1,0) would be not compatible with
the above Laplace transform. Z, . comes from the leading term of a squared o-stable random variable in
Lemma 5, but nor does it have the law of a squared a-stable random variable.

Note that I'(—a) < 0 and cos (Z2) > 0 for o € (0,1), while I'(—c) > 0 and cos (%) < 0 for o € (1,2).

The following Theorem provides the asymptotic behavior of the drift burst test statistic 77 in the absence

of a Brownian component in X.

10



Theorem 2. a) Under Assumption Al and (3) we still have that

F"(X) 5 F(X) = K(0)f(AX), (10)

having used the notation in (5).

b) Let the kernel satisfy A1 and be such that K*/? is Lipschitz and in L*(R). Assume that K satisfies
IA1 for both the functions ¢, and 1o in (9), and assume 1A2, TA3, the asymptotics (3) and % — 0.
In the case o < 1 let further be a* # 0.
In the case a =1 let further VK log K be bounded and % log? % — 0.
Then we have

ifae (0,1, TF ER sgn(—(AL — AL)) - oo,

21,0
ifoe(1,2), |T0% 2, = 21l
vV Z2,o¢

Remarks.

i) Result a) above implies that if on the given path, w, X has a jump at ¢ then 7} Eis VE(0) - sgn(AX5).
However P{AX; # 0} = 0.

ii) Note that under IA3, which is assumed at point b), and in the case @« < 1 we have a* = a =
f\z|§1 zA(x)dr = % < 00. Thus when a < 1 and a # 0, sgn(a*) = sgn(A4+ — A_), and the above result
is in continuity with Theorem 1, part b).

iii) The asymptotic law of T does not depend on ¢, nor on T, because even if T} is substantially
constructed with the increments of X within a window of length h around #, under our framework such
increments are i.i.d., and have the same law for any ¢ and any T.

iv) From the proof of Lemma 6, the two random variables Z; ,, Zs o turn out not to be independent,
because as soon as o < 2 the joint Laplace transform of (Ziw Zs3,) cannot be factorized.

v) It is never the jumps to cause 77 to explode: when the jumps have FV (o < 1) then the explosion is
due to the compensator (drift part of the model); when the jumps have IV (a > 1) then T} converges to a
finite r.v.. This corroborates the results in [5].

vi) It is not clear whether or not it is possible to construct confidence intervals for Z, starting from the
Laplace transform of (Z7 ,, Z2,4).

In case, T}" would offer a test for FV jumps (in which case |T}'| — +o00) against IV jumps (in which case
|T?| = Z,), or a test for whether a jump occurred at ¢ (in which case |T}'| — /K(0)) or not (either
|T7'| = +o0 or [T} = Z).

vii) In practice, financial asset price models use CGMY processes in place of a—stable processes. The
former are Lévy processes where the small jumps behave exactly as the ones of stable processes, while the
large jumps have smaller size, so allowing the increments of X to have finite moments. The Lévy density of
a CGMY model is of type

Ce M= CefG\:v\
A(Qj) = 21+Y I{w>0} + |.’E‘1+Y I{w<0}a

11



where C,G, M > 0. Under this model, for Y € (0,2) the same results of the current Section would have
substantially to hold, because they only depend on the behavior of the small jumps. However probably the
constants G, M appear within the limit laws of Z; o, Z3 o, and possibly could multiply the speed functions
Qo Yo of numerator and squared denominator of T7'. Note that e~ €17l can be written as 1 — G|z|f(z), so

the CGMY model falls into the framework in [1].

5 In the presence of a Brownian component

It is natural now to wonder what is the behavior of 77" when X contains both a Brownian part and infinite
variation jumps. In [5] it is proved that in the presence of a Brownian part, when the jumps have finite
variation, corresponding here to the case a < 1, and there is no drift burst, then T3 4 N(0,1), where
N(0,1) denotes the law of a standard normal r.v.. The following corollary certifies that the same result
holds also when the jumps have infinite variation, because the Brownian part introduces the leading terms
both at the numerator and at the denominator of T7. It follows that
(a) In the presence of a never vanishing volatility component we have

-TP 4N (0,1) when there is no drift burst (whatever the variation of the jumps)

TP L5 +oo when there is drift burst at £
(b) In the absence of a Brownian component and of drift burst then

TP S Zy if @ € (1,2), while

1| B 400 if @ € (0, 1].

As mentioned in the Introduction, tests based on discrete observations are available for assessing whether
in a SM model without drift bursts a Brownian component is needed to better explain the data. Potentially

|T7| offers a further test.

Corollary 1. Let Y evolve following dY; = bydt + 0, dW; + d Xy, Yy being Fo-measurable, where {b }i>0 is a
locally bounded and predictable drift process, {o.}i>0 is an adapted, cadlag positive volatility process bounded
away from zero: a.s., for anyt > 0,0, > X > 0; {Wi }1>0 is a standard Brownian motion and X = J+Jb is
a pure-jump process for which the compensated small jumps behave like the ones of an a-stable process with
a€l,2).

Let the assumptions of Theorem 2, part b), be fulfilled. Then
2 KiAY

V2 i Ki(AY)?

TMY) = 4 N(0,1).

6 Proofs

The following preliminary Lemma gathers properties of the kernel function that are used numerous times.

Some results stated in the Lemma are known, but the proof is reported to ascertain that under the assump-
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tions of this paper everything works correctly.

Lemma 2. Whatever t € (0,T) is, under (3), the following hold true:
1) [Lemma A.1 (i) in [18]]. For a sequence of processes b™ bounded by the same constant C, for any
Lipschitz function K(x) with Lipschitz constant L and > — 0 then

1 _t—s\., "1 t—ti B A
/0 EK( h )bg )ds_;hK( h 1)/ti1bg ds = Oas (h2>

2) If K is Lipschitz, K € L'(R) and % — 0 then Zi=xS980 i) — [ K (u)du.
3) If K? is Lipschitz, has Ko = fR z)dzr < 00 and 5 7z — 0 then u — K(g).
4) For a ladlag bounded process b and any density function K(x) on R we have a.s.

/OT %K(E; S)bsds — b,

5) If K is Lipschitz, K € L'(R), % — 0 and b are processes for which

(i) a.s. SUD;—1, . n SUPselt; ;1) |b§”> — bgl,)1| — 0,

éif((__hl 1)b(") A~ Z ( )/:lbgmds.

If the last assumption is replaced by either

then a.s.

.. n n P
(i) SUD;—1, . n SUWPse[t;_1 ) |b(S ) - b§i31| =0
or
(i) there exists p > 0: Vs,u such that |s —u| < A then E[|bgn) - bgn)H < CAP,
then the above result holds in probability rather than a.s..

6) If K? is Lipschitz and in L*(R), then under (3) and % -0
ZZK2K2A A~ / K2/ KZ2dsdu.
i=1 j<i

Proof of Lemma 2. As for 1), the displayed left term coincides with

n t; 1
Z/ — (K, — K;)b{ds,
i=1"ti-1 h

whose absolute value is dominated by
tq

A
Z —ti_1|Cds = Oq.s. (hz) :

t11

2) By 1) in the special case where b(™) = 1 for all n we have
Z"ﬂ# _ %IOTK(E_TS)ds + Ous. (5) = iTT K(u)du + Oqs. (%) — Jg K (u)du, where for the last

equality we operated the change of variable u = ( — s)/h.
3) We apply 2).
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4) For fixed w the term fOT %Ksbsds coincides with ,’L’_T K (u)bz_pqdu, and
e

w)bi_pydu — b3 | <

0
w)bi_podu — bz - / K(u)du
— 0o

“+o0

w)by_pudu — bg_ - K(u)du
0

< /R|bf—hu — b Lo g (w) K (u)du + /R [b7—hu = bi—| (g, ) (w) K (u)du

[ (el oy )+ i ey (00) B s
the three terms are integrals, in the finite measure on R having intensity K, of bounded integrands converging

to 0 point-wise as h — 0. By the dominated convergence theorem the three integrals tend to 0 and 4) is

proved.

5) If either (i) or (ii) holds true, the thesis follows from the fact that

Z - K; / —b™ ds

which tends to 0 a.s. (respectively, tends to 0 in P).
If (iii) holds true then

Z —K; / b — b ds
=1 tioa

6) We have

< sup sup  [p{™) — b(") Z% (

i=1,..,n s€[t;—1,t;)

=a,,

E

1 C &
- (n) _ (n) 1+
]ghE: / E[p™ — b |1ds *hE: AP 0.

/ KQ/ K2dsdu — ZKQ(ZKQ )A - (/OTKz/Oqudsdu (11)

<t

_En:Kg/t“desAi> ZKQ/ KZ2dsA; — ZK2(ZK2 )
i=1 0

j<t

Since [1'~" K2ds = i< fé’;l K2ds, the latter term is dominated in absolute value by

ZKZZ/ I~ KsA, <OZK22/ L N

J<t tj— 7<t

2
~CZK22 JA <CAZTKA O(A) = 0.
j<i

The right hand side term in (11) equals

n ti u n ti
S k[ Kswu-y [ w2
i=17ti—1 0 i=1/ti—1 0
n t; ti—1 n t; u
:Z/ (Kﬁ—Kf)/ desdquZ/ Kﬁ/ K2dsdu -
i=1 Jti—1 0 i=1 Jti—1 ti1

14
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using that for any ¢;,_; we have foti’l K2ds = hff%—ti,l K?(w)dw < hK(s), the first sum is dominated by
Ttioy
CZ/ lin 1‘du hK () = O(A) — 0.

t—tia
Also for the second sum we use that [, KZds=h [ K*(w)dw < hK(y), thus the sum is dominated
i- o
by

/ KZ2du-O(h /K2du O(h) = O(h?) — 0. 0

ti—

Proof of Lemma 1. For fixed w, for any given jump time S, = S,(w) of J and any integer n, let i,= i,(w)
be the right extreme of the unique interval [¢;_1,¢;) containing S,.

For the fixed w, 3N

p—1 Cp is a step-wise constant function of ¢, so each increment A;.J either is 0, if [t;_1,;)

does not contain jump times, or is Zp;l cp, if [ti—1,t;) contains some instants Sp. Since the time horizon
T is finite and fixed, for sufficiently small A we have 0 < A; N <1 for all i = 1,..,n, thus A;J either is 0 or
. AN N
reduces to a single ¢, € R — {0}, and Y., Kif(zp 1 cp> reduces to > 1) K, f(cp).
a) When ¢ is a jump time then it coincides with one of the S, say S; = ¢, while for the other indices
p we have AS = miny,;|S, —t| > 0. For A — 0 we have that, for all p = 1,.., Ny, t; 1 — S, so that

|t_—t7‘,ﬁ—1|
—n = % — 0, thus K, f(cp) = K(0)f(cp) =

t—ti,—1 — 0, and since |t —t;, 1| < A;, <A, we have
K(0)f(AJp).
On the other hand, for p # p we have that [t —t; 1| — [t —S,| > AS > 0, thus

K;, — 0. So, for p # p, K;, f(c,) — 0.

t—ti, —
‘lih”ll — 400, and

In other words, for sufficiently small A, Y>°" | K, f ( > 111\/ cp) only contains Np non-zero terms, and all of
them tend to 0 but one. Only the term for which [t;_1,t;) contains S; = t has a non-zero limit, amounting
to K(0)f(c5) = K(0)f(ATp).
b) When ¢ is not a jump time, we have that, for any given w, each S, is at positive distance from ¢:
we define p through
|t — Syl = mpin [t —Sp| >0,

and again, for sufficiently small A = A(w), we have ZNT Ki, f(A,J) = ZNT K, f(cp), which is a

sum of Np terms, where now all the terms K;, tend to 0, because, similarly as above, t;, 1 — S,

[E—ti,—1]
h

but [t — Sp| > [t — S| > 0, thus
Yoy Kif(Aid) — K(0)f(AJg). 0

— +4o00. However, since f(AJ;) = 0 we can also write

Proof of Theorem 1.

a) When ¢ is a jump time. We show that a.s.
la) 30 KA X — K(0)AXG,
2a) Y1, Ki(AiX)? - K(0) (AX;)Z,

which are sufficient to conclude.
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As for 1a), using Lemma 1 for J, it remains to check that > ., K; f:_il asds “3 0, which is almost

/ asds

ti—

immediate. In fact, we have

- b 1 KA
<> K; /t AR)ds = A(R)h - Z%
i=1 i—1

Since the second factor above tends a.s. to 1 we are done.

In order to show 2a) we write

>

iN n A;N

ZKAX ZK( c>+ZK</ asds)z—QZKi(

=1 ti—1 i=1

cp) /tti asds. (12)

=1 i—1

bS]
S

By Lemma 1 the first term tends to K (0)(AXj7)2. The second term in the rhs of (12) similarly as above tends
to 0, because it is bounded from above by

ZK 2 < (}AhzT — 0.

The third term in (12) is a negligible mixed term. In fact, for small A it becomes

—QZK c,,/ asds : (13)

tip,—1

since on the fixed w only finitely many jumps occurred, each with finite size, the random number ¢ =
maxpy—1,. Ny |¢p| is finite, further under Assumption A1.1 the kernel K is bounded, then the latter sum is

dominated in absolute value by

C> AL AR) < CNrA = 0.

Thus 2a) follows and a) is proved.
b) When ¢ is not a jump time. Within
N- n t;
Yo KiAX = Doy Kiy 8, X =370 K ftifl asds,
as above, the second sum tends a.s. to 0, and now also the first one does, by Lemma 1. The same happens

at the denominator of 77, thus we have a limit form 2

o> and we look for the speed at which the two terms of

the quotient tend to zero.
For that, note that, by virtue of the assumption that if p(w, R, {s}) # 0 then
Jg 6(w, z, s)pu(dx, {s}) # 0, for the fixed w we have |c| = min,—;  n, |c,| > 0, and we can write 37" | K;A; X

as follows

p(dz, ds) ZK/ asds. (14)

6 (2, S)|>|C\ tio1

ZKAX ZK/ /

For a sufficiently small A = A(w) the first sum contains the Ny vanishing terms K; cp = K( o )cp, the

leading of which, when A — 0, by Assumption A1.2 is the one having the smallest *—“2=2 Since for all P

tt1p1

W )|CB\, being [c,| > 0. In other Words, for the given w the

first sum in (14) tends to zero at speed K(t SE).

we have ti,—1 — Sp, the slowest term is K(
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Using Lemma 2, points 1) and 4),

1 < b 1 /t—s A X
EZKZ/ ast:-/O EK(T)asds"‘Oa.s. <]712> —)GE(W),
i=1 1

ti_

thus if a} (w) # 0 the last sum in (14) tends to 0 as —hay, which, by Assumption A1.2, dominates K(t

s,
R

so the numerator of 77" tends to zero as —hay.

As for the denominator of 77", from (12) analogously as above we find that the leading term of the

. F—S
first sum is K(t £

) 2. the third sum for small A is as in (13), thus it is bounded in absolute value by

This shows that the third sum is negligible with respect to the first one.
» 2
The second sum >, K; ( f:,”_l asds) in (12) is now shown to tend a.s. to 0 at speed hA - (H'a?)¥. For

CZ 1 Ki,|ep|As,. The latter is in turn asymptotically dominated by CK( )\CP|A << C’K(

that we proceed based on the following schedule:
2
n tq n
1b) &30, Ki(ft a ds) ~ LS Kia A2
2b) A S Kiad  A? ~ [ LK H!a%ds
3b) [ LK, H.a2ds — (H’ 2)s,

which proves that the denominator of T} tends to 0 as

t—5Sp L ons
K N + hA(H'a?)x. (15)
However, from Assumption A1.2 it will follow that the latter tends to 0 as \/hA - (H’a?)?. Then note that
(H'a®)f = Hj_a?_ K| + H} a? K_ >0,

because at least one between a;_ K and az, K_ is non zero, then at least one between a%ﬁKJr and a% K-

is strictly positive, and both Hé—&-’ Hj_ are strictly positive. Thus it will also follow that

—ha¥ h ar
TIL y——— - ~ : — : — a5 9
T RA@a); | VA VHE(@): sgn - a})

which will conclude the proof of b).

12

Let us now prove 2b), 3b) and then 1b). As for 2b), the difference of the terms at the two sides is

T
1
/0 EK sHla 2dsf—ZKatl 1A2
1 [t 1~ [t A
:72/ [Ks—Kz}H;aidS—i—fZ/ Ki[Hgag—a }ds
hz’:l hi:l ti-1 ‘A

i—

having subtracted and added ftfi K;H'a%ds for each i: since K is Lipschitz and H’ and a are bounded,

the first term of the rhs above is dominated by F Zz 1 mer — (. We thus remain with the second
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term, which is split as

I~ (" 1~ (" A;
7 Z/ K H [aﬁ - atzi,l]ds T Z/t K; [H; - K}ai,ld& (16)
i=1"ti-1 i=1"ti-1

where the second sum is
b / il 2 1 b ;AT
= Z / H —7} @ ds+5 Y /t Ki[HS—K}ati_lds:
el igrim Tt

accounting for the boundedness of K, H’, 1 and a and for the fact that A,,,, < CA, the latter display is

dominated in absolute value by

C C A,
—mA + — sup ’Hg — LKA,
h h -;1/) sE[ti—1,t) A
i1y
A K; Az a.s.
<C=+C sup sup ’H’—— Zl% =%,

h ig1(m s€lti—n,ti)
having used Lemma 2 part 2). We thus remain with only the first sum in (16), whose absolute value is

dominated by

C n
EZKi sup |a§—ai_1|Ai,
i=1

sE[ti—1,ts:)
however note that
2 2 _ _
Supse[ti,l,ti) |a5 - a/t171 | _Supse[ti717ti) |a’5 - atifl | |a’5 + a/tifl | S Csupse[tifl,ti) ‘a’s ati—l

thus the last display is in turn dominated by

22;1 KzAz a.s.

C sup sup |as —aqg, |- =0,

=1, SE€[ti_1,t;) h
which concludes the proof of 2b).
If in place of A3 (i) we assume A3 (ii), clearly the limit above is in probability. If instead in place of A3
(i) we assume A3 (iii) the first sum in (16) is dealt with as follows.

ti

] (17)

a —atl 1}ds
ti—1

<op YK / Bl = Jds £ O Y KA <0
i=1 i— i=1

Thus again the convergence at 2b) takes place in probability.
3b) follows from Lemma 2, point 4).
, 2 A 2
1b) Writing, for each 1, (fttll asds> = (j;t‘l—l as — ay, ,ds+ atFlAi) we obtain

Aih éKZ(/;1 asds)2 = Aih g[@(/j1 as — ati_lds)2 (18)

2 <« b

+E2Ki/ as — g, _,ds - ap,_, A +—ZKatl X

i=1 ti—1



and, since by 2b) and 3b) < > | K;a? A? — (H’ 2) # 0, it is sufficient to show that the first two

sums on the right hand side above tend to 0.

1 t; 1 ti 2
- —ay ds< .|~ ( —a, ) ds.
Ai /til Qg at171 S S Al /;il Qg at171 S

It follows that the first of the two sums is

In both cases we use that

n

~ En K (* / . A — QA ds) A < — E K —_— / ' (a a )2d9A2
i s ti—1 - 3 S ti—1 3
ﬁh . 2 . £ i (3 ﬁh T 2 . ) i (3

tia i=1

Zn—1 KiAi
— K sup a — Q¢ ‘2A2 < C sup sup ‘a —ag,_ |2177
Ah Z sE€[ti—1,t4) ° ' ’ i=1,..,n s€[t;_1,t;) s ! h ’

which, using Lemma 1, part 2), and Assumption A3 (i), tends a.s. to 0.

The second sum at the rhs of (18) is

2 o I
EZKIE/)S Clls _at'i—lds'a’ti—lAlg ZK \/ / — Qg 1 dS |ati—1|A12
=1 =

Z?:l K’LAZ a.s.

C n
< N ;KZ\/ sup |as —ag,_,|?- Af < C sup sup J|as — ag,_,| - =0,

SE[ti—1,t;) i=1,..,n s€[t;_1,t;) h
which concludes the proof of 1b).
If in place of A3 (i) we assume A3 (ii), clearly the last two limits above are in probability. If instead in

place of A3 (i) we assume A3 (iii) then

Ah ZK / ) ati71)2dSA? ,E

tend to 0 because they turn out to be bounded exactly as in (17). O

2 & 1 ts
Ah; X /tIa an L |ds - |ar, A

Lemma 3. Let g : R — @ be a deterministic Lebesque integrable function. Given a deterministic function
o defined on Ry, assume that K satisfies IA1 for ¢. Then for fized o > 0, for any s € R, under (3) with
% — 0, we have

i) if K* is Lipschitz and in L'(R) then

K;l v)av v)av
> 5 o0)do = Koy [ glo)a (19)

i=1 [v |<KH

ii) if K is Lipschitz and K € L*(R),

=

i) if K®/? is Lipschitz and in L'(R), and ¥ € L*(R) is a deterministic function then

Ai/ / g(v)dvdu — Ko/ - /\Il(u)du/g(v)dv
R lo| </ 2Kils ‘|u\ R

»(h)
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Proof of Lemma 3. i) Since the difference of the two terms in (19) can be written as

Zh L)
J.

i=1
because using then that, as in Lemma 2, 3), >

of the expression in (20) is dominated by
N KoA,
Z zh / . lg(v)|dv.
i=1 o>t

n}=I'"UI", where

it is sufficient to show that
(20)

g(v)dv — /]Rg(v)dv) — 0,

the proof is concluded. The absolute value

Kils
»(h)

KeA,
h

=1
n  K{A;
=1 h

We split I ={1,2,...
I = {Z el: |'E—ti_1| < Eh}, I = {Z el: |£—ti_1| > €h}.

For i € I' we have K; > K (%"), thus

S g <3

el

K¢ A
()l l9(v)]dv,

el
ay

and the latter tends to 0, because the first factor is dominated by >

is an integral of |g| on a vanishing region.

On the other hand,
K&A; K¢ A
Z 7111 / . |s v)|dv < Z / |g(v)|dv,
= |v ‘> eI

and usign Lemma 2, 1) we have
KA, Ko -
:/ " dr —/ Ko‘(u)du—i—/
re(0,T):|t—r|>ep t— Eh

Z Zh h T
h h

el

K*(u)du — 0. (21)

ii) We have that

g kg
i=1 {‘SL;()”l} i=1

and we show that the latter sum has limit 0. With I’ and I"” as defined at point i), we immediately see that

II?AJ{ ik, gl} — 0,

iel’ »(h)

in fact if |t —¢;_ 1|<5hthenK(| th ‘)EK(%),thuS

&Al :

> g S 2 A ) 1 = s 3 2

iel’ iel’ D)

since the first factor tends to 0 and the second one is bounded, the latter product tends to 0
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Now we check that also

Z AI{ ‘Kigl}ﬁo'

el

First of all note that

el (h) el i=1

K; K;
Z TAi {I \Kl<1} = Z ZhAiI{|tti1>€h}7

then, with b( ™ = = I{|7—r|>e,}, @s soon as we have verified sup;¢ SUP,.c[, (") bg”_)1| — 0, we can apply

Lemma 2 5) and 1) and conclude that

~ K n " K\ (n
;hm{ Z Ripm A, = Z / B dTN/ By

‘E—ti71‘>5h} i=1 ti_

S

h

T *
:/ &] i dr = 7} K (u)l duf/ K( )du+/ K(u)du — 0.
o N {%ffh} e {\u|>?} £h

So it remains to evaluate sup;e . SUp,ep, | ) b — b(" .|, where, for i € I”, we have [t — t,_1| > e, thus

|b’£n) - bl(fjl_)l‘ = IIE—T‘SEh;lf—tri71‘>6h'
Now note that for any r € [t;_1,¢;) we have e, < |t — ;1| <[t — 7|+ |r —t;—1| < |t — 7| + A, thus for any

i€ I", for any r € [t;—1,t;) we have

Eh |t — 7”‘
h h h
Since as n — oo we have 9 — oo while % — 0, then E};TI — oo, and for sufficiently large n, uniformly

. i - . .
on i € I"”, we have & < M, and thus |t — 7| < e, cannot occur. That is, for sufficiently large n, for any
- 1
i€ I", for any r € [ti—1,t5), Lji—r|<ep,|i—t;_1|>en = 0, 1.€. SUP;cpm SUD, e[ty t0) Lji—r|<en,|i—ti_1|>e, — 0, and
we are done.

As for iii), the proof is substantially the same as for i), we only point out some details. It is sufficient to

z”:Kh N (/R\I/(u) /ms Milslug(v)dvdu—/R\y(u)du/Rg(v)dv>

@ (h)

prove that

KA, u v)dvdu
:Z i R\I}()/Iv> T g(v)dvdu — 0, (22)

because as in lemma 2, 3), we have Y 7" | KTQAZ — K(q/2)- The sum in (22) is again split into the sum of
2K |

the terms with ¢ € I’ and the sum of the ones with ¢ € I": since for i € I’ we have {|v| > |u\} C

{|v] > QK((h)) |u|}, the absolute value of the first sum is dominated by

o[ v [ ol
‘|> (h) |u\

where for any u we have [ () lg(v)|dv — 0 and P(u) [ e lg(v)|dv < C¥(u) €
h )8 |’U‘> )8

zGI’

o[>\ —smy—Iu o (h)
L'(R), where here C = [ |g(v)|dv, thus by the dominated convergence theorem the sum over i € I’ tends

21



to 0.
On the other hand,

N\Q

e v)|dvdu < Z

1>/ 5tmy v | ier

~A; [ wwdu [ lgo)lan

|v

zEI”

where, as in (21), the first factor tends to 0.

Lemma 4. Assume that K satisfies IA1 for ¢, in (9) and for gpg)(h) = ha. Under IA2, IAS3,

A/h? — 0 and if K* is Lipschitz and in L*(R) then, using the decomposition

t;
AX =N J+NJTY A= / / xdji, A,»le/ / xdu,
ti—1 ‘33|<1 ti—1 ‘3’,'|>1

we have

;"ZlKiA.;j d ?1K1ftl 1f|w|<1 zdyp g
h

if « € (0,1) — —a and T = Z1.a,

ifa=1and Ay # A_ Ziebd 4 (4, - 4K,

iz KiliJ 4,

ifae(1,2) Y Zra

o

Proof. In each case, defined Z, = Zi, Kidd

E[e?*Zn] converge to the characteristic function of the limit shown in the statement of the Lemma.

Since J is a Lévy process,

o b —
st,L _ He %(m HE{ s%(h)} He fH<19 w) 1—is

acA(a") x

With z = s(ﬁ 7y the integral at exponent is

A, / (eizx —1—izx) %+ A / (eizx —1—izx) 2|1 d
0<z<1 1<2<0
1 cos (zx) —1 1 sm(zx) —zx
= (A+ +A,)/O wa-ﬁ-l(AJr —Af)/o de.

By changing variable v = |z|z that becomes

cos(v)

-1 , sin(v) —v
A + A / — dv+i(A —Afsns/ —dv|,
(A, ) cocly | UIFE (A, )sgn(s) <ol vEFe 1

|21

so that

SK;
walh)

S A
e

(A++A_)f | K ; C"Sl(i)c:ldv—i-i(A_'_ —A_)sgn(s) [ Is| K ; Mnl(i)a Y dv
o<v<——31 v o<v<——1
palh) @a(h)

E[eisZn] _

22

(3),

o We proceed by showing that the characteristic functions

(23)

(24)



In each of the three cases a < 1, = 1, > 1 the right speed is the @,(h) such that the exponent in the

above expression converges to a finite quantity.

cos(v)—1 sin(v)

In the case a € (0,1) we have (h) = h, “—, 552 € L'(R,.), while
SKj

@ v sK, 1
Y =
o) sgn(s) /0< L lelre; yTa v hl—a

It follows form (24) that E[e?*%"] is give by

n
Jj=1

SK ;| )
—L| (A, +A g, LWL g iBsgn(s ST ey ) it =
R ( Lt ’){fo«;g“‘fj olta Bsgn( )f0</u§\&li<] vt Z T—o

Recall that (from [19], Lemma 14.11)

cos(v) — ldv _ I(—a)cos (%), a€(0,1)U(1,2) (25)
R vite -5 a=1,

o SHEdy = —T(~a)sin (), if a € (0,1)

(26)
fol sin(:z)—vdv_i_fl-i-oo sir;(;}) dv < +00
“+oo _ir . +oo _—ir .
e —1—uar ina e —1+ar i
A vdr = F(-O{)@ 2, A TITCZT = F(—a)e 2z, (27)
Thus, since the two integrals above are dominated by constants, |s|® Z?Zl L =]s |a217 hi=e
A —A
and since a = fl$|<1 xA(z)de = ———, we have
isZ —zsA+7A_ —isa
E| |]—e T—a e

where the limit is the characteristic function of the constant random variable —a.

ti
-1 K ff‘ifl f\w\Sl wdp

If we do not compensate the small jumps and only consider Y,, = , we only have

i/
P AT @A rAD Sk, S duti(A —A_)sgn(s) [ _ | I ff“ﬁmv}
Ele®*Y"] =¢ ’ " ’ [ ’ 0SS a7a o ’ = - ) (28)
and by Lemma 3 i) we have
n Ka
/ cos :)Jz dv — K I'(—-a) cos (wa) ,
0<wv < j prre 2
" K¢ sin(v) . [T
Z TA/ ik, pita dv — —KI'(—a)sin <7> .
=1 =T
Thus
. S| KiayI'(—a)| (A, +A )cos(Z2)—isgn(s)(A, —A_ )sin( =& .
E[estn] —)6‘ 1" Ky I( )<( sTAL) ( 2 ) gn(s)(A, ) ( 2 )) :E[625Z1,a]

)
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having used notation (8).

If a =1, with ¢y(h) = hlog + and z; = K5 from (24) we have

S8
hlog +

n 1251 cos(u)=1 ; . 125 | sin(v)—1
E[eiSZ“] _ ezj=1 A\Zj\[(A++A_)fO i %dvﬂ(&r —A_)sgn(z;) [y’ %d@]
The exponent above is

|s| K Is| K

> AK; nios £ cos(v) — 1 , nioz £ sin(v) — v
S |0 [T G o, [T,

which is shown to tend to —is(A, — A_) : the first integrand CDSS}?%IDO isin L'(R), thus, applying Lemma

3 i) we obtain that
Is| K,
niog £ cos(v)

" AK; -1
0

s
hlog

1
h
The second integral is written as

/lZ] Sll’l(U) dv]’| - n
Zj
0

v2 v

Lsin(v) — v 12l gin
/0 (ldv—i—/l ( )d _1og(zj|)1 I 1>1s (30)

where ‘”"5}# e L'((0,1)), and 2~ ”)Ive(l,Jroo) € L'(R). Note that if s = 0 we directly find that E[e*%] =

1, we thus only concentrate on a fixed s # 0. We have that

|s| K
21 AK; wies I | sin(v) — v U sin(v) — v
sl / ’ 2 d”I\zg-IS1+/ ] =
og 0 v 0 v
Z?_lAKj2/1 sin(v) — v g 1 < Y AK; ¢
h 0 v2 log + ~ h log + ’
and
> AK; hlog;ll sm( )d I C > AK; 0
=1 vljz>1 < == —0.
hlog + 1 v? log L og + h
Finally, recalling that K is bounded (by IA1),
" AK; K.
—is(A, — AJZH —log ( sl z ) I e, — —is(A, — A )Kq,
hlog + hlog + {mgg% 1}

since within .
Z j=1 KjA
hlog %

1 1
() + I 1) + Yo() ~ o (102 1 )| 7 1

h h) |
the first two terms are bounded in absolute value by

1| X [Klog(KG)IA  CY0 KA
1 +
log 7 h h

the third term converges by Lemma 3 i):

zn: [:LJAI{ Is| K

- 1
Jj=1 hlog &

>1} = Ko
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and the fourth one )
"\ K; log (log +
CTOBNEC R

Thus the statement is proved.

K;

If € (1,2) we can directly use the relations in (27) In fact, from (23), where z; = Soly = slff—/{” we
change variable v = |z;|x in the first integral, while in the second one we firstly change in y = —x, then in

v = |z;]y, and we reach

|zj] jiv-sgn(z;) _ 1 — v - . lzj] ,—iv-sgn(z;) _ 1 - .
A+/ e i v Sgn(zj)dv—i—Af/ e i +iv sgn(zj)dvl (31)
0 0

Izj|a plta plta

With g(v) = e""i;#[vw € L*(R), and g its complex conjugate, the above equals

|51 ;]
|Zj|a <A+ /O g(v)lzj'>0 + g(U)IZj<O dv+ A_ /0 g(U)IZj>O + g(v)IZj<0 dU)

thus
sK

o Iz _ lz51 _
A Wﬁ) |:12j>0 fo J A+g('u)+Aig('u) dU+Iz].<0 fo J A+g(v)+Aig(v) d'u] .

Ele™%r] = =
With ¢,(h) = ha, by Lemma 3 i), the exponent

5|7 Y0, AR
h

|ZJ‘ ‘Zj|
I~o / A gv)+A_g(v)dv + IS<0/ A, g(v) + Ag(v)dv]
0 0

tends to
|8|* K (a)I'(—x )( s>0(A emE 4+ A 72 )+IS<O(A emr 4+ A e_”2>).
By developing and simplifying, the above expression becomes
—[s]*K(a)c (1 — i3 tan (O;i> szgn(s)) ,

where ¢ = —T'(—a) cos (%) (Ay + A_), B = %, and the statement is proved. O

Lemma 5. Assume that K satisfies IA1 for 1, then IA2, IA3, (3), % — 0 and that K/? is Lipschitz
and in L'(R). In the case a = 1 assume also VK log(K) bounded and AIZ%Q £ 0. Then

n K ([ Ji<q Tdp)?
ifae(0,1) == (f’;;f' ELLONNA
ifa=1 O L
if a € (1,2) w Z.a,
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~ n AL T2 ~
Proof. Defined now V,, = W, since V,, > 0, we proceed by showing that the Laplace transforms
E[e=*V»] converge to the Laplace transform of the limit shown in the statement of this Lemma (see [6],

theorem 6.6.3 for the properties of the Laplace transforms limit). Since J is a Lévy process, with s > 0,
n K;(Ja)?
— H E|:e_s Jw(x(ﬁ H/ X,
j=1

where we defined \; = A(O‘) = JL("), and p(z) = pa(z) is the, not explicitly known, density of the law of JA.

In order to deal with [, e=*%"j(x)dz we interpret e=**" as the characteristic function Co = E[¢*"] of a
Gaussian random variable W, with mean 0, variance 02- = 2); and density ¢, and we use that
Jeowit@is= [
(Cp)(zx) being E[ei‘”jA]. The latter equality holds true since
/E[ W15 (2)dx _// e ¢(2)dz p(z)dw /¢ / 2252V dw dz —/d)(z)E[eisz]dz.
So we write )
27 .
/ —\jz? ( )dx _ A € ’ . eA fIrISI e —1—ixr )\(dr)d.f.
R oV2m
With v = % we reach
w2
e 2 A [ eI _1—iojur A(dr)
- P J du. 32
| % (32)
Case «a € (0,1). No compensation of the small jumps is required, we thus consider the special case with
null compensator, V;, = ZLIIZE}E)AjJ)Z, and we only deal with [ e~ 27" p(z)dx, where p(z) = pa(z) is the
density of the law of fOA f\z|§1 xdy, and

u2
—\;z? o e 2 Af eI 1 A(dr)
e z)dx = -e JInls du. 33
/R p(z) 4 orS (33)

Similarly as when from (23) we obtained (24) and then (28), with z =

hl/a there replaced by oju = 1/2)\; u

here, we have

. 7ilul Teos(v) — 1 sin(v
/| - e M — 1 Ndr) = o lu|*(A, + Af)/o [v(lla +iBsgn(u) vlia) dv

ojlul
= agful® [ o) = o ulg; ), (34)

then we are left with

_— H/ net :ﬁé CE ot gy

By developing e¥ = Zz;'% %’:, we obtain H?Zl (1 + 9§n)> =

k
n w2 w2 _u? Ak(gﬂu\ag,(u))
e 2 e 2 e 2 J J
du+ | 2 Ao|ul?g; (w)du + : d 35
Jl;[l A\/% ! Jé Var Aol el 1;24 Vo K " (35)
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We are now going to show that

(1) vj=1, ..,n,QJ(.n) — 0 and max;—i, n |0](,”)| -0
(2) X010 < M < oo
(3) Y67 —0,

J=17]
where M does not depend on n, and 6 = 522K, j2)(A4 + A_)D (241) ﬁf(—a) cos (%) < 0. That allows

to conclude ([6], Lemma p.199) that

Ele=*V"] = ]]i[l (1+6) = ¢,

which is the Laplace transform of the law of the Z; , in the notations, and the stated result follows.

Let us now evaluate the numbers 0;") . Denoted

n) . €_u 7% cos(v) — 1

we preliminarily show that
4) X, 6" 9

j=1"4,1
(5) 0,108 — 68— .
2

Note that the function %Mak is in L!(R) for any integer k, with

w2 ak— k+1

/ e 7 u|**du = 2 T (a + ) . (37)

. . . . sK;
As for (4), using the notation in (34), Lemma 3 iii), (37) and (25) and with o; = \/2\; = \ 2550k we have

2
e_% o n K2 A ajlul
ol = Ao‘?‘/—uo‘~udu:5527 / v)dvdu
Z jl Zl 7 R m| | gj( ) f( )
C o ONKEA - ilul cos(v) — 1
— 58923 I oA, + A u a/ oY) 2 odu — 6. (38)
j; h ( + ) %, ﬁ| | plta

As for (5), since for all j = 1,..,n, |g;(u)] < C’fR ‘“’jﬁ’ia LIS ‘bm(v)‘ dv < 00, gj(u) is bounded uniformly
in j and u, thus we have that >-7_, \95” - GJ(nl | is dominated by

k
soy [t A (Coglul) Soy o (A VEKF s ok
e . J _ k(A j ako1 (o +1 )
=1 k>2’4 zu Al = = k,ZQC ( h > k! 2ot ( 2 ) ' (39)

since the kernel K is bounded, the above is dominated by

DEORERES

k>2

and since for large n we have A/h < 1, the series is absolutely convergent (quotient criterion), and (40) is

O (£) , thus it tends to 0, and (5) is verified.
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U2 [e3
It follows that, since 05?;) = Adf [ %Mo‘g]( u)du, where of < C¥ K(O)
bounded, thus |9](nl)| < CA/h uniformly in j, and

and g;(u) is uniformly

") < (n) _ ) < o A
Jrriz’ufnw | Jmax 165 |+ max [0 le — 0 \+C o<h2>—>o,
J
which solves (1).

As for (2), using again Lemma 3 iii), we have

25| K

7 £ (0)|dv du — C,

Z‘9<n>|<zgm/ w)g; (u |du<CZ JA/ /lul

thus using also that (39) is O(A/h?) we reach

Z|9(")|<Z|9(” — 67 \+Z\9 |<C +C <M.

Jj=1

Finally (3) follows directly from (4) and (5).

Case « € [1,2). From (32), the integral in A(dr) is given by

/1<A+ + AJ% (A, - A )Snlogun) = ojur
0

N Tra dr
ojlul COS(U) —1 . Sin('U) —v . ~
= U?WI"“/O (A, + A )= o +ilA, = A )sgn(u)— o dv =07 [u[*G;(u).
Thus

n _ﬁ
~ € 2 @ ax
E[e—sVn] — | | . er'j |“‘ gj(u)du
. 4 Var
Jj=1

k
o (Aay|u|“§j(u)) T 5(n)
i 1+;4m' i du | = [T (1+67). )

Jj=1

J

Again, we show that éj( = k¢

\ﬁ ©lul*g;(u)du turns out to be the leading term of i
conditions (1) to (5) above are satisfied also for 9§”)7 which allows to conclude the proof
Note that for any « € [1,2)

), and that the

j(n) ez a, a 7t COS(U)
0,y =2 V WA /0 (A++A7)Tdvdu

has the same expression of 9%) (36), thus Z?Zl 9~§nl) coincides exactly with the right hand side of (38).
By Lemma 3 iii), using (37) and the relations in (25) we obtain that for & = 1 then > ", 95”1 — 0 =
—52207 /1K (02)(Ay + A_)D (242) , while for a € (1,2) then 377 05"1) — 6, and a condition of type (4)
is satisfied in any case.

As for (5), we need to bound differently |§](.”) jﬁ)| in the two cases a =1, a € (1,2).
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If o = 1, splitting as in (30), we write

sm(v)

ajlul cos ajlul
gj(u) = (A +A_)/O Sji)dUJrz(A — A )sgn( )/0

! sin(v) —
+i(A, — A_)sgn(u) [/0 )

o Iul .
v 1 sin(v)
v? dv +/1 v?
where log (o, |ul)

;) +1log (+) +log (|ul), thus

dUI jlul<1

dv-—log(oﬁ|UD1 Iojjul>15

= 1log (2s) +

+ 3 log (K
gj(u) = €;(u) —

i(A, — A )sgn(u) [5log (K;) +log (+) + log (Jul)] I, juj>1,

I,
where /;(u) is uniformly bounded in j and w. Using that |ulog(|u|)| < |u[*Ijy>1 + LIo<|uj<1, then for any
triplet of positive quantities A1, As, Az with A = Ay + A5 + Az, we have

ol [4 -+ [Tog [ul [ < [u]"2* [A* + [10g ul|*] = 2* (Jul* A" + (Julog|ul)*) <
Qk
Thus

(jul 4% + (2 + c>k) < 8 (Jul* (A} + 45 + 45)

k +u2k+ck)_
th

a(n) _ 5(n)
‘Hj — 01

k
1
k' [C—&-log )+10g(h>+|log|u||} du
k>2
K? ¢
SO
k>2 : ¢ V2
similarly as above

1
[ FOF 4+ 0| log (K;) |F + u® log" (h) +u?* ¢ Ck} du
k u?
chﬁﬁ e 2z kdu_ Z Ak 2K €
7 W e, Vi h?

w2 A2
uFdu =0 ( )
k>2 Jé+ v 2w

72
ZCkAsz 4 e T

E
2

k
A? AR K? A2
2k
duzO() > c* :0()~
k 2 ) m 2 )7
SR e, Vor h = h i h
since v K |log(K)| is bounded, also

1 k
8 (] log () 1)
h

e k A?
du=0|—|.
k>2 k! . V2m

k & W2 2
Z(Alogm) L (m(;)) |
k>2 h Ry V2T
thus 327, |05 — (7| = 0 (“’g()

h
== ) — 0, and (5) for 5(-”) is proved
Thus (1), (2) and (3) for 9 ™) follow analogously as for

If a € (1,2), due to (27), §

Finally,

9(”)
j(w) is uniformly bounded in j and w, thus Z

) - 0(") is dealt exactly
as in (39), thus it is O (&) — 0, and (5) is done. From (4) and (5) then the propertles (1) to (3) again
follow as above, and now the proof of the Lemma, is complete

O
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Lemma 6. Under A1, IA2, TA3 and (3): if a« € (1,2) and % — 0 then

(S Kax)” s, maxy
ha ’ he

(72 0 Z.0)-

Remark. Note that under A1 K is bounded and then also K? is Lipschitz and in L'(R).

Proof of Lemma 6. We proceed through the following steps. Recalling the decomposition A; X = AJ +
AiJl :
1) due to the negligibility of the contribution of J! we show that a.s.

2

(z;;lKiAiX)Q (Z?leiAJY Z?ZlKi(AiX> Z;;lKi<Aij)2
ha = ha ’ he = ha '

After that, it is sufficient to prove the convergence in distribution of

(st K00)' 3o wiay

ha he

2) We develop

A2 " 2\ 2 L
(Zi:l KiAiJ) Die1 (KiAiJ) S iimtomeing KiEG AT AT
2 = 2 + Pl
ha ha ha
KA TAT 11
and we show that % L 0, so the stated limit in distribution is the same as for

N2
> (KiAi']) S K (AT)?
9 h%

3) For s1, 82 > 0 we show that

£n<51,32) ~Ele h% h% S E e—s1Z12,a—SQZ2,o¢i| = £(31752), (43)

which concludes the proof.

Let us start by 1). For the first result it is sufficient to show that a.s.

SPOKAX Y KA
ha - ha
Si Kidig?
h% B

for the convergence in distribution we can focus on those w where there is no jump at ¢. For any fixed w such

The difference of the two above terms is : recalling that the probability that AJt—l # 0 is zero,

that AJ! = 0, using the notation at the proof of Lemma, 1, part b), £ — S, is a fixed quantity, and
t p

S Kt K (%) :

he he
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i-S,

by assumption K ( o *) = o(h), and since o > 1 then h = o(hi), thus the above display tends a.s. to 0.
As for the second result in (42),

S () - ()] S [(a) s oaia]
ha N ha '

2 2
the first term > | K; (Aiﬂ) /h% has the same limit as

5 = =

-5,
K(52)  oan oA . (A) .
hz ha ha-1 h

While the square of the second term 23" K;A;JA;J'/ha by the Schwartz inequality is dominated by

s o) s (ss)

2 2 )
ha 1

where the first factor converges in distribution by Lemma 5 and the second one tends to 0. Thus also the

second term tends to O.

As for 2), let us evaluate E H Lngrizy K

J . = = . .
H : since A;J and A;J are independent, such a quantity
is dominated by

2i iy Kl E [ A"JH E HA]‘] 2 jui WilGA?
ha ha
having used the estimate (2.1.36) with p = 1 in [14] for the last inequality. Now, by Lemma 2, part 6),

n T u
S Y KIKGA? :/ Kg/ K2dsdu = h/
0 0

t—vh
) KQ(U)/ KZ2dsdv
t—T 0

i=1 j<i e

..

)

S

S
St

h

_p2 2 2 252
=h o K=(v) K*(w)dwdv < h*K (3,
7 v

thus ) )
Doigrigg KilGA _ C,Zi,j:i;éj K,K;A* 1

C h% h2 h%—Q

and 2) is done.

As for 3), we have

2
n  S1E7+saK;

£7L(31752) =B 67 =1 w2/ (Alj)2:| = HE |:€7ui(AiJ)2:| ’

1=1
. . s1K2 45K, . . . . .
having set u; = =—j52— > 0. The i-th term in above display is then the same as in (32), where now
K216, K; . - K; a 25 (51 K248:K;)2 . .
u; = Slhz,itff‘ is in place of \; = 5%, and thus (0;)* = (2u;)? = w is now in place of

(0,)* = (2);)% = % Thus, similarly to (41), the above display is []}_, (1 + éz(")) , where now

n _u?

G(n) _ ! o e 2 Y cos(v) — 1
ZGM = ;ZAai /R+ Nz ) /0 (A, +A*)dedu'

i=1
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Since

St

T
> Aof 2%/ [s1K2 + SQKT}%% =23 / [s1K2(u) + 59K (u)] % du
; 0 -7

h

tends to 2% [, [s1K?(u) + s2K (u)] 2 du then, similarly as for Lemma 3, part iii), we have

L. o o 2% fa+1 T
9(”>—>2.25/ K2(u) + 52K (u)]) 2 du - F(>~A+A T(—a)cos [ =
;:1 i1 R[S1 (u) + 52K ()] % du NeT 5 ) (A +AT( a)COb( 2)

and, similarly as in Lemma 5,

(1 n §§”>) ~ ] (1 + égj?) el = Loo(s1, 89),
j=1 j=1
where
0=2_a +a)r () - )cos(@)/[ K2(u) + 52K (u)] 3d
U = ﬁ + _ (e D) R$1 u S92 u Uu.

The function L is the Laplace transform of a probability law (bacause L£,,(0,0) = 1 and the function is
continuous at (0,0)), and we see that it is the one of a proper joint law having marginals Z7 , and Z5 4. In

fact, with so = 0 we have
e%(A++A—)F(aTH)F(*a)C°S(%) Jels1 K2 (w)] 2 du _ Loo(51,0) =1im L,,(s1,0)

s S (Ka0)2
=limFE |e n2/a :
n

2
h3/a ~ YE ) , as we saw above at 2), and, by Lemma 4, the latter term converges in

distribution to Z7 .

On the other hand, with s; = 0 we have
e%(A++A—)F(QTH)F(*a)C°S(%) Jels2 K ()] 2du _ L6(0,82) =1im £, (0, s2)

s TP K (A2
=limE |[e ? n¥/e
n

n AL T2
and, by Lemma 5, Zzlhlg#

LY Z3,«. Thus Lo, describes a specific joint law of (Zia, nga) . O
Remark. The joint law of (Z7,,Z2,4) has a Laplace transform of type e=C Juls1 K? () +s2K ()] T du ity
positive C': no linear part in s, sy is present, thus there are no drift terms. The law could resemble a bidi-
mensional a/2-stable, however this is not the case, because it is concentrated on a parabola (if zo = K (u)

then z1 = x3) rather than on the unit sphere.

Proof of theorem 2.
a) Since X is a cadlag process, for fixed € € (0,1) we have a.s. v(w,(g,1] x [0,T]) < oo, i.e. the jumps
occurring on [0, T] with size larger than ¢ in absolute value are only finitely many. Define now N&. the a.s.

finite number of jumps of X with size absolute value [AX,| > ¢, and S; the times of such jumps, p = 1, .., N5.
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For any n, for any p = 1,.., N® we call I, = I; the unique interval (¢;1,t;] = (t;_;,t;] containing S7, and

we rename its extremes t; 1 = ti;_l, t;, = ti;. For any £ > 0 we split

Xt:jf—cta'i‘g]tl’g,

where

t t ¢
i [ [ s ci= ] e aldods, 1= [ [ s,
0 Jis(a,5)|<e 0 JIs(@,5)€(1] 0 JI8(,9)|>e

and we proceed through the following steps.
1) For any fixed € € (0,1), J%¢ is a FA jump process with piece-wise constant paths, so that, by Lemma 1
we have that, as n — oo, F™(J1) ¥ F(JY¢) with both f(z) = z and f(x) = 22, where F(J'¢) is finite

a.s..

2) Note that as € — 0 then, for both f(z) =z and f(z) = 22,
F(JY) = K(0)f(AJ} ) “3 F(X) = K(0)f(AXy).
3) Now we check that

. . . mn _ n 1,6 —
Vi > 0, glil%)ll?rlrl_)bolip])({|F (X) = F*(J"9)| > n}) =o. (44)

The three properties allow to conclude (10) by Proposition 2.2.1 in [14].
We define

as(e) = / §(s,z)\(z)dr, o2(e) = / 62(s,z)\(z)d.
[6(s,)|€(e:1] [6(s,z)|<e
Note that a(0) is the process a that we defined in Section 3, and that it has finite values only if X has finite
variation jumps (o < 1). For proving part a), without loss of generality, through a localization procedure,
we can assume that for any fixed € > 0 the processes as(e) and o2(g) are bounded in absolute value by
constants A® and 3¢ respectively, depending on e.
Case f(z) = a:
- el - Ui
P({ F(X) — F*(J)| > }) < P({ KA J| > f}) —|—P<{ KA CF| > f}):
e B S (DR DILNCES

the first probability is bounded by

150 KiATe || \/Z?zl K2E[(A:Je)?]
n/2 /2
n t;
_ \/Zi=1 KZE(],, Jjg<c 0°M)dwds] o VI KA
/2 - n/2 ’
having used for the first equality that K;A;J¢ are martingale increments. Since under A1 we have K2 €
L*(R) then for fixed €, as n — oo, XY 1" | K}?A; ~ ¥°h — 0, then limsupnﬁooP({|Z?:1 KA Je| >
1}) =0 forall £ >0, and

lim 1imsupP({| zn:KZ—AiJﬂ > g}) ~0.

n—oo ;
=1
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< A i KA,
i=1

As for Y1 | K;A;C¢, we have
> K
i=1

which does not depend on w and, for fixed ¢, tends a.s. to 0, as n — oo, so again
g (155,01 2) < e (LS 1082 2) < -
;%llﬁsip]p({Z;K’Azc | > 5 7;1_r>r(1)11711ri)sot<1>pP A 2KZAZ > 5 ;1_r>r(1)0 0

For the case f(z) = 22 we reason similarly. In fact
n N2
FY(X) = FU () = 3K (Ad°) + D0 K (8iC9)?
i=1 i=1
(45)

+2 Z K; (AijEAiJl’E — AijEAiCE — AiJl’EAiCE> s
i=1
and we show that for fixed € each term tends to 0 in probability as n — oo: Y i | K; (Aiﬁ) tends to 0 in
(A 300y KGA? < (A%)? Appae Yo7y KAy ™3 0.

probability because its L!'-norm tends to 0;
S Ko (8,C9)* <
Finally, the double products are all dealt with using the Schwartz inequality, and shown to be negligible:

‘zn:KiAiZAiY’:’Zn:\/EAiZ\/EAJ’g Zn:Ki(AiZ)Q zn:Ki(AiY)Q,
=1 =1 =1 =1

and for each one of the three double products in (45) at least one of the square roots on the right hand

side above tends to 0 in probability, while > 1" | K;(A;J%)? = F"(J%¢) converges to the finite quantity

F(J%) = K(0)(AJ;)2
It follows that, for fixed ¢ > 0, F*(X) — F™(J%¢) Boasn— oo, thus again
m n l,e . _
({|F (X) — Fr(J49)] >n}) = lim 0 =0.

lim lim sup P
e=0 nooo
b) We concentrate on the set {AX7 = 0}, having probability 1. On that set both the numerator and

the denominator of T} tend to 0 in probability: using Lemmas 4 and 5 we reach the following speeds, as
if € (0,1)
(46)

b

explained below:
—abh,
n d
Y KiAX = Q —(Ay —A)Kqy-hlogt, ifa=1land A, #A_
= he 74 o, if o € (1,2)
. ha Zyo+op(h?Az), ifae(0,1)
d
~Q W27y, if o =1 (47)
if o € (1,2),

2
ha ZZ,OM

— —sgn(a) - 0o,

where for o < 1 we have a = (A4 — A_)/(1 — ). It follows that for « € (0,1) and a # 0 then
—a

")

T, 2
\/h§222,a +0 (%) +op ([
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for o = 1 then
a (A4

K(l) log 1as

T, N = —sgn(Ay —A_) - o0

)
while for o € (1,2) numerator and denominator of 77" have the same speed, and by Lemma 6 the theorem

is proved.

To obtain (46) from Lemma 4, we simply note that a.s. the speed of > 1" | K;A;J! is K ! hS ) , where

Sp is the time of the jump of J! closest to t (see the proof of Theorem 1 after (14)). Since K ( hsg) o(hA)

Fﬂ/\

by assumption A1.2, K (tl%) is negligible, for any «, with respect to ¢, (h).
To obtain (47) from Lemmas 4 and 5 we first note that, similarly as above, Y | K;(A;J')? tends to
zero still at speed K (t_hsﬂ) = o(hA). Then

- for o € (0, 1) the squared denominator of 77" is

ZK (A X)? ZK// vdp) gy Ki(Ai~a)2+zn:Ki(AiJ1)2
|z|<1 i—1

i=1

n ti
—2AaZKi/ / xd,u—2AaZKAJ1+QZK / / xdu AJ1
i=1 ti—1 J|z|<1

2| <1
within the last term Y, ‘/Ki<ftt:_1 flr\<1 xdu) VE;A;J' is dominated by

2 . -
\/ Z;’:lKi( 5 g Slmdu) VST KA = Op(ha K(t ,fp)> — op(hv/RA), thus the above dis-

play is asymptotically equivalent to

2 E_SP 1 3 1 2 3 1
ha Zyo+ Op| AL+ K E)+ Ahw| +op(h3A%) = hi Zy o + op(h3A2).

- for a = 1 we instead split A; X into A,;J and A;J! and, using again the Schwartz inequality, the mixed

term within the squared denominator of 7T} is shown to be dominated by

Zn:KZ(AJ)Q iKi(Aijl)zzOp h
=1

i=1

Thus

Xn: K, (AiX>2 L1270+ Op (K (
=1

- for a € (1,2) we again split A; X into A;J and A,;J! and use the Schwartz inequality:

" 2 2 E_ S 1 2
S Ki(AX) £0iZa+0p <K < - ”)) +op(h*VAR) L hE Zy . -

S 3 1
)) + Op(h§A§) é h2Z27a.

i=1

Proof of Corollary 1. Let us split Y = Y +.J, where ;! = Y, + fot b.ds + fot osdW, + J}, then

o YR KAY S UKAY T KA

COVELKQAYP o Ay + S, KA+ 25, KA AT
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with S, = > | K;(A;Y1)?, the above equals

m KA Y'Y n KN
i=1 + szl

VSy VSn

n

and we show that the last display tends to N'(0,1) in distribution.

In fact first of all note that with probability 1 there is no jump at ¢, and when AX; = 0 the leading term of .S,
is S0 Ki(f) beds + [ 0.dW)? ~ hot ([18], thm 2.7) because Y7 K;(A;J')? ~ K(522) = o(Ah).

t;
Thus, with probability 1, S,, ~ h.

Then, the first quotient of the above numerator tends in distribution to a standard Gaussian r.v. because
Y'! has finite variation jumps, so the result in [5] applies. We now show that all the other terms tend to 0.
If @ € (1,2), by Lemma 4, 37" | K;A;J tends to 0 at speed h'/* << h'/2  thus the second quotient at
numerator tends to 0; the second term at denominator
i Ki(A)? he
Shn h

and the third one

21;1 KiAiYIAij < ZzT'L:l Ki(AiJ)? ha
Sn, - Sn, Vh
If instead o = 1, the second quotient at numerator is

E

S KA hlog o
VSn Vh 7

the second term at denominator ~
E?:l Ki(AiJ)2 h?

and the third one
ZTL:1 KzAzylAlj Z?:l KZ(AZJ)z ViSn h |
L < ~— — 0.
S, Sn, Vh
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