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Drift burst test statistic in a pure jump semimartingale model

Cecilia Mancini1

Abstract

We complete the investigation on the asymptotic behavior of the drift burst test statistic devised in

Christensen, Oomen and Renò (2020). They analysed it for an Ito semimartingale containing a Brownian

component and �nite variation jumps. We also account for in�nite variation jumps. We show that when

there are no bursts in drift neither in volatility, explosion of the statistic only can occur in the absence

of the Brownian part and when the jumps have �nite variation. In that case the explosion is due to the

compensator of the small jumps. We also �nd that the statistic could be adopted for a variety of tests

useful for investigating the nature of the process, given discrete observations.

JEL classi�cation codes: Primary 62M99, 62F05; secondary 60F17, 91B70, 60E07, 60E10.

Keywords: Test statistic, Ito semimartingale, in�nite variation jumps, jump activity index, asymptotic

behavior.

1 Introduction

On a �ltered probability space (Ω,F , {Ft}t∈[0,T ], P ), we consider a càdlàg pure jump semimartingale (SM)

de�ned by

Xt =

∫ t

0

∫

|δ(x,s)|≤1

δ(x, s)µ̃(dx, ds) +

∫ t

0

∫

|δ(x,s)|>1

δ(x, s)µ(dx, ds), t ∈ [0, T ], (1)

for a �xed time horizon T > 0, where µ(dx, ds) is a Poisson random measure on (R × [0, T ]) endowed with

a compensator of type ν(dx, dt) = λ(x)dxds, and µ̃ = µ − ν is the compensated Poisson random measure.

Formal conditions on X are given in Section 2. The �rst term in (1) sums the compensated small jumps of

X while the second term sums the not-compensated big jumps.

For �xed t̄ ∈ (0, T ), we focus on the asymptotic behavior of

Tnt̄
.
=

∑n
i=1Ki∆iX

√
∑n
i=1Ki(∆iX)2

, (2)

where: for any integer n > 0, {ti = t
(n)
i , i = 1, .., n} gives a non-random partition of [0, T ]; ∆iX

.
=

Xti −Xti−1 ;Ki = K
(

t̄−ti−1

h

)

; K : R → R+ is a kernel continuous function and h is a bandwidth parameter.

We are interested in the framework where

n→ +∞ while h→ 0 in such a way that nh→ +∞, (3)

and we assume that the partition asymptotically does not di�er too much from the equally spaced one, in a

way made explicit later.

The statistic Tnt̄ is devised in [5], where the considered model is an Ito semimartingale (SM) including

drift and Brownian components, the jumps have �nite variation (FV) and are represented as compensated
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small jumps added to not compensated large jumps. There, Tnt̄ is shown to explode any time when there

is a burst in the drift larger than a burst in the volatility, while the statistic converges stably in law to a

Gaussian random variable if either there are bursts and the one in volatility is larger than the one in drift, or

no bursts occur at all. However one wonder what role in�nite variation (IV) jumps would play, for instance,

whether the explosion observed in the empirical implementation of Tnt̄ on �nite samples may or may not be

due to a jump component of IV, possibly present in the data generating process (DGP). Or, how the statistic

would behave if the DGP did not contain any Brownian components. For this reason we speci�cally address

a pure jump process.

Recently pure jump models for �nancial asset prices are being revaluated. Empirical evidence that large

jumps can improve pricing models for many �nancial assets is documented since long time. Initially the

focus was on adding large, �nite activity (FA) jumps to existing models with continuous paths. By contrast,

since the nineties in�nite activity (IA) pure jump Ito SMs have been considered. The latter models contain

large jumps, and a dense set of small jumps replace the Brownian motion to reproduce the small movements

of asset prices: Eberlein and cohautors (e.g. [9]) considered Hyperbolic and Generalized Hyperbolic Lévy

motions, Barndor�-Nielsen ([3]) Normal Inverse Gaussian Lévy processes, Madan and coauthors (e.g. [12])

Variance Gamma models, Carr, Geman, Madan and Yor (e.g. [4]) CGMY processes. Such models would be

also economically well justi�ed as stochastic time changed Brownian motions, where the discontinuous time

change can be interpreted as a measure of the economic activity, and makes the model arbitrage free.

We now dispose of several tests to check for whether a record of an asset prices is compatible or not with the

presence of a Brownian part in a SM model ([7], [2], [16], [20], [10], [13]). Note that [17] warns to correctly

account for price staleness, in order to avoid possible wrong conclusions.

In any case, knowing the asymptotic behavior of Tnt̄ in a pure jump framework allows to immediately obtain

its limit in a model including both Brownian motion and in�nite variation jumps.

In the present pure jump framework it turns out that the behaviour of Tnt̄ is di�erent in the two cases

where t̄ is a jump time or it is not. In fact the numerator tends (ω-wise if the jumps have FA, in probability

if they have IA) to K(0)∆Xt̄, and the denominator to
√

K(0) · |∆Xt̄|. Thus if ∆Xt̄ 6= 0 the statistic has a

well de�ned �nite limit, otherwise both numerator and denominator tend to 0, and, as soon as Tnt̄ is de�ned,

the limit is determined by the dominant terms.

The asymptotic distribution of the statistic is substantially di�erent depending on whether the jumps

have �nite or in�nite variation. In the former case the dominant element at both numerator and denominator

is the compensator of the small jumps, which acts as a drift and determine explosion of Tnt̄ . In the latter

case, instead,
∣

∣Tnt̄
∣

∣ converges in distribution to a r.v. Zα depending on the magnitude of the jump activity

index α of X.

To get an insight into how things are going, let us mention the case where the kernel function is given

by a continuous approximation of the indicator I{|x|≤ 1
2} and the observations are evenly spaced. With FA

jumps and compensator at, all the jumps are shown to have a negligible impact on Tnt̄ , and, indicating by
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≃ that two expressions have a.s. the same limit, we have
∑n
i=1Ki∆iX ≃ ∑n

i=1Ki(−a∆) ≃ −ah, while
∑n
i=1Ki(∆iX)2 ≃∑n

i=1Ki(−a∆)2 ≃ a2h∆. Since h
∆ → ∞, then |Tnt̄ | → +∞.

For the in�nite activity jump case, consider for now a model where the small jumps behave like the ones of

a symmetric α−stable Lévy process. If the jumps are of FV (α < 1) the sum of the jumps, J , contributes

as follows
∑n
i=1Ki∆iJ ≃∑ti−1∈[t̄−h

2 ,t̄+
h
2 ]
∆iJ ≃ Jt̄+h

2
− Jt̄−h

2

d≃ h
1
α J1,

where
d≃ indicates that the two expressions have the same limit in distribution, and

∑n
i=1Ki(∆iJ)

2 ≃∑ti−1∈[t̄−h
2 ,t̄+

h
2 ]
(∆iJ)

2

≃
(

Jt̄+h
2
− Jt̄−h

2

)2

−∑i 6=k: ti−1,tk−1∈[t̄−h
2 ,t̄+

h
2 ]
∆iJ∆kJ

d≃
(

Jt̄+h
2
− Jt̄−h

2

)2 d≃ h
2
α J2

1 .

The compensator part of the model, instead, contributes as a drift, as in the previous case. Then at the

numerator of |Tnt̄ | the contribution of the compensator dominates and tends to 0 at speed h, while the

denominator tends to 0 more quickly, and again the statistic explodes.

In the case of IV jumps, instead, we cannot separate the jumps from the compensator, and it turns out that
∑n
i=1Ki∆iX

d≃ h
1
αZ1,α and

∑n
i=1Ki(∆iX)2

d≃ h
2
αZ2,α, with given r.v.s Z1,α, Z2,α, and, as mentioned,

∣

∣Tnt̄
∣

∣

converges in distribution.

The �nite activity jump case is dealt with under more general conditions on the partitions choice and on

the jump sizes. For the in�nite activity case, instead, we assume evenly spaced observations and that the

small jumps behave like the ones of an (not necessarily symmetric) α-stable Lévy process. In the latter case

we separately studied the asymptotic behavior for the characteristic functions of the statistic numerator and

squared denominator, and, for α > 1 also the characteristic function of the joint law of squared numerator

and squared denominator. We obtained closed form expressions for the limit characteristic functions.

Our results are consistent with the ones in [5]: in our case σ is zero (no volatility burst), and when the

jumps have �nite variation the compensator of the small jumps makes |Tnt̄ | to explode. Such a compensator

can be interpreted as a bursting drift with respect to the absent Brownian part.

If we add a non-zero Brownian term to our model X then Tnt̄ never explodes: it is asymptotically normal in

all cases, because the leading terms at numerator and denominator are all dominated by the Brownian part.

Now the picture given in [5], that was missing the case of IV jumps (α ≥ 1), is complete. Further, we have

a new potential test for the presence of a Brownian motion in a DGP.

Actually, Tnt̄ could be exploited for many di�erent tests. Assuming model (1) possibly added with a

Brownian part, we �rstly check whether Tnt̄ is asymptotically Gaussian or not. In the �rst case the DGP

contains a BM, while in the second case it is a pure jump SM, and if
∣

∣Tnt̄
∣

∣ → ∞ then the DGP has FV

jumps, otherwise
∣

∣Tnt̄
∣

∣

d→ Zα, and then the DGP has IV jumps. In the former case, |Tnt̄ | o�ers a potential

test for whether a jump occurred at t̄ (in which case |Tnt̄ | →
√

K(0)) or not (in which case |Tnt̄ | → +∞).

Assessment on whether through Tnt̄ we can further distinguish FA from IA jumps is on going.

The paper is organized as follows: Section 2 describes the details about the considered model and sets

some notation; Section 3 deals with the case in which the process only has �nite activity jumps: the necessary
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assumptions are set and the �rst main theorem is stated. Section 4 deals with the case of in�nite activity

jumps: further assumptions are set and the second main result of the paper is stated. Section 5 accounts

for the behaviour of Tnt̄ in a SM including also a Brownian component. Section 6 contains the proofs of the

Theorems and the necessary Lemmas.

2 Setting

We start with introducing our setting and some notation. We assume that the density λ within the com-

pensator ν in model (1) does not depend on ω, nor on s. For any (x, s), δ(x, s) = δ(ω, x, s) is the random

jump size occurring when µ(ω, {x}, {s}) = 1, and we assume that δ(ω, x, s), from Ω × R × R+ to R, is a

predictable function, i.e. it is measurable with respect to P ×B(R), where P is the predictable σ-algebra of

Ω×R+ andLévy B(R) is the Borelian σ-algebra of R.2 Further, we assume that
∫

x,s:|δ(x,s)|≤1
δ2(x, s)λ(x)dx

is locally bounded, and that if µ(ω,R, {s}) 6= 0 then
∫

R
δ(ω, x, s)µ(dx, {s}) 6= 0.

The measurability conditions above are required to make
∫ t

0

∫

|x|≤1
δ(x, s)µ̃(dx, ds) and

∫ t

0

∫

|x|>1
δ(x, s)λ(x)·

dxds well de�ned.

The local boundedness assumption is ful�lled e.g. each time when δ does not depend on s nor on ω, in fact

since
∫ T

0

∫

δ2(x, s)∧ 1λ(x)dxds is a.s. �nite for any semimartingale, then
∫

δ2(x)∧ 1λ(x)dx is �nite. That is

the case, for instance, of any Lévy process, where δ(x) = x. Actually, for the IA jump case we will restrict

to α-stable Lévy processes.

The last requirement above simply means that if a jump occurs at s then the size is non-zero.

Notation 1. · K+
.
=
∫ +∞
0

K(u)du, K−
.
=
∫ 0

−∞K(u)du;

· for any random process b,

b⋆t̄
.
= bt̄− ·K+ + bt̄+ ·K−; (4)

· when X has FV jumps, we de�ne as
.
=
∫

|δ(x,s)|≤1
δ(x, s)λ(x)dx.

For �xed t̄ ∈ (0, T ) the statistic Tnt̄ of our interest is well de�ned when the denominator is non-zero. As

it will be clear from the proofs of our Lemmas, this is the case at least when X jumps at t̄ or when X has

IA Lévy jumps (in which case in any small interval some jumps occur). When no jumps occurr at t̄ and X

has FA jumps, the statistic is well de�ned at least when a⋆t̄ 6= 0 (see (15)).

De�ned ∆ = ∆n = T
n and ∆max = ∆max,n = maxi=1..n |ti − ti−1| we assume that

∆max ≤ C∆

for a �xed constant C, which means that the partition should not di�er too much, asymptotically, from the

equally spaced one. The framework (3), under which we look for our asymptotic results, implies that ∆ → 0

and ∆
h → 0.

2It is well known that we can equivalently write Xt =
∫
t

0

∫
|x|≤1

xµ̃′(dx, ds) +
∫
t

0

∫
|x|>1

xµ′(dx, ds), where µ′ is a random

counting measure with compensator ν′(dx, ds) = Fs(dx)ds and Fs(dx) = Fs(ω, dx) is random (see [14], Sec. 2.1.4).
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As mentioned in the Introduction, it turns out that for a �xed ω the behaviour of Tnt̄ is di�erent in

the two cases where t̄ is a jump time or it is not, and the statistic asymptotic distribution is substantially

di�erent depending on whether the jumps have �nite or in�nite variation. We tackle the �nite activity jump

case �rst, while the in�nite activity case is dealt with in Section 4.

Notation 2. · C always indicates a constant. Within the algebraic expressions we keep the same name C

even if for the two sides of an equality we have di�erent constants.

·Given two functions f, g, then f(h) ≃ g(h) indicates that limh→0 f(h) = limh→0 g(h), while f(h) ∼ g(h) indi-

cates that limh→0
f(h)
g(h) = C, f(h) ≪ g(h) indicates asymptotic negligibility of f w.r.t. g, i.e. limh→0

f(h)
g(h) = 0;

given two sequences Tn, Un of random variables, Tn
d≃ Un means that they have the same limit in distribu-

tion.

·∆Xt indicates the size of the jump possibly occurred at t (under our framework∆Xt = 0 i� µ(ω,R, {t}) = 0)

· Ks
.
= K

(

t̄−s
h

)

· For any α > 0, K(α)
.
=
∫

R
Kα(u)du

· R+ = (0,+∞), R− = (−∞, 0)

· λ(R) .=
∫

R
λ(x)dx;

· µ(dx, ds), µ̃(dx, ds) can be abbreviated using dµ, dµ̃, respectively;

· sometimes we write δ in place of δ(x, s).

3 Finite activity jumps

We now consider the case in which
∫ T

0

∫

R
1ν(dx, ds) = T

∫

R
λ(x)dx <∞. Then we have that

∣

∣

∣

∣

∣

∫ t

0

∫

x,s:|δ(x,s)|≤1

δ(x, s)ν(dx, ds)

∣

∣

∣

∣

∣

≤
∫ t

0

∫

x,s:|δ(x,s)|≤1

λ(x)dxds ≤ λ(R)T

is �nite, and then X can be written as

Xt =

∫ t

0

∫

R

δ(x, s)µ(dx, ds)−
∫ t

0

∫

x,s:|δ(x,s)|≤1

δ(x, s)ν(dx, ds).

The latter term, −
∫ t

0

∫

|δ(x,s)|≤1
δ(x, s)λ(x)dxds, is a random drift also named−

∫ t

0
asds, and its absolute value

is bounded by λ(R)t. On the other hand
∫ t

0

∫

R
δ(x, s)µ(dx, ds) coincides with

∑Nt
p=1 cp for any t ∈ [0, T ], where

N is the process counting the �nitely many jumps, occurring at some random times S1(ω), ..., SNT (ω)(ω) on

[0, T ], and cp = cp(ω)
.
=
∫

R
δ(ω, x, Sp)µ(dx, {Sp}) = δ(ω, xp, Sp) is the random �nite size of the jump at Sp.

Thus we also can write X as

Xt =

Nt
∑

p=1

cp −
∫ t

0

asds
.
= Jt −

∫ t

0

asds.

Assumption A1. Kernel function.

A1.1 K : R → R+ is a Lipschitz continuous function with Lipschitz constant L and satis�es

limx→+∞K(x) = 0, limx→−∞K(x) = 0 and
∫

R
K(x)dx = 1.
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A1.2 K satis�es the following:

· if a < b then K( bh ) << K( ah )

· for any �xed x 6= 0, K(xh ) << h∆, as h→ 0, under (3).

Remark 1. i) The Gaussian kernel K(x) = e−
x2

2√
2π

satis�es Assumption A1 for instance with h = ∆γ with

γ ∈ (0, 1). This is the case if for instance h = kn∆ with kn = C
√
∆.

ii) To know how Tnt̄ behaves asymptotically if the kernel was an indicator function, one can use our

results where the kernel is a Lipschitz continuous approximation of the indicator function.

Assumption A2. Partitions of [0, T ]. De�ned

H
(n)
t

.
=

1

∆

∑

ti≤t
∆2
i ,

we assume that:

· for any t ∈ (0, T ] the limn→+∞H
(n)
t

.
= Ht > 0 exists and is �nite,

· H is Lebesgue di�erentiable in (0, T ) except for a �nite and �xed number m ≥ 0 of points τ1, .., τm, and

H ′ is bounded,

· de�ned I(n)H = {i : ∃k, τk ∈ [ti−1, ti)}, then sup{i 6∈I(n)
H } sups∈[ti−1,ti) |H ′

s − ∆i
T/n | → 0, as n→ ∞.

Remark 2. The previous Assumption A2 is similar to Assumption 2.2 in [18] but less restrictive.

When we have equally spaced observations all the ∆i coincide with T
n and H ′ ≡ 1. When the observations

are more (less) concentrated around t, we have Ht < 1 (Ht > 1).

Note that, where it is de�ned, H ′ ≥ 0, however if e.g. we had n ·mini∆i → C then H ′ > 0.

As an example, consider the sequence of partitions where the amplitude of the �rst [n/2] intervals [ti−1, ti)

is 2Φ and the one of the remaining n − [n/2] is Φ. Then Φ = T
n

1
1+[n2 ] 1n

and, for any t ∈ (0, T ], Ht =

4t
3 It≤τ1 + ( 4T9 + 2t

3 )It>τ1 where τ1 = 2T/3. This function H is not di�erentiable at τ1, so m = 1 and for

any n, I
(n)
H is the only i for which [ti−1, ti) contains τ1. Further, the interval [ti−1, ti) for which i ∈ I

(n)
H

is the �rst interval having length Φ. As for the third condition in Assumption A2, for any n we have that

if ti−1 ≤ τ1 < ti then sups∈[ti−1,ti) |H ′
s − ∆i

T/n | → 2/3, but if both ti−1, ti are on the same side of τ1 (thus

i /∈ I
(n)
H ) then sups∈[ti−1,ti) |H ′

s− ∆i
T/n | → 0. Further, sup{i 6∈I(n)

H } sups∈[ti−1,ti) |H ′
s− ∆i

T/n | = | 43 − 2
1+[n2 ] 1n

| → 0,

and Assumption A2 is satis�ed.

Assumption A3. Jump sizes. For δ(ω, x, s), with as =
∫

|δ(x,s)|≤1
δ(x, s)λ(x)dx, at least one of the

following conditions holds true:

(i) a.s. supi=1,..,n sups∈[ti−1,ti) |as − ati−1
| → 0;

(ii) supi=1,..,n sups∈[ti−1,ti) |as − ati−1
| P→ 0;

(iii) there exists ρ > 0 : ∀s, u such that |s− u| ≤ ∆ then E[|as − au|] ≤ C∆ρ.

Remark 3. i) The above requires regularity of the paths of the drift coe�cient a.
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ii) Condition (i) amounts to requiring that a has a.s. continuous paths. In fact, if a has continuous paths

then on [0, T ] each path is uniformly continuous in t, and then (i) is satis�ed, while as soon as on a path of

a some jumps occur, then (i) is not satis�ed.

iii) If δ does not depend on s then at collapses on the r.v. a ≡
∫

|δ(x)|≤1
δ(x)λ(x)dx for any t, and trivially

all the three conditions (i) - (iii) are satis�ed. In particular A3 is satis�ed if X is an α-stable process, any

α ∈ (0, 2) is.

iv) If, rather than through a truncation function I{|x|≤1}, X is represented as

Xt =
∫ t

0

∫

R
κ(δ(x, s))µ̃(dx, ds) +

∫ t

0

∫

R
κ′(δ(x, s))µ(dx, ds), where κ(x) is a deterministic continuous function

of x ∈ R, bounded, with compact support, with κ(x) = x in a neighbourhood B of 0 and κ′(x)
.
= x−κ(x), then

A3 (i) is satis�ed, in this framework of �nite activity jumps, as soon as, for any x, δ(x, s) is a.s. continuous

in s, with as =
∫

δ(x,s)∈B δ(x, s)λ(x)dx.

v) Condition (ii) amounts to saying that the sequence of processes

G
(n)
s

.
=
∑n
i=1(as − ati−1

)Is∈[ti−1,ti) tends to 0 ucp.

vi) Condition (iii) is similar to a requirement given at Assumption 2.1 in [18].

The following de�nition helps to focus on the asymptotic behavior of Tnt̄ : given a deterministic function

f(x) we set

Fn(X)
.
=

n
∑

i=1

Kif(∆iX). (5)

With f(x) = x we obtain the numerator of Tnt̄ , with f(x) = x2 the squared denominator. Note that here we

only are interested in the r.v. Fn(X) (rather than in a process), which is computed using all the increments

∆iX with ti from t1 to tn. The next Lemma describes the asymptotic behavior of Fn(X).

Lemma 1. If λ(R) < ∞ and J
.
=
( ∫ t

0

∫

δ(x, s)µ(dx, ds)
)

t≥0
, then under (3), if K is continuous at 0 and

limx→±∞K(x) = 0, then for any real function f(x) continuous on R we have

Fn(J)
a.s.→ F (J)

.
= K(0)f(∆Jt̄).

From the Lemma, the limit of Tnt̄ is almost immediately obtained if ∆Jt̄ 6= 0. On the other hand, if

∆Jt̄ = 0 both the numerator and the denominator of Tnt̄ tend to 0, and we need some work to catch the

leading terms. The behavior of Tnt̄ in this framework is as follows.

Theorem 1. Under model (1) and conditions (3),

a) If K satis�es Assumption A1.1 and ∆
h2 → 0, we have a.s. that if t̄ is a jump time then

Tnt̄ →
√

K(0) · sgn(∆Xt̄).

b) Under Assumptions A1, A2 and A3(i), under ∆
h2 → 0 and if (as)s≥0 is làdlàg then we have that a.s.,

if ∆Xt̄ = 0 but a⋆t̄ 6= 0 and H ′
t̄± > 0, then

Tnt̄ → sgn(−a⋆t̄ ) · ∞,

where a⋆ is de�ned as in (4).
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If, within b), Assumption A3(i) is replaced by either Assumption A3(ii) or Assumption A3(iii) then the

result is in probability.

Remark 4. i) If, on ω, a is continuous at t̄ then a⋆t̄ = at̄.

ii) Note that, since our process X is an Ito semimartingale, it has "no �xed times of discontinuities,"

namely P{∆Xt̄ 6= 0} = 0. That notwithstanding, point a) of the theorem is relevant from the practical point

of view, because we only have at hand one speci�c path {Xs(ω), s ∈ [0, T ]}, on which at t̄ a jump could well

be occurred.

Remark 5. If the jump process is represented in the form

Jt =

Nt
∑

p=1

cp,

without compensation, then the drift coe�cient as ≡ 0, and part b) of the theorem above does not apply.

However, the limit behavior of Tnt̄ (J) does not change if t̄ is a jump time, because for small ∆ we have (with

the notation given within the proof of the Theorem)

Tnt̄ (J) =

∑NT
p=1Kipcp

√

∑NT
p=1Kipc

2
p

≃ K(0)ct̄
√

K(0)c2t̄

=
√

K(0) · sgn(ct̄).

In the case where t̄ is not a jump time, the absence of a drift in J could imply that Tnt̄ (J) is not de�ned.

This is the case for instance when NT = 0; or when NT ≥ 1 but the support of K is bounded. If e.g.

K(x) is a Lipschitz continuous approximation of I{|x|≤ 1
2} then for su�ciently small h we have that both

∑n
i=1Ki∆iX = 0 and

∑n
i=1Ki(∆iX)2 = 0, thus Tnt̄ (J) is not de�ned.

Note that it is always true that if
∑n
i=1Ki(∆iX)2 = 0 then also

∑n
i=1Ki∆iX = 0.

If NT ≥ 1 and spt(K) = R, then Tnt̄ (J) → 0. In fact, let us indicate: by [tip−1, tip [ the unique interval of the

partition containing the time of the p-th jump; and by p the number such that |t̄ − Sp| .= minp |t̄ − Sp| > 0.

Then, for small ∆,

Tnt̄ (J) =

∑NT
p=1Kipcp

√

∑NT
p=1Kipc

2
p

≃
K
(

t̄−Sp
h

)

cp
√

K
(

t̄−Sp
h

)

c2p

=

√

K
( t̄− Sp

h

)

· sign(cp) → 0.

Note that in this framework of FA jumps Tnt̄ could o�er a test for the presence of a drift part in the DGP:

if a drift
∫

asds is present in X then either |Tnt̄ | →
√

K(0) or |Tnt̄ | → ∞; if not then Tnt̄ → 0. We comment

of the potential use of Tnt̄ as a test for a jump at t̄ in the next Section.

In this paper we conduct our analysis for model (1), which coincides with the jump component in [5], and

is always well de�ned. On the contrary, dealing with only the jump process J is not possible when jumps

have IV, and when we apply the test statistic to some data we do not know whether the jumps of the DGP

are of FV or of IV, so we do not know whether we can separate the jumps from the compensator part.
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4 In�nite activity jumps

When the jumps have in�nite activity, it turns out that if ∆Xt̄ 6= 0 (again an event of zero probability),

then Tnt̄ has the same limit as in the FA jumps case. While when ∆Xt̄ = 0, as above both the numerator

and the denominator tend to 0 in probability, and the freneticity of the small jumps activity is crucial in

determining how quickly they converge. For that we need to account for a jump activity index, and it is

natural to focus on the very representative case where the compensated small jumps of X behave like the

ones of a Lévy α-stable processes X. Note that the large jumps are always of FA, thus their jump activity

index is 0 and they do not contribute in determining the convergence speeds. For the stable processes, α

coincides with the Blumenthal-Getoor jump activity index, so that the higher the α the wilder the jump

activity. In particular we show that the speed of convergence of numerator and denominator of Tnt̄ heavily

depends on α, in particular the limit of Tnt̄ is di�erent when α < 1 (�nite variation jumps) or α > 1 (in�nite

variation jumps).

In this part, for the cases when ∆Xt̄ = 0 we specify the α-stable assumption IA3 on the compensated

small jumps and for simplicity we concentrate on the case of equally spaced observations (assumption IA2).

Further, we add the technical requirement IA1 on the Kernel function, which is satis�ed at least in the

Gaussian kernel case.

Assumption IA1. Kernel. Given a deterministic function ϕ de�ned on R+, we say that K satis�es IA1

for ϕ if K is monotonically non-decreasing on R− and non-increasing on R+ and there exists a deterministic

function εh such that as h→ 0

εh → 0,
εh
h

→ +∞ and
K
(

εh
h

)

ϕ(h)
→ +∞. (6)

Remark 6. For instance, with ϕ equal to any one of the speed functions ϕα(h) or ψα(h) at (9) below, with

the Gaussian kernel, and with the function

εh
.
= h

√

log log
1

h
(7)

the above conditions (6) are satis�ed for any α ∈ (0, 2).

Assumption IA2. Partitions. We take ∆i = ∆ for all n, for all i = 1, .., n.

Assumption IA3. Small jumps. The compensated jumps of X, with size smaller than 1 in absolute

value, are α-stable, that is

X = J̃ + J1, where J̃t =

∫ t

0

∫

|x|≤1

xµ̃(dx, ds), J1
t =

∫ t

0

∫

|δ(x,s)|>1

δ(x, s)µ(dx, ds),

where the compensating measure of the jumps smaller than 1 has the form ν(dx, ds) = λ(x)dxds, with

λ(x) =
A

+

x1+α
I{0<x≤1} +

A−

|x|1+α I{−1≤x<0},

where A
+
, A− > 0 and α ∈ (0, 2), while δ(ω, x, s)I|δ(ω,x,s)|>1 is a predictable function as in Section 1.
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Remark 7. i) Assumption IA3 requires in particular that the jump activity index of X de�ned in [1]

(p.2) is constant with respect to t and ω. The prototypical example of process having constant jump activity

index α is the α-stable process. In [1], Assumption 2, the jump activity index is constant but λ is replaced

by a richer Ft(ω, x) where A+I{x>0}, A−I{x<0} are replaced by
(

1 + |x|γf(t, x)
)

a
(+)
t I{x∈(0,z

(+)
t ]} and

(

1 +

|x|γf(t, x)
)

a
(−)
t I{x∈[−z(−)

t ,0)} where f(·, x), a(±) and also the boundaries z(±) of the jump sizes are random

processes, and γ > 0. The latter processes however are uniformly bounded and the boundaries are also

bounded away from 0, while the contribution of |x|γf(t, x) vanishes when x approaches 0. Thus we expect

that if the compensated small jumps obeyed such assumptions our results would be substantially the same.

ii) We would obtain the same results if we chose to model as α-stable jumps the ones of X having size

smaller than any boundary c > 0 in place of 1. We recall that α-stable processes necessarily have α ∈ (0, 2]

and the only 2-stable process is the Brownian motion.

Notation 3. · Ei−1[Z] = E[Z|Fti−1
].

· For each α ∈ (0, 2) let Zi,α, i = 1, 3, be stable random variables characterized by

E[eisZ1,α ] = e−|s|αK(α)|Γ(−α) cos(απ2 )|·(A++A−)(1−iβ tan(απ2 )sign(s)); (8)

where β = A+−A−
A++A−

;

Z2,α ≥ 0, E[e−sZ2,α ] =







e
−s

α
2 · 2α√

π
K(α/2)(A++A− )Γ(α+1

2 )|Γ(−α) cos(πα2 )|, α ∈ (0, 1) ∪ (1, 2)

e−s
α
2 ·2α−1√πK(α/2)(A++A− )Γ(α+1

2 ), α = 1
.

· For each α ∈ (0, 2) let us de�ne on R+ the speed functions of our interest

ϕα(h)
.
=



















h if α ∈ (0, 1),

h log 1
h if α = 1,

h
1
α if α ∈ (1, 2);

ψα(h)
.
= h

2
α , (9)

where ϕα is shown to be the speed (of convergence to 0 when ∆Xt̄ = 0) of the numerator of Tnt̄ and ψα the

speed of the squared denominator.

Remark 8. The random variable Z1,α is α-stable of type Sα(c, β, 0), with scale parameter c = K(α) |Γ(−α)| ·
∣

∣cos
(

απ
2

)∣

∣ (A+ +A−), skewness parameter β and zero shift parameter (parametrization of [19], thm 14.15).

By contrast, the law of Z2,α cannot be stable, in that Z2,α is non-negative with positive jump sizes, so it

would have to be β = 1 but then the characteristic function of an Sα/2(c, 1, 0) would be not compatible with

the above Laplace transform. Z2,α comes from the leading term of a squared α-stable random variable in

Lemma 5, but nor does it have the law of a squared α-stable random variable.

Note that Γ(−α) < 0 and cos
(

πα
2

)

> 0 for α ∈ (0, 1), while Γ(−α) > 0 and cos
(

πα
2

)

< 0 for α ∈ (1, 2).

The following Theorem provides the asymptotic behavior of the drift burst test statistic Tnt̄ in the absence

of a Brownian component in X.
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Theorem 2. a) Under Assumption A1 and (3) we still have that

Fn(X)
P→ F (X)

.
= K(0)f(∆Xt̄), (10)

having used the notation in (5).

b) Let the kernel satisfy A1 and be such that Kα/2 is Lipschitz and in L1(R). Assume that K satis�es

IA1 for both the functions ϕα and ψα in (9), and assume IA2, IA3, the asymptotics (3) and ∆
h2 → 0.

In the case α ≤ 1 let further be a⋆ 6= 0.

In the case α = 1 let further
√
K logK be bounded and ∆

h2 log
2 1
h → 0.

Then we have

if α ∈ (0, 1], Tnt̄
P→ sgn(−(A+ −A−)) · ∞,

if α ∈ (1, 2), |Tnt̄ |
d→ Zα

.
=

|Z1,α|
√

Z2,α

.

Remarks.

i) Result a) above implies that if on the given path, ω, X has a jump at t̄ then Tnt̄
P→
√

K(0) · sgn(∆Xt̄).

However P{∆Xt̄ 6= 0} = 0.

ii) Note that under IA3, which is assumed at point b), and in the case α < 1 we have a⋆ = a =
∫

|x|≤1
xλ(x)dx = A+−A−

1−α <∞. Thus when α < 1 and a 6= 0, sgn(a⋆) = sgn(A+ −A−), and the above result

is in continuity with Theorem 1, part b).

iii) The asymptotic law of Tnt̄ does not depend on t̄, nor on T , because even if Tnt̄ is substantially

constructed with the increments of X within a window of length h around t̄, under our framework such

increments are i.i.d., and have the same law for any t̄ and any T.

iv) From the proof of Lemma 6, the two random variables Z1,α, Z2,α turn out not to be independent,

because as soon as α < 2 the joint Laplace transform of (Z2
1,α, Z2,α) cannot be factorized.

v) It is never the jumps to cause Tnt̄ to explode: when the jumps have FV (α < 1) then the explosion is

due to the compensator (drift part of the model); when the jumps have IV (α > 1) then Tnt̄ converges to a

�nite r.v.. This corroborates the results in [5].

vi) It is not clear whether or not it is possible to construct con�dence intervals for Zα starting from the

Laplace transform of (Z2
1,α, Z2,α).

In case, Tnt̄ would o�er a test for FV jumps (in which case |Tnt̄ | → +∞) against IV jumps (in which case

|Tnt̄ | → Zα), or a test for whether a jump occurred at t̄ (in which case |Tnt̄ | →
√

K(0)) or not (either

|Tnt̄ | → +∞ or |Tnt̄ | → Zα).

vii) In practice, �nancial asset price models use CGMY processes in place of α−stable processes. The

former are Lévy processes where the small jumps behave exactly as the ones of stable processes, while the

large jumps have smaller size, so allowing the increments of X to have �nite moments. The Lévy density of

a CGMY model is of type

λ(x) =
Ce−Mx

x1+Y
I{x>0} +

Ce−G|x|

|x|1+Y I{x<0},
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where C,G,M > 0. Under this model, for Y ∈ (0, 2) the same results of the current Section would have

substantially to hold, because they only depend on the behavior of the small jumps. However probably the

constants G,M appear within the limit laws of Z1,α, Z2,α, and possibly could multiply the speed functions

ϕα, ψα of numerator and squared denominator of Tnt̄ . Note that e−G|x| can be written as 1 − G|x|f(x), so
the CGMY model falls into the framework in [1].

5 In the presence of a Brownian component

It is natural now to wonder what is the behavior of Tnt̄ when X contains both a Brownian part and in�nite

variation jumps. In [5] it is proved that in the presence of a Brownian part, when the jumps have �nite

variation, corresponding here to the case α < 1, and there is no drift burst, then Tnt̄
d→ N (0, 1), where

N (0, 1) denotes the law of a standard normal r.v.. The following corollary certi�es that the same result

holds also when the jumps have in�nite variation, because the Brownian part introduces the leading terms

both at the numerator and at the denominator of Tnt̄ . It follows that

(a) In the presence of a never vanishing volatility component we have

· Tnt̄
d→ N (0, 1) when there is no drift burst (whatever the variation of the jumps)

· |Tnt̄ |
P→ +∞ when there is drift burst at t̄

(b) In the absence of a Brownian component and of drift burst then

· |Tnt̄ |
d→ Zα if α ∈ (1, 2), while

· |Tnt̄ |
P→ +∞ if α ∈ (0, 1].

As mentioned in the Introduction, tests based on discrete observations are available for assessing whether

in a SM model without drift bursts a Brownian component is needed to better explain the data. Potentially

|Tnt̄ | o�ers a further test.

Corollary 1. Let Y evolve following dYt = btdt+ σtdWt+ dXt, Y0 being F0-measurable, where {bt}t≥0 is a

locally bounded and predictable drift process, {σt}t≥0 is an adapted, càdlàg positive volatility process bounded

away from zero: a.s., for any t > 0, σt ≥ Σ > 0; {Wt}t≥0 is a standard Brownian motion and X = J̃ +J1 is

a pure-jump process for which the compensated small jumps behave like the ones of an α-stable process with

α ∈ [1, 2).

Let the assumptions of Theorem 2, part b), be ful�lled. Then

Tnt̄ (Y ) =

∑n
i=1Ki∆iY

√
∑n
i=1Ki(∆iY )2

d→ N (0, 1).

6 Proofs

The following preliminary Lemma gathers properties of the kernel function that are used numerous times.

Some results stated in the Lemma are known, but the proof is reported to ascertain that under the assump-
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tions of this paper everything works correctly.

Lemma 2. Whatever t̄ ∈ (0, T ) is, under (3), the following hold true:

1) [Lemma A.1 (i) in [18]]. For a sequence of processes b(n) bounded by the same constant C, for any

Lipschitz function K(x) with Lipschitz constant L and ∆
h2 → 0 then

∫ T

0

1

h
K
( t̄− s

h

)

b(n)s ds−
n
∑

i=1

1

h
K
( t̄− ti−1

h

)

∫ ti

ti−1

b(n)s ds = Oa.s.

(

∆

h2

)

2) If K is Lipschitz, K ∈ L1(R) and ∆
h2 → 0 then

∑n
i=1Ki∆i
h → K(1) =

∫

R
K(u)du.

3) If K2 is Lipschitz, has K(2) =
∫

R
K2(x)dx <∞ and ∆

h2 → 0 then
∑n
i=1K

2
i∆i

h → K(2).

4) For a làdlàg bounded process b and any density function K(x) on R we have a.s.

∫ T

0

1

h
K
( t̄− s

h

)

bsds→ b⋆t̄ .

5) If K is Lipschitz, K ∈ L1(R), ∆
h2 → 0 and b(n) are processes for which

(i) a.s. supi=1,..,n sups∈[ti−1,ti) |b
(n)
s − b

(n)
ti−1

| → 0,

then a.s.
n
∑

i=1

1

h
K
( t̄− ti−1

h

)

b
(n)
ti−1

∆i ≃
n
∑

i=1

1

h
K
( t̄− ti−1

h

)

∫ ti

ti−1

b(n)s ds.

If the last assumption is replaced by either

(ii) supi=1,..,n sups∈[ti−1,ti) |b
(n)
s − b

(n)
ti−1

| P→ 0

or

(iii) there exists ρ > 0 : ∀s, u such that |s− u| ≤ ∆ then E[|b(n)s − b
(n)
u |] ≤ C∆ρ,

then the above result holds in probability rather than a.s..

6) If K2 is Lipschitz and in L1(R), then under (3) and ∆
h2 → 0

n
∑

i=1

∑

j<i

K2
iK

2
j∆j∆i ≃

∫ T

0

K2
u

∫ u

0

K2
sdsdu.

Proof of Lemma 2. As for 1), the displayed left term coincides with

n
∑

i=1

∫ ti

ti−1

1

h
(Ks −Ki)b

(n)
s ds,

whose absolute value is dominated by

n
∑

i=1

∫ ti

ti−1

L

h2
|s− ti−1|Cds = Oa.s.

(

∆

h2

)

.

2) By 1) in the special case where b(n) ≡ 1 for all n we have
∑n
i=1Ki∆i
h = 1

h

∫ T

0
K
(

t̄−s
h

)

ds + Oa.s.
(

∆
h2

)

=
∫ t̄
h
t̄−T
h

K(u)du + Oa.s.
(

∆
h2

)

→
∫

R
K(u)du, where for the last

equality we operated the change of variable u = (t̄− s)/h.

3) We apply 2).
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4) For �xed ω the term
∫ T

0
1
hKsbsds coincides with

∫ t̄
h
t̄−T
h

K(u)bt̄−hudu, and

∣

∣

∣

∣

∣

∫ t̄
h

t̄−T
h

K(u)bt̄−hudu− b⋆t̄

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ 0

t̄−T
h

K(u)bt̄−hudu− bt̄+ ·
∫ 0

−∞
K(u)du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t̄
h

0

K(u)bt̄−hudu− bt̄− ·
∫ +∞

0

K(u)du

∣

∣

∣

∣

∣

≤
∫

R

|bt̄−hu − bt̄+| I( t̄−Th ,0](u)K(u)du+

∫

R

|bt̄−hu − bt̄−| I(0, t̄h ](u)K(u)du

+

∫

R

(

|bt̄+|I(−∞, t̄−Th )(u) + |bt̄−|I( t̄h ,+∞)(u)
)

K(u)du :

the three terms are integrals, in the �nite measure on R having intensityK, of bounded integrands converging

to 0 point-wise as h → 0. By the dominated convergence theorem the three integrals tend to 0 and 4) is

proved.

5) If either (i) or (ii) holds true, the thesis follows from the fact that

∣

∣

∣

∣

∣

n
∑

i=1

1

h
Ki

∫ ti

ti−1

b(n)s − b
(n)
ti−1

ds

∣

∣

∣

∣

∣

≤ sup
i=1,..,n

sup
s∈[ti−1,ti)

|b(n)s − b
(n)
ti−1

|
n
∑

i=1

1

h
K
( t̄− ti−1

h

)

∆i,

which tends to 0 a.s. (respectively, tends to 0 in P).

If (iii) holds true then

E

[∣

∣

∣

∣

∣

n
∑

i=1

1

h
Ki

∫ ti

ti−1

b(n)s − b
(n)
ti−1

ds

∣

∣

∣

∣

∣

]

≤ 1

h

n
∑

i=1

Ki

∫ ti

ti−1

E[|b(n)s − b
(n)
ti−1

|]ds ≤ C

h

n
∑

i=1

Ki∆
1+ρ
i → 0.

6) We have

∫ T

0

K2
u

∫ u

0

K2
sdsdu−

n
∑

i=1

K2
i

(

∑

j<i

K2
j∆j

)

∆i =

(

∫ T

0

K2
u

∫ u

0

K2
sdsdu (11)

−
n
∑

i=1

K2
i

∫ ti−1

0

K2
sds∆i

)

+





n
∑

i=1

K2
i

∫ ti−1

0

K2
sds∆i −

n
∑

i=1

K2
i

(

∑

j<i

K2
j∆j

)

∆i



 .

Since
∫ ti−1

0
K2
sds =

∑

j<i

∫ tj
tj−1

K2
sds, the latter term is dominated in absolute value by

n
∑

i=1

K2
i

∑

j<i

∫ tj

tj−1

|K2
s −K2

j |ds∆i ≤ C

n
∑

i=1

K2
i

∑

j<i

∫ tj

tj−1

|s− tj−1|
h

ds∆i

≃ C

n
∑

i=1

K2
i

∑

j<i

∆2
j

h
∆i ≤ C∆

∑n
i=1K

2
i∆i

h
= O(∆) → 0.

The right hand side term in (11) equals

n
∑

i=1

∫ ti

ti−1

K2
u

∫ u

0

K2
sdsdu−

n
∑

i=1

∫ ti

ti−1

K2
i

∫ ti−1

0

K2
sdsdu

=

n
∑

i=1

∫ ti

ti−1

(

K2
u −K2

i

)

∫ ti−1

0

K2
sdsdu+

n
∑

i=1

∫ ti

ti−1

K2
u

∫ u

ti−1

K2
sdsdu :
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using that for any ti−1 we have
∫ ti−1

0
K2
sds = h

∫ t̄
h
t̄−ti−1

h

K2(w)dw ≤ hK(2), the �rst sum is dominated by

C

n
∑

i=1

∫ ti

ti−1

|u− ti−1|
h

du · hK(2) = O(∆) → 0.

Also for the second sum we use that
∫ u

ti−1
K2
sds = h

∫

t̄−ti−1
h

t̄−u
h

K2(w)dw ≤ hK(2), thus the sum is dominated

by
n
∑

i=1

∫ ti

ti−1

K2
udu ·O(h) =

∫ T

0

K2
udu ·O(h) = O(h2) → 0.

Proof of Lemma 1. For �xed ω, for any given jump time Sp = Sp(ω) of J and any integer n, let ip= ip(ω)

be the right extreme of the unique interval [ti−1, ti) containing Sp.

For the �xed ω,
∑Nt
p=1 cp is a step-wise constant function of t, so each increment ∆iJ either is 0, if [ti−1, ti)

does not contain jump times, or is
∑∆iN
p=1 cp, if [ti−1, ti) contains some instants Sp. Since the time horizon

T is �nite and �xed, for su�ciently small ∆ we have 0 ≤ ∆iN ≤ 1 for all i = 1, .., n, thus ∆iJ either is 0 or

reduces to a single cp ∈ R− {0}, and ∑n
i=1Kif

(

∑∆iN
p=1 cp

)

reduces to
∑NT
p=1Kipf(cp).

a) When t̄ is a jump time then it coincides with one of the Sp, say Sp̄
.
= t̄, while for the other indices

p we have ∆S
.
= minp 6=p̄ |Sp − t̄| > 0. For ∆ → 0 we have that, for all p = 1, .., NT , tip−1 → Sp, so that

t̄ − tip̄−1 → 0, and since |t̄ − tip̄−1| ≤ ∆ip ≤ ∆, we have
|t̄−tip̄−1|

h ≤ ∆
h → 0, thus Kip̄f(cp̄) → K(0)f(cp̄) =

K(0)f(∆Jt̄).

On the other hand, for p 6= p̄ we have that |t̄ − tip−1| → |t̄ − Sp| ≥ ∆S > 0, thus
|t̄−tip−1|

h → +∞, and

Kip → 0. So, for p 6= p̄, Kipf(cp) → 0.

In other words, for su�ciently small ∆,
∑n
i=1Kif

(

∑∆iN
p=1 cp

)

only contains NT non-zero terms, and all of

them tend to 0 but one. Only the term for which [ti−1, ti) contains Sp̄ = t̄ has a non-zero limit, amounting

to K(0)f(cp̄) = K(0)f(∆Jt̄).

b) When t̄ is not a jump time, we have that, for any given ω, each Sp is at positive distance from t̄:

we de�ne p through

|t̄− Sp| .= min
p

|t̄− Sp| > 0,

and again, for su�ciently small ∆ = ∆(ω), we have
∑NT
p=1Kipf(∆ipJ) =

∑NT
p=1Kipf(cp), which is a

sum of NT terms, where now all the terms Kip tend to 0, because, similarly as above, tip−1 → Sp

but |t̄ − Sp| ≥ |t̄ − Sp| > 0, thus
|t̄−tip−1|

h → +∞. However, since f(∆Jt̄) = 0 we can also write
∑n
i=1Kif(∆iJ) → K(0)f(∆Jt̄).

Proof of Theorem 1.

a) When t̄ is a jump time. We show that a.s.

1a)
∑n
i=1Ki∆iX → K(0)∆Xt̄,

2a)
∑n
i=1Ki(∆iX)2 → K(0)

(

∆Xt̄

)2

,

which are su�cient to conclude.
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As for 1a), using Lemma 1 for J, it remains to check that
∑n
i=1Ki

∫ ti
ti−1

asds
a.s.→ 0, which is almost

immediate. In fact, we have

∣

∣

∣

∣

∣

n
∑

i=1

Ki

∫ ti

ti−1

asds

∣

∣

∣

∣

∣

≤
n
∑

i=1

Ki

∫ ti

ti−1

λ(R)ds = λ(R)h ·
∑n
i=1Ki∆i

h
.

Since the second factor above tends a.s. to 1 we are done.

In order to show 2a) we write

n
∑

i=1

Ki(∆iX)2 =

n
∑

i=1

Ki

(

∆iN
∑

p=1

cp

)2

+

n
∑

i=1

Ki

(

∫ ti

ti−1

asds
)2

− 2

n
∑

i=1

Ki

(

∆iN
∑

p=1

cp

)

∫ ti

ti−1

asds. (12)

By Lemma 1 the �rst term tends to K(0)(∆Xt̄)
2. The second term in the rhs of (12) similarly as above tends

to 0, because it is bounded from above by

n
∑

i=1

Ki(λ(R)∆i)
2 ≤ C∆h

∑n
i=1Ki∆i

h
→ 0.

The third term in (12) is a negligible mixed term. In fact, for small ∆ it becomes

−2

NT
∑

p=1

Kipcp

∫ ip

tip−1

asds : (13)

since on the �xed ω only �nitely many jumps occurred, each with �nite size, the random number c̄
.
=

maxp=1,..,NT |cp| is �nite, further under Assumption A1.1 the kernel K is bounded, then the latter sum is

dominated in absolute value by

C

NT
∑

p=1

∆ipλ(R) ≤ CNT∆ → 0.

Thus 2a) follows and a) is proved.

b) When t̄ is not a jump time. Within
∑n
i=1Ki∆iX =

∑NT
p=1Kip∆ipX −∑n

i=1Ki

∫ ti
ti−1

asds,

as above, the second sum tends a.s. to 0, and now also the �rst one does, by Lemma 1. The same happens

at the denominator of Tnt̄ , thus we have a limit form 0
0 , and we look for the speed at which the two terms of

the quotient tend to zero.

For that, note that, by virtue of the assumption that if µ(ω,R, {s}) 6= 0 then
∫

R
δ(ω, x, s)µ(dx, {s}) 6= 0, for the �xed ω we have |c| .= minp=1,..,NT |cp| > 0, and we can write

∑n
i=1Ki∆iX

as follows
n
∑

i=1

Ki∆iX =
n
∑

i=1

Ki

∫ ti

ti−1

∫

|δ(x,s)|>|c|
δ(x, s)µ(dx, ds)−

n
∑

i=1

Ki

∫ ti

ti−1

asds. (14)

For a su�ciently small ∆ = ∆(ω) the �rst sum contains the NT vanishing terms Kipcp = K
(

t̄−tip−1

h

)

cp, the

leading of which, when h → 0, by Assumption A1.2 is the one having the smallest
t̄−tip−1

h . Since for all p

we have tip−1 → Sp, the slowest term is K
(

t̄−tip−1

h

)

|cp|, being |cp| > 0. In other words, for the given ω the

�rst sum in (14) tends to zero at speed K
(

t̄−Sp
h

)

.
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Using Lemma 2, points 1) and 4),

1

h

n
∑

i=1

Ki

∫ ti

ti−1

asds =

∫ T

0

1

h
K
( t̄− s

h

)

asds+Oa.s.

(

∆

h2

)

→ a⋆t̄ (ω),

thus if a⋆t̄ (ω) 6= 0 the last sum in (14) tends to 0 as −ha⋆t̄ , which, by Assumption A1.2, dominates K
(

t̄−Sp
h

)

,

so the numerator of Tnt̄ tends to zero as −ha⋆t̄ .

As for the denominator of Tnt̄ , from (12) analogously as above we �nd that the leading term of the

�rst sum is K
(

t̄−Sp
h

)

c2p; the third sum for small ∆ is as in (13), thus it is bounded in absolute value by

C
∑NT
p=1Kip |cp|∆ip . The latter is in turn asymptotically dominated by CK

(

t̄−Sp
h

)

|cp|∆ << CK
(

t̄−Sp
h

)

.

This shows that the third sum is negligible with respect to the �rst one.

The second sum
∑n
i=1Ki

(

∫ ti
ti−1

asds
)2

in (12) is now shown to tend a.s. to 0 at speed h∆ · (H ′a2)⋆t̄ . For

that we proceed based on the following schedule:

1b) 1
∆h

∑n
i=1Ki

(

∫ ti
ti−1

asds
)2

≃ 1
∆h

∑n
i=1Kia

2
ti−1

∆2
i

2b) 1
∆h

∑n
i=1Kia

2
ti−1

∆2
i ≃

∫ T

0
1
hKsH

′
sa

2
sds

3b)
∫ T

0
1
hKsH

′
sa

2
sds→ (H ′a2)⋆t̄ ,

which proves that the denominator of Tnt̄ tends to 0 as

√

√

√

√K

(

t̄− Sp

h

)

+ h∆(H ′a2)⋆t̄ . (15)

However, from Assumption A1.2 it will follow that the latter tends to 0 as
√

h∆ · (H ′a2)⋆t̄ . Then note that

(H ′a2)⋆t̄ = H ′
t̄−a

2
t̄−K+ +H ′

t̄+a
2
t̄+K− > 0,

because at least one between at̄−K+ and at̄+K− is non zero, then at least one between a2t̄−K+ and a2t̄+K−

is strictly positive, and both H ′
t̄+, H

′
t̄− are strictly positive. Thus it will also follow that

Tnt̄ ≃ −ha⋆t̄
√

h∆(H ′a2)⋆t̄
≃ −

√

h

∆

a⋆t̄
√

H ′
t̄(a

2)⋆t̄
→ ∞ · sgn

(

− a⋆t̄

)

,

which will conclude the proof of b).

Let us now prove 2b), 3b) and then 1b). As for 2b), the di�erence of the terms at the two sides is

∫ T

0

1

h
KsH

′
sa

2
sds−

1

∆h

n
∑

i=1

Kia
2
ti−1

∆2
i

=
1

h

n
∑

i=1

∫ ti

ti−1

[

Ks −Ki

]

H ′
sa

2
sds+

1

h

n
∑

i=1

∫ ti

ti−1

Ki

[

H ′
sa

2
s − a2ti−1

∆i

∆

]

ds,

having subtracted and added
∫ ti
ti−1

KiH
′
sa

2
sds for each i: since K is Lipschitz and H ′ and a are bounded,

the �rst term of the rhs above is dominated by C
h

∑n
i=1

∆2
i

h ≤ C∆max
h2 → 0. We thus remain with the second
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term, which is split as

1

h

n
∑

i=1

∫ ti

ti−1

KiH
′
s

[

a2s − a2ti−1

]

ds+
1

h

n
∑

i=1

∫ ti

ti−1

Ki

[

H ′
s −

∆i

∆

]

a2ti−1
ds, (16)

where the second sum is

1

h

∑

i∈I(n)
H

∫ ti

ti−1

Ki

[

H ′
s −

∆i

∆

]

a2ti−1
ds+

1

h

∑

i 6∈I(n)
H

∫ ti

ti−1

Ki

[

H ′
s −

∆i

∆

]

a2ti−1
ds :

accounting for the boundedness of K,H ′, ∆i∆ and a and for the fact that ∆max ≤ C∆, the latter display is

dominated in absolute value by

C

h
m∆+

C

h

∑

i 6∈I(n)
H

sup
s∈[ti−1,ti)

∣

∣

∣H ′
s −

∆i

∆

∣

∣

∣Ki∆i,

≤ C
∆

h
+ C sup

i 6∈I(n)
H

sup
s∈[ti−1,ti)

∣

∣

∣H ′
s −

∆i

∆

∣

∣

∣

∑n
i=1Ki∆i

h

a.s.→ 0,

having used Lemma 2 part 2). We thus remain with only the �rst sum in (16), whose absolute value is

dominated by

C

h

n
∑

i=1

Ki sup
s∈[ti−1,ti)

|a2s − a2ti−1
|∆i,

however note that

sups∈[ti−1,ti)|a2s − a2ti−1
|=sups∈[ti−1,ti)|as − ati−1

||as + ati−1
|≤C sups∈[ti−1,ti)|as − ati−1

|
thus the last display is in turn dominated by

C sup
i=1,..,n

sup
s∈[ti−1,ti)

|as − ati−1 | ·
∑n
i=1Ki∆i

h

a.s.→ 0,

which concludes the proof of 2b).

If in place of A3 (i) we assume A3 (ii), clearly the limit above is in probability. If instead in place of A3

(i) we assume A3 (iii) the �rst sum in (16) is dealt with as follows.

E

[

1

h

∣

∣

∣

∣

∣

n
∑

i=1

∫ ti

ti−1

KiH
′
s

[

a2s − a2ti−1

]

ds

∣

∣

∣

∣

∣

]

(17)

≤ C
1

h

n
∑

i=1

Ki

∫ ti

ti−1

E[|as − ati−1
|]ds ≤ C

1

h

n
∑

i=1

Ki∆
1+ρ → 0,

Thus again the convergence at 2b) takes place in probability.

3b) follows from Lemma 2, point 4).

1b) Writing, for each i,
(

∫ ti
ti−1

asds
)2

=
(

∫ ti
ti−1

as − ati−1ds+ ati−1∆i

)2

we obtain

1

∆h

n
∑

i=1

Ki

(

∫ ti

ti−1

asds
)2

=
1

∆h

n
∑

i=1

Ki

(

∫ ti

ti−1

as − ati−1ds
)2

(18)

+
2

∆h

n
∑

i=1

Ki

∫ ti

ti−1

as − ati−1ds · ati−1∆i +
1

∆h

n
∑

i=1

Kia
2
ti−1

∆2
i ,

18



and, since by 2b) and 3b) 1
∆h

∑n
i=1Kia

2
ti−1

∆2
i →

(

H ′a2
)⋆

t̄
6= 0, it is su�cient to show that the �rst two

sums on the right hand side above tend to 0.

In both cases we use that

1

∆ i

∫ ti

ti−1

as − ati−1
ds ≤

√

1

∆ i

∫ ti

ti−1

(

as − ati−1

)2

ds.

It follows that the �rst of the two sums is

1

∆h

n
∑

i=1

Ki

( 1

∆ i

∫ ti

ti−1

as − ati−1
ds
)2

∆2
i ≤

1

∆h

n
∑

i=1

Ki
1

∆i

∫ ti

ti−1

(as − ati−1
)2ds∆2

i

≤ 1

∆h

n
∑

i=1

Ki sup
s∈[ti−1,ti)

|as − ati−1
|2∆2

i ≤ C sup
i=1,..,n

sup
s∈[ti−1,ti)

|as − ati−1
|2
∑n
i=1Ki∆i

h
,

which, using Lemma 1, part 2), and Assumption A3 (i), tends a.s. to 0.

The second sum at the rhs of (18) is

2

∆h

n
∑

i=1

Ki
1

∆i

∫ ti

ti−1

as − ati−1ds · ati−1∆
2
i ≤

2

∆h

n
∑

i=1

Ki

√

1

∆i

∫ ti

ti−1

(

as − ati−1

)2

ds · |ati−1 |∆2
i

≤ C

∆h

n
∑

i=1

Ki

√

sup
s∈[ti−1,ti)

|as − ati−1
|2 ·∆2

i ≤ C sup
i=1,..,n

sup
s∈[ti−1,ti)

|as − ati−1
| ·
∑n
i=1Ki∆i

h

a.s.→ 0,

which concludes the proof of 1b).

If in place of A3 (i) we assume A3 (ii), clearly the last two limits above are in probability. If instead in

place of A3 (i) we assume A3 (iii) then

E

[

1

∆h

n
∑

i=1

Ki
1

∆i

∫ ti

ti−1

(as − ati−1)
2ds∆2

i

]

, E

[

2

∆h

n
∑

i=1

Ki
1

∆i

∫ ti

ti−1

|as − ati−1 |ds · |ati−1 |∆2
i

]

tend to 0 because they turn out to be bounded exactly as in (17).

Lemma 3. Let g : R → IC be a deterministic Lebesgue integrable function. Given a deterministic function

ϕ de�ned on R+, assume that K satis�es IA1 for ϕ. Then for �xed α > 0, for any s ∈ R, under (3) with

∆
h2 → 0, we have

i) if Kα is Lipschitz and in L1(R) then

n
∑

i=1

Kα
i

h
∆i

∫

|v|≤Ki|s|
ϕ(h)

g(v)dv → K(α)

∫

R

g(v)dv (19)

ii) if K is Lipschitz and K ∈ L1(R),

n
∑

i=1

Ki

h
∆iI{ |s|Ki

ϕ(h)
>1} → K(1).

iii) if Kα/2 is Lipschitz and in L1(R), and Ψ ∈ L1(R) is a deterministic function then

n
∑

i=1

K
α
2
i

h
∆i

∫

R

Ψ(u)

∫

|v|≤
√

2Ki|s|
ϕ(h)

|u|
g(v)dvdu→ K(α/2) ·

∫

R

Ψ(u)du

∫

R

g(v)dv

19



Proof of Lemma 3. i) Since the di�erence of the two terms in (19) can be written as

n
∑

i=1

Kα
i

h
∆i

(

∫

|v|≤Ki|s|
ϕ(h)

g(v)dv −
∫

R

g(v)dv

)

+

∫

R

g(v)dv

(

n
∑

i=1

Kα
i

h
∆i −K(α)

)

,

it is su�cient to show that

n
∑

i=1

Kα
i ∆i

h

(

∫

|v|≤Ki|s|
ϕ(h)

g(v)dv −
∫

R

g(v)dv

)

→ 0, (20)

because using then that, as in Lemma 2, 3),
∑n
i=1

Kα
i ∆i
h → K(α), the proof is concluded. The absolute value

of the expression in (20) is dominated by

n
∑

i=1

Kα
i ∆i

h

∫

|v|>Ki|s|
ϕ(h)

|g(v)|dv.

We split I
.
= {1, 2, ...n} = I ′ ∪ I ′′, where

I ′ = {i ∈ I : |t̄− ti−1| ≤ εh}, I ′′ = {i ∈ I : |t̄− ti−1| > εh}.

For i ∈ I ′ we have Ki ≥ K
(

εh
h

)

, thus

∑

i∈I′

Kα
i ∆i

h

∫

|v|>Ki|s|
ϕ(h)

|g(v)|dv ≤
∑

i∈I′

Kα
i ∆i

h

∫

|v|>
K( εhh )|s|
ϕ(h)

|g(v)|dv,

and the latter tends to 0, because the �rst factor is dominated by
∑n
i=1

Kα
i ∆i
h → Kα, while the second factor

is an integral of |g| on a vanishing region.

On the other hand,
∑

i∈I′′

Kα
i ∆i

h

∫

|v|>Ki|s|
ϕ(h)

|g(v)|dv ≤
∑

i∈I′′

Kα
i ∆i

h

∫

R

|g(v)|dv,

and usign Lemma 2, 1) we have

∑

i∈I′′

Kα
i ∆i

h
≃
∫

r∈(0,T ):|t̄−r|>εh

Kα
r

h
dr =

∫ − εh
h

t̄−T
h

Kα(u)du+

∫ t̄
h

εh
h

Kα(u)du→ 0. (21)

ii) We have that

n
∑

i=1

Ki

h
∆iI{ |s|Ki

ϕ(h)
>1

} −K(1) ≃
n
∑

i=1

Ki

h
∆iI{ |s|Ki

ϕ(h)
>1

} −
n
∑

i=1

Ki

h
∆i =

n
∑

i=1

Ki

h
∆iI{ |s|Ki

ϕ(h)
≤1

},

and we show that the latter sum has limit 0. With I ′ and I ′′ as de�ned at point i), we immediately see that

∑

i∈I′

Ki

h
∆iI{ |s|Ki

ϕ(h)
≤1

} → 0,

in fact if |t̄− ti−1| ≤ εh then K
(

|t̄−ti−1|
h

)

≥ K
(

εh
h

)

, thus

∑

i∈I′

Ki

h
∆iI{ |s|Ki

ϕ(h)
≤1

} ≤
∑

i∈I′

Ki

h
∆iI{ |s|K( εhh )

ϕ(h)
≤1

} = I{ |s|K( εhh )
ϕ(h)

≤1

}

∑

i∈I′

Ki

h
∆i :

since the �rst factor tends to 0 and the second one is bounded, the latter product tends to 0.
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Now we check that also
∑

i∈I′′

Ki

h
∆iI{ |s|Ki

ϕ(h)
≤1

} → 0.

First of all note that

∑

i∈I′′

Ki

h
∆iI{ |s|Ki

ϕ(h)
≤1

} ≤
∑

i∈I′′

Ki

h
∆i =

n
∑

i=1

Ki

h
∆iI{

|t̄−ti−1|>εh
},

then, with b
(n)
r

.
= I{|t̄−r|>εh}, as soon as we have veri�ed supi∈I′′ supr∈[ti−1,ti) |b

(n)
r −b(n)ti−1

| → 0, we can apply

Lemma 2 5) and 1) and conclude that

n
∑

i=1

Ki

h
∆iI{

|t̄−ti−1|>εh
} =

n
∑

i=1

Ki

h
b
(n)
ti−1

∆i ≃
n
∑

i=1

Ki

h

∫ ti

ti−1

b(n)r dr ≃
∫ T

0

Kr

h
b(n)r dr

=

∫ T

0

Kr

h
I{

|t̄−r|
h >

εh
h

}dr =

∫ t̄
h

t̄−T
h

K(u)I{
|u|> εh

h

}du =

∫

−εh
h

t̄−T
h

K(u)du+

∫ t̄
h

εh
h

K(u)du→ 0.

So it remains to evaluate supi∈I′′ supr∈[ti−1,ti) |b
(n)
r − b

(n)
ti−1

|, where, for i ∈ I ′′, we have |t̄− ti−1| > εh, thus

|b(n)r − b
(n)
ti−1

| = I|t̄−r|≤εh,|t̄−ti−1|>εh .

Now note that for any r ∈ [ti−1, ti) we have εh < |t̄− ti−1| ≤ |t̄− r|+ |r − ti−1| ≤ |t̄− r|+∆, thus for any

i ∈ I ′′, for any r ∈ [ti−1, ti) we have
εh
h

− ∆

h
<

|t̄− r|
h

.

Since as n → ∞ we have εh
h → ∞ while ∆

h → 0, then |t̄−r|
h → ∞, and for su�ciently large n, uniformly

on i ∈ I ′′, we have εh
h < |t̄−r|

h , and thus |t̄ − r| < εh cannot occur. That is, for su�ciently large n, for any

i ∈ I ′′, for any r ∈ [ti−1, ti), I|t̄−r|≤εh,|t̄−ti−1|>εh = 0, i.e. supi∈I′′ supr∈[ti−1,ti) I|t̄−r|≤εh,|t̄−ti−1|>εh → 0, and

we are done.

As for iii), the proof is substantially the same as for i), we only point out some details. It is su�cient to

prove that
n
∑

i=1

K
α
2
i

h
∆i

(

∫

R

Ψ(u)

∫

|v|≤
√

2Ki|s|
ϕ(h)

|u|
g(v)dvdu−

∫

R

Ψ(u)du

∫

R

g(v)dv

)

=

n
∑

i=1

K
α
2
i

h
∆i

∫

R

Ψ(u)

∫

|v|>
√

2Ki|s|
ϕ(h)

|u|
g(v)dvdu→ 0, (22)

because as in lemma 2, 3), we have
∑n
i=1

K
α
2
i

h ∆i → K(α/2). The sum in (22) is again split into the sum of

the terms with i ∈ I ′ and the sum of the ones with i ∈ I ′′: since for i ∈ I ′ we have {|v| >
√

2Ki|s|
ϕ(h) |u|} ⊂

{|v| >
√

2K( εhh )|s|
ϕ(h) |u|}, the absolute value of the �rst sum is dominated by

∑

i∈I′

K
α
2
i

h
∆i

∫

R

Ψ(u)

∫

|v|>
√

2K( εhh )|s|
ϕ(h)

|u|
|g(v)|dvdu,

where for any u we have
∫

|v|>
√

2K( εhh )|s|
ϕ(h)

|u|
|g(v)|dv → 0 and Ψ(u)

∫

|v|>
√

2K( εhh )|s|
ϕ(h)

|u|
|g(v)|dv ≤ CΨ(u) ∈

L1(R), where here C =
∫

R
|g(v)|dv, thus by the dominated convergence theorem the sum over i ∈ I ′ tends
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to 0.

On the other hand,

∑

i∈I′′

K
α
2
i

h
∆i

∫

R

Ψ(u)

∫

|v|>
√

2Ki|s|
ϕ(h)

|u|
|g(v)|dvdu ≤

∑

i∈I′′

K
α
2
i

h
∆i

∫

R

Ψ(u)du

∫

R

|g(v)|dv,

where, as in (21), the �rst factor tends to 0.

Lemma 4. Assume that K satis�es IA1 for ϕα in (9) and for ϕ
(1)
α (h) = h

1
α . Under IA2, IA3, (3),

∆/h2 → 0 and if Kα is Lipschitz and in L1(R) then, using the decomposition

∆iX = ∆iJ̃ +∆iJ
1, ∆iJ̃ =

∫ ti

ti−1

∫

|x|≤1

xdµ̃, ∆iJ
1 =

∫ ti

ti−1

∫

|x|>1

xdµ,

we have














































if α ∈ (0, 1)
∑n
i=1Ki∆iJ̃

h

d→ −a and

∑n
i=1Ki

∫ ti
ti−1

∫

|x|≤1
xdµ

h
1
α

d→ Z1,α,

if α = 1 and A+ 6= A−
∑n
i=1Ki∆iJ̃

h log 1
h

d→ −(A
+
−A−)K(1),

if α ∈ (1, 2)
∑n
i=1Ki∆iJ̃

h
1
α

d→ Z1,α.

Proof. In each case, de�ned Zn
.
=

∑n
i=1Ki∆iJ̃

ϕα(h)
, we proceed by showing that the characteristic functions

E[eisZn ] converge to the characteristic function of the limit shown in the statement of the Lemma.

Since J̃ is a Lévy process,

E[eisZn ] = E





n
∏

j=1

eis
Kj∆iJ̃

ϕα(h)



 =

n
∏

j=1

E
[

eis
Kj∆iJ̃

ϕα(h)

]

=

n
∏

j=1

e∆
∫

|x|≤1
e
is

Kj
ϕα(h)

x−1−is Kj
ϕα(h)

xλ(x)dx

With z
.
= s

Kj
ϕα(h)

, the integral at exponent is

A
+

∫

0<x≤1

(

eizx − 1− izx
)

x−1−αdx+A−

∫

−1≤x<0

(

eizx − 1− izx
)

|x|−1−αdx (23)

= (A+ +A−)

∫ 1

0

cos
(

zx
)

− 1

x1+α
dx+ i(A+ −A−)

∫ 1

0

sin
(

zx
)

− zx

x1+α
dx.

By changing variable v = |z|x that becomes

|z|α
[

(A
+
+A−)

∫

0<v≤|z|

cos(v)− 1

v1+α
dv + i(A

+
−A−)sgn(s)

∫

0<v≤|z|

sin(v)− v

v1+α
dv

]

,

so that

E[eisZn ] = e

∑n
j=1 ∆

∣

∣

∣

sKj
ϕα(h)

∣

∣

∣

α
[

(A
+
+A− )

∫

0<v≤
|s|Kj
ϕα(h)

cos(v)−1

v1+α
dv+i(A

+
−A− )sgn(s)

∫

0<v≤
|s|Kj
ϕα(h)

sin(v)−v
v1+α

dv

]

. (24)
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In each of the three cases α < 1, α = 1, α > 1 the right speed is the ϕα(h) such that the exponent in the

above expression converges to a �nite quantity.

In the case α ∈ (0, 1) we have ϕα(h) = h, cos(v)−1
v1+α , sin(v)v1+α ∈ L1(R+), while

∣

∣

∣

∣

sKj

ϕα(h)

∣

∣

∣

∣

α

sgn(s)

∫

0<v≤ |s|Kj
h

v

v1+α
dv =

sKj

h

1

1− α
.

It follows form (24) that E[eisZn ] is give by

e

∑n
j=1 ∆

∣

∣

∣

sKj
h

∣

∣

∣

α
(A

+
+A− )

[

∫

0<v≤
|s|Kj
h

cos(v)−1

v1+α
dv+iβsgn(s)

∫

0<v≤
|s|Kj
h

sin(v)

v1+α
dv

]

−i∑n
j=1 ∆

sKj
h

A
+

−A−
1−α

Recall that (from [19], Lemma 14.11)

∫

R+

cos(v)− 1

v1+α
dv =







Γ(−α) cos
(

πα
2

)

, α ∈ (0, 1) ∪ (1, 2)

−π
2 , α = 1,

(25)



















∫ +∞
0

sin(v)
v1+α dv = −Γ(−α) sin

(

πα
2

)

, if α ∈ (0, 1)

∫ 1

0
sin(v)−v

v2 dv +
∫ +∞
1

sin(v)
v2 dv < +∞

(26)

∫ +∞

0

eir − 1− ir

r1+α
dr = Γ(−α)e−iπ α2 ,

∫ +∞

0

e−ir − 1 + ir

r1+α
dr = Γ(−α)eiπ α2 . (27)

Thus, since the two integrals above are dominated by constants, |s|α∑n
j=1 ∆

Kα
j

hα = |s|α
∑n
j=1 ∆Kα

j

h ·h1−α → 0,

and since a =
∫

|x|≤1
xλ(x)dx =

A
+
−A−

1−α , we have

E[eisZn ] → e−is
A

+
−A−

1−α = e−isa,

where the limit is the characteristic function of the constant random variable −a.

If we do not compensate the small jumps and only consider Yn
.
=

∑n
i=1Ki

∫ ti
ti−1

∫

|x|≤1
xdµ

h1/α , we only have

E[eisYn ] = e

∑n
j=1 ∆

∣

∣

∣

sKj

h1/α

∣

∣

∣

α



(A
+
+A− )

∫

0<v≤
|s|Kj
h1/α

cos(v)−1

v1+α
dv+i(A

+
−A− )sgn(s)

∫

0<v≤
|s|Kj
h1/α

sin(v)

v1+α
dv





, (28)

and by Lemma 3 i) we have

n
∑

j=1

Kα
j

h
∆

∫

0<v≤ |s|Kj

h
1
α

cos(v)− 1

v1+α
dv → K(α)Γ(−α) cos

(πα

2

)

,

n
∑

j=1

Kα
j

h
∆

∫

0<v≤ |s|Kj

h
1
α

sin(v)

v1+α
dv → −K(α)Γ(−α) sin

(πα

2

)

.

Thus

E[eisYn ] → e
|s|αK(α)Γ(−α)

(

(A
+
+A− ) cos(πα2 )−i sgn(s)(A+

−A− ) sin(πα2 )
)

= E[eisZ1,α ],
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having used notation (8).

If α = 1, with ϕα(h) = h log 1
h and zj =

sKj
h log 1

h

, from (24) we have

E[eisZn ] = e
∑n
j=1 ∆|zj |

[

(A
+
+A− )

∫ |zj |
0

cos(v)−1

v2
dv+i(A

+
−A− )sgn(zj)

∫ |zj |
0

sin(v)−v
v2

dv
]

(29)

The exponent above is

∑n
j=1 ∆Kj

h log 1
h



|s|(A+ +A−)

∫

|s|Kj
h log 1

h

0

cos(v)− 1

v2
dv + is(A+ −A−)

∫

|s|Kj
h log 1

h

0

sin(v)− v

v2
dv



 ,

which is shown to tend to −is(A+−A−) : the �rst integrand
cos(v)−1

v2 Iv>0 is in L1(R), thus, applying Lemma

3 i) we obtain that

|s|
∑n
j=1 ∆Kj

h log 1
h

(A
+
+A−)

∫

|s|Kj
h log 1

h

0

cos(v)− 1

v2
dv → 0.

The second integral is written as

∫ |zj |

0

sin(v)− v

v2
dvI|zj |≤1 +

[

∫ 1

0

sin(v)− v

v2
dv +

∫ |zj |

1

sin(v)

v2
dv − log (|zj |)

]

I|zj |>1, (30)

where sin(v)−v
v2 ∈ L1((0, 1)), and sin(v)

v2 Iv∈(1,+∞) ∈ L1(R). Note that if s = 0 we directly �nd that E[eisZn ] =

1, we thus only concentrate on a �xed s 6= 0. We have that

∑n
j=1 ∆Kj

h log 1
h





∫

|s|Kj
h log 1

h

0

∣

∣

∣

∣

sin(v)− v

v2

∣

∣

∣

∣

dvI|zj |≤1 +

∫ 1

0

∣

∣

∣

∣

sin(v)− v

v2

∣

∣

∣

∣

dv



 ≤

∑n
j=1 ∆Kj

h
2

∫ 1

0

∣

∣

∣

∣

sin(v)− v

v2

∣

∣

∣

∣

dv
1

log 1
h

≤
∑n
j=1 ∆Kj

h

C

log 1
h

→ 0,

and
∑n
j=1 ∆Kj

h log 1
h

∫

|s|Kj
h log 1

h

1

sin(v)

v2
dvI|zj |>1 ≤ C

log 1
h

∑n
j=1 ∆Kj

h
→ 0.

Finally, recalling that K is bounded (by IA1),

−is(A
+
−A−)

∑n
j=1 ∆Kj

h log 1
h

log

( |s|Kj

h log 1
h

)

I{ |s|Kj
h log 1

h

>1

} → −is(A
+
−A−)K(1),

since within
∑n
j=1Kj∆

h log 1
h

[

log(|s|) + log (Kj) + log(
1

h
)− log

(

log
1

h

)]

I{ |s|Kj
h log 1

h

>1

}

the �rst two terms are bounded in absolute value by

1

log 1
h

[

∑n
j=1 |Kj log(Kj)|∆

h
+
C
∑n
j=1Kj∆

h

]

→ 0,

the third term converges by Lemma 3 i):

n
∑

j=1

Kj

h
∆I{ |s|Kj

h log 1
h

>1

} → K(1);

24



and the fourth one
n
∑

j=1

Kj

h
∆I{ |s|Kj

h log 1
h

>1

}

log
(

log 1
h

)

log 1
h

→ 0.

Thus the statement is proved.

If α ∈ (1, 2) we can directly use the relations in (27) In fact, from (23), where zj = s
Kj

ϕα(h)
= s

Kj
h1/α , we

change variable v = |zj |x in the �rst integral, while in the second one we �rstly change in y = −x, then in

v = |zj |y, and we reach

|zj |α
[

A
+

∫ |zj |

0

eiv·sgn(zj) − 1− iv · sgn(zj)
v1+α

dv +A−

∫ |zj |

0

e−iv·sgn(zj) − 1 + iv · sgn(zj)
v1+α

dv

]

(31)

With g(v) = eiv−1−iv
v1+α Iv>0 ∈ L1(R), and ḡ its complex conjugate, the above equals

|zj |α
(

A
+

∫ |zj |

0

g(v)Izj>0 + ḡ(v)Izj<0 dv +A−

∫ |zj |

0

ḡ(v)Izj>0 + g(v)Izj<0 dv

)

thus

E[eisZn ] = e
∑n
j=1 ∆

∣

∣

∣

sKj
ϕα(h)

∣

∣

∣

α[

Izj>0

∫ |zj |
0 A

+
g(v)+A− ḡ(v) dv+Izj<0

∫ |zj |
0 A

+
ḡ(v)+A−g(v) dv

]

.

With ϕα(h) = h
1
α , by Lemma 3 i), the exponent

|s|α∑n
j=1 ∆K

α
j

h

[

Is>0

∫ |zj |

0

A
+
g(v) +A− ḡ(v)dv + Is<0

∫ |zj |

0

A
+
ḡ(v) +A−g(v)dv

]

tends to

|s|αK(α)Γ(−α)
(

Is>0

(

A+e
−iπ α2 +A−e

iπ α2

)

+ Is<0

(

A+e
iπ α2 +A−e

−iπ α2
))

.

By developing and simplifying, the above expression becomes

−|s|αK(α)c
(

1− iβ tan
(απ

2

)

sign(s)
)

,

where c = −Γ(−α) cos
(

απ
2

)

(A+ +A−), β = A+−A−
A++A−

, and the statement is proved.

Lemma 5. Assume that K satis�es IA1 for ψα, then IA2, IA3, (3), ∆
h2 → 0 and that Kα/2 is Lipschitz

and in L1(R). In the case α = 1 assume also
√
K log(K) bounded and

∆ log2 1
h

h2 → 0. Then











































if α ∈ (0, 1)

∑n
i=1Ki(

∫ ti
ti−1

∫

|x|≤1
xdµ)2

h
2
α

d→ Z2,α,

if α = 1
∑n
i=1Ki(∆iJ̃)

2

h2

d→ Z2,α,

if α ∈ (1, 2)
∑n
i=1Ki(∆iJ̃)

2

h
2
α

d→ Z2,α,

.
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Proof. De�ned now Ṽn
.
=

∑n
i=1Ki(∆iJ̃)

2

ψα(h)
, since Ṽn ≥ 0, we proceed by showing that the Laplace transforms

E[e−sṼn ] converge to the Laplace transform of the limit shown in the statement of this Lemma (see [6],

theorem 6.6.3 for the properties of the Laplace transforms limit). Since J̃ is a Lévy process, with s ≥ 0,

E[e−sṼn ] =
n
∏

j=1

E
[

e−s
Kj(J̃∆)2

ψα(h)

]

=

n
∏

j=1

∫

R

e−λjx
2

p̃(x)dx,

where we de�ned λj = λ
(α)
j

.
=

sKj
ψα(h)

, and p̃(x) = p̃α(x) is the, not explicitly known, density of the law of J̃∆.

In order to deal with
∫

R
e−λjx

2

p̃(x)dx we interpret e−λjx
2

as the characteristic function Cφ .
= E[eixW ] of a

Gaussian random variable W , with mean 0, variance σ2
j
.
= 2λj and density φ, and we use that

∫

(Cφ)(x)p̃(x)dx =

∫

φ(x)(Cp̃)(x)dx,

(Cp̃)(x) being E[eixJ̃∆ ]. The latter equality holds true since
∫

E[eixW ]p̃(x)dx =

∫ ∫

eixzφ(z)dz p̃(x)dx =

∫

φ(z)

∫

eixz p̃(x)dx dz =

∫

φ(z)E[eizJ̃∆ ]dz.

So we write
∫

R

e−λjx
2

p̃(x)dx =

∫

R

e
− x2

2σ2
j

σ
√
2π

· e∆
∫

|r|≤1
eixr−1−ixr λ(dr)dx.

With u
.
= x

σj
we reach

∫

R

e−
u2

2√
2π

· e∆
∫

|r|≤1
eiσjur−1−iσjur λ(dr)du. (32)

Case α ∈ (0, 1). No compensation of the small jumps is required, we thus consider the special case with

null compensator, Vn
.
=

∑n
i=1Ki(∆iJ)

2

ψα(h)
, and we only deal with

∫

R
e−λjx

2

p(x)dx, where p(x) = pα(x) is the

density of the law of
∫∆

0

∫

|x|≤1
xdµ, and

∫

R

e−λjx
2

p(x)dx =

∫

R

e−
u2

2√
2π

· e∆
∫

|r|≤1
eiσjur−1 λ(dr)du. (33)

Similarly as when from (23) we obtained (24) and then (28), with z =
sKj
h1/α there replaced by σju =

√

2λj ·u
here, we have

∫

|r|≤1

eiσjur − 1 λ(dr) = σαj |u|α(A+
+A−)

∫ σj |u|

0

[

cos(v)− 1

v1+α
+ iβsgn(u)

sin(v)

v1+α

]

dv

.
= σαj |u|α

∫ σj |u|

0

f(v)dv
.
= σαj |u|αgj(u), (34)

then we are left with

E[e−sVn ] =
n
∏

j=1

∫

R

e−λjx
2

p(x)dx =

n
∏

j=1

∫

R

e−
u2

2√
2π

· e∆σαj |u|αgj(u)du.

By developing ey =
∑+∞
k=0

yk

k! , we obtain
∏n
j=1

(

1 + θ
(n)
j

)

.
=

n
∏

j=1







∫

R

e−
u2

2√
2π

du+

∫

R

e−
u2

2√
2π

·∆σαj |u|αgj(u)du+
∑

k≥2

∫

R

e−
u2

2√
2π

·
∆k
(

σαj |u|αgj(u)
)k

k!
du






(35)
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We are now going to show that

(1) ∀j = 1, .., n, θ
(n)
j → 0 and maxj=1,..,n |θ(n)j | → 0

(2)
∑n
j=1 |θ

(n)
j | ≤M <∞

(3)
∑n
j=1 θ

(n)
j → θ,

where M does not depend on n, and θ
.
= s

α
2 2αK(α/2)(A++A−)Γ

(

α+1
2

)

1√
π
Γ(−α) cos

(

πα
2

)

< 0. That allows

to conclude ([6], Lemma p.199) that

E[e−sVn ] =
n
∏

j=1

(

1 + θ
(n)
j

)

→ eθ,

which is the Laplace transform of the law of the Z2,α in the notations, and the stated result follows.

Let us now evaluate the numbers θ
(n)
j . Denoted

θ
(n)
j,1

.
=

∫

R

e−
u2

2√
2π

·∆σαj |u|αgj(u)du = 2

∫

R+

e−
u2

2√
2π

·∆σαj uα(A+ +A−)

∫ σju

0

cos(v)− 1

v1+α
dvdu, (36)

we preliminarily show that

(4)
∑n
j=1 θ

(n)
j,1 → θ

(5)
∑n
j=1 |θ

(n)
j − θ

(n)
j,1 | → 0.

Note that the function e−
u2

2√
2π

|u|αk is in L1(R) for any integer k, with

∫

R+

e−
u2

2 |u|αkdu = 2
αk−1

2 Γ

(

αk + 1

2

)

. (37)

As for (4), using the notation in (34), Lemma 3 iii), (37) and (25) and with σj =
√

2λj =
√

2
sKj
ψα(h)

we have

n
∑

j=1

θ
(n)
j,1 =

n
∑

j=1

∆σαj

∫

R

e−
u2

2√
2π

|u|αgj(u)du = s
α
2 2

α
2

n
∑

j=1

K
α
2
j ∆

h

∫

R

e−
u2

2√
2π

|u|α
∫ σj |u|

0

f(v)dvdu

= s
α
2 2

α
2

n
∑

j=1

K
α
2
j ∆

h
2(A+ +A−)

∫

R+

e−
u2

2√
2π

|u|α
∫ σj |u|

0

cos(v)− 1

v1+α
dvdu→ θ. (38)

As for (5), since for all j = 1, .., n, |gj(u)| ≤ C
∫

R+

|cos(v)−1|
v1+α + | sin(v)|

v1+α dv < ∞, gj(u) is bounded uniformly

in j and u, thus we have that
∑n
j=1 |θ

(n)
j − θ

(n)
j,1 | is dominated by

n
∑

j=1

∑

k≥2

∫

R

e−
u2

2√
2π

·
∆k
(

Cσαj |u|α
)k

k!
du =

n
∑

j=1

∑

k≥2

Ck
(

∆

h

)k 2
αk
2 K

αk
2
j

k!
2
αk−1

2 Γ

(

αk + 1

2

)

: (39)

since the kernel K is bounded, the above is dominated by

(

∆

h

)2

n
∑

k≥2

(

∆

h

)k−2

Ck
2αk−

1
2

k!
Γ

(

αk + 1

2

)

(40)

and since for large n we have ∆/h < 1, the series is absolutely convergent (quotient criterion), and (40) is

O
(

∆
h2

)

, thus it tends to 0, and (5) is veri�ed.
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It follows that, since θ
(n)
j,1 = ∆σαj

∫

R

e−
u2

2√
2π

|u|αgj(u)du, where σαj ≤ C

√
K(0)α

h and gj(u) is uniformly

bounded, thus |θ(n)j,1 | ≤ C∆/h uniformly in j, and

max
j=1,..,n

|θ(n)j | ≤ max
j=1,..,n

|θ(n)j − θ
(n)
j,1 |+ max

j=1,..,n
|θ(n)j,1 | ≤

n
∑

j=1

|θ(n)j − θ
(n)
j,1 |+ C

∆

h
= O

(

∆

h2

)

→ 0,

which solves (1).

As for (2), using again Lemma 3 iii), we have

n
∑

j=1

|θ(n)j,1 | ≤
n
∑

j=1

σαj ∆

∫

R

Ψ(u)|gj(u)|du ≤ C

n
∑

j=1

K
α
2
j

h
∆

∫

R

Ψ(u)

∫ |u|
√

2|s|Kj
h2/α

0

|f(v)|dv du→ C,

thus using also that (39) is O(∆/h2) we reach

n
∑

j=1

|θ(n)j | ≤
n
∑

j=1

|θ(n)j − θ
(n)
j,1 |+

n
∑

j=1

|θ(n)j,1 | ≤ C
∆

h2
+ C ≤M.

Finally (3) follows directly from (4) and (5).

Case α ∈ [1, 2). From (32), the integral in λ(dr) is given by

∫ 1

0

(A
+
+A−)

cos(σjur)− 1

r1+α
+ i(A

+
−A−)

sin(σjur)− σjur

r1+α
dr

= σαj |u|α
∫ σj |u|

0

(A
+
+A−)

cos(v)− 1

v1+α
+ i(A

+
−A−)sgn(u)

sin(v)− v

v1+α
dv

.
= σαj |u|αg̃j(u).

Thus

E[e−sṼn ] =
n
∏

j=1

∫

R

e−
u2

2√
2π

· e∆σαj |u|αg̃j(u)du

=

n
∏

j=1






1 +

∑

k≥1

∫

R

e−
u2

2√
2π

·

(

∆σαj |u|αg̃j(u)
)k

k!
du







.
=

n
∏

j=1

(

1 + θ̃
(n)
j

)

. (41)

Again, we show that θ̃
(n)
j,1

.
=
∫

R

e−
u2

2√
2π

·∆σαj |u|αg̃j(u)du turns out to be the leading term of θ̃
(n)
j , and that the

conditions (1) to (5) above are satis�ed also for θ̃
(n)
j , which allows to conclude the proof.

Note that for any α ∈ [1, 2)

θ̃
(n)
j,1 = 2

∫

R+

e−
u2

2√
2π

·∆σαj uα
∫ σju

0

(A+ +A−)
cos(v)− 1

v1+α
dvdu,

has the same expression of θ
(n)
j,1 at (36), thus

∑n
j=1 θ̃

(n)
j,1 coincides exactly with the right hand side of (38).

By Lemma 3 iii), using (37) and the relations in (25) we obtain that for α = 1 then
∑n
j=1 θ̃

(n)
j,1 → θ̃

.
=

−sα2 2α−1
√
πK(α/2)(A+ +A−)Γ

(

α+1
2

)

, while for α ∈ (1, 2) then
∑n
j=1 θ̃

(n)
j,1 → θ, and a condition of type (4)

is satis�ed in any case.

As for (5), we need to bound di�erently |θ̃(n)j − θ̃
(n)
j,1 | in the two cases α = 1, α ∈ (1, 2).
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If α = 1, splitting as in (30), we write

g̃j(u) = (A
+
+A−)

∫ σj |u|

0

cos(v)− 1

v2
dv + i(A

+
−A−)sgn(u)

∫ σj |u|

0

sin(v)− v

v2
dvIσj |u|≤1

+i(A
+
−A−)sgn(u)

[

∫ 1

0

sin(v)− v

v2
dv +

∫ σj |u|

1

sin(v)

v2
dv − log (σj |u|)

]

Iσj |u|>1,

where log (σj |u|) = 1
2 log (2s) +

1
2 log (Kj) + log

(

1
h

)

+ log (|u|) , thus
g̃j(u)

.
= ℓj(u)− i(A

+
−A−)sgn(u)

[

1
2 log (Kj) + log

(

1
h

)

+ log (|u|)
]

Iσj |u|>1,

where ℓj(u) is uniformly bounded in j and u. Using that |u log(|u|)| ≤ |u|2I|u|>1 +
1
eI0<|u|<1, then for any

triplet of positive quantities A1, A2, A3 with A = A1 +A2 +A3, we have

|u|k [A+ | log |u||]k ≤ |u|k2k
[

Ak + | log |u||k
]

= 2k
(

|u|kAk + (|u log |u||)k
)

≤

2k
(

|u|kAk + (u2 + C)k
)

≤ 8k
(

|u|k(Ak1 +Ak2 +Ak3) + u2k + Ck
)

.

Thus
∣

∣

∣θ̃
(n)
j − θ̃

(n)
j,1

∣

∣

∣ ≤
∑

k≥2

∆k

hk
Ck

K
k
2
j

k!

∫

R

e−
u2

2√
2π

|u|k
[

C + | log (Kj) |+ log

(

1

h

)

+ | log |u||
]k

du

≤
∑

k≥2

∆k

hk
Ck

K
k
2
j

k!
· 2
∫

R+

e−
u2

2√
2π

[

ukCk + uk| log (Kj) |k + uk logk
(

1

h

)

+ u2k + Ck
]

du :

similarly as above,

∑

k≥2

Ck
∆k

hk
K

k
2
j

k!

∫

R+

e−
u2

2√
2π

ukdu =
∆2

h2

∑

k≥2

Ck
∆k−2

hk−2

K
k
2
j

k!

∫

R+

e−
u2

2√
2π

ukdu = O

(

∆2

h2

)

,

∑

k≥2

Ck
∆k

hk
K

k
2
j

k!

∫

R+

e−
u2

2√
2π

u2kdu = O

(

∆2

h2

)

,
∑

k≥2

Ck
∆k

hk
K

k
2
j

k!
= O

(

∆2

h2

)

;

since
√
K| log(K)| is bounded, also

∑

k≥2

∆k

hk
Ck

(

K
1
2
j | log (Kj) |

)k

k!

∫

R+

e−
u2

2√
2π

ukdu = O

(

∆2

h2

)

.

Finally,

∑

k≥2

(

∆ log
(

1
h

)

h

)k

Ck
K

k
2
j

k!

∫

R+

e−
u2

2√
2π

ukdu = O





(

∆ log
(

1
h

)

h

)2


 ,

thus
∑n
j=1

∣

∣

∣θ̃
(n)
j − θ̃

(n)
j,1

∣

∣

∣ = O

(

∆ log2( 1
h )

h2

)

→ 0, and (5) for θ̃
(n)
j is proved.

Thus (1), (2) and (3) for θ̃
(n)
j follow analogously as for θ

(n)
j .

If α ∈ (1, 2), due to (27), g̃j(u) is uniformly bounded in j and u, thus
∑n
j=1

∣

∣

∣θ̃
(n)
j − θ̃

(n)
j,1

∣

∣

∣ is dealt exactly

as in (39), thus it is O
(

∆
h2

)

→ 0, and (5) is done. From (4) and (5) then the properties (1) to (3) again

follow as above, and now the proof of the Lemma is complete.
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Lemma 6. Under A1, IA2, IA3 and (3): if α ∈ (1, 2) and ∆
h2 → 0 then







(

∑n
i=1Ki∆iX

)2

h
2
α

,

∑n
i=1Ki(∆iX)2

h
2
α







d→ (Z2
1,α, Z2,α).

Remark. Note that under A1 K is bounded and then also K2 is Lipschitz and in L1(R).

Proof of Lemma 6. We proceed through the following steps. Recalling the decomposition ∆iX = ∆iJ̃ +

∆iJ
1 :

1) due to the negligibility of the contribution of J1 we show that a.s.

(

∑n
i=1Ki∆iX

)2

h
2
α

≃

(

∑n
i=1Ki∆iJ̃

)2

h
2
α

,

∑n
i=1Ki

(

∆iX
)2

h
2
α

≃
∑n
i=1Ki

(

∆iJ̃
)2

h
2
α

. (42)

After that, it is su�cient to prove the convergence in distribution of







(

∑n
i=1Ki∆iJ̃

)2

h
2
α

,

∑n
i=1Ki(∆iJ̃)

2

h
2
α






.

2) We develop
(

∑n
i=1Ki∆iJ̃

)2

h
2
α

=

∑n
i=1

(

Ki∆iJ̃
)2

h
2
α

+

∑

i,j=1..n:i 6=j KiKj∆iJ̃∆j J̃

h
2
α

and we show that
∑

i 6=j KiKj∆iJ̃∆j J̃

h
2
α

L1

→ 0, so the stated limit in distribution is the same as for







∑n
i=1

(

Ki∆iJ̃
)2

h
2
α

,

∑n
i=1Ki(∆iJ̃)

2

h
2
α







3) For s1, s2 > 0 we show that

Ln(s1, s2) .= E






e
−s1

∑n
i=1

(

Ki∆iJ̃

)2

h
2
α

−s2
∑n
i=1 Ki(∆iJ̃)2

h
2
α






→ E

[

e−s1Z
2
1,α−s2Z2,α

]

.
= L(s1, s2), (43)

which concludes the proof.

Let us start by 1). For the �rst result it is su�cient to show that a.s.

∑n
i=1Ki∆iX

h
1
α

≃
∑n
i=1Ki∆iJ̃

h
1
α

.

The di�erence of the two above terms is
∑n
i=1Ki∆iJ

1

h
1
α

: recalling that the probability that ∆J1
t̄ 6= 0 is zero,

for the convergence in distribution we can focus on those ω where there is no jump at t̄. For any �xed ω such

that ∆J1
t̄ = 0, using the notation at the proof of Lemma 1, part b), t̄− Sp is a �xed quantity, and

∑n
i=1Ki∆iJ

1

h
1
α

≃
K
(

t̄−Sp
h

)

h
1
α

:
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by assumption K
(

t̄−Sp
h

)

= o(h), and since α > 1 then h = o(h
1
α ), thus the above display tends a.s. to 0.

As for the second result in (42),

∑n
i=1Ki

[

(

∆iX
)2

−
(

∆iJ̃
)2
]

h
2
α

=

∑n
i=1Ki

[

(

∆iJ
1
)2

+ 2∆iJ̃∆iJ
1

]

h
2
α

:

the �rst term
∑n
i=1Ki

(

∆iJ
1
)2

/h
2
α has the same limit as

K
(

t̄−Sp
h

)

h
2
α

=
o(∆h)

h
2
α

=
o(∆)

h
2
α−1

= o

(

∆

h

)

→ 0.

While the square of the second term 2
∑n
i=1Ki∆iJ̃∆iJ

1/h
2
α by the Schwartz inequality is dominated by

C
∑n
i=1Ki

(

∆iJ̃
)2

h
2
α

∑n
i=1Ki

(

∆iJ
1
)2

h
2
α

,

where the �rst factor converges in distribution by Lemma 5 and the second one tends to 0. Thus also the

second term tends to 0.

As for 2), let us evaluate E

[∣

∣

∣

∣

∑

i,j:i 6=j KiKj∆iJ̃∆j J̃

h
2
α

∣

∣

∣

∣

]

: since ∆iJ̃ and ∆j J̃ are independent, such a quantity

is dominated by
∑

i,j:i 6=j KiKjE
[∣

∣

∣∆iJ̃
∣

∣

∣

]

E
[∣

∣

∣∆j J̃
∣

∣

∣

]

h
2
α

≤ C

∑

i,j:i 6=j KiKj∆
2

h
2
α

,

having used the estimate (2.1.36) with p = 1 in [14] for the last inequality. Now, by Lemma 2, part 6),

n
∑

i=1

∑

j<i

K2
iK

2
j∆

2 ≃
∫ T

0

K2
u

∫ u

0

K2
sdsdu = h

∫ t̄
h

t̄−T
h

K2(v)

∫ t̄−vh

0

K2
sdsdv

= h2
∫ t̄

h

t̄−T
h

K2(v)

∫ t̄
h

v

K2(w)dwdv ≤ h2K2
(2),

thus

C

∑

i,j:i 6=j KiKj∆
2

h
2
α

= C

∑

i,j:i 6=j KiKj∆
2

h2
1

h
2
α−2

→ 0

and 2) is done.

As for 3), we have

Ln(s1, s2) = E

[

e
−∑n

i=1

s1K
2
i +s2Ki

h2/α
(∆iJ̃)

2
]

=

n
∏

i=1

E
[

e−ui(∆iJ̃)
2
]

,

having set ui
.
=

s1K
2
i+s2Ki
h2/α > 0. The i-th term in above display is then the same as in (32), where now

ui =
s1K

2
i+s2Ki
h2/α is in place of λj =

sKj
h2/α , and thus (σi)

α = (2ui)
α
2 =

2
α
2 (s1K

2
i+s2Ki)

α
2

h is now in place of

(σj)
α = (2λj)

α
2 =

(2sKj)
α
2

h . Thus, similarly to (41), the above display is
∏n
j=1

(

1 + θ̃
(n)
i

)

, where now

n
∑

i=1

θ̃
(n)
i,1 =

n
∑

i=1

2∆σαi

∫

R+

e−
u2

2√
2π

· uα
∫ σiu

0

(A
+
+A−)

cos(v)− 1

v1+α
dvdu.
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Since
n
∑

i=1

∆σαi ≃ 2
α
2

∫ T

0

[s1K
2
r + s2Kr]

α
2
dr

h
= 2

α
2

∫ t̄
h

t̄−T
h

[s1K
2(u) + s2K(u)]

α
2 du

tends to 2
α
2

∫

R
[s1K

2(u) + s2K(u)]
α
2 du then, similarly as for Lemma 3, part iii), we have

n
∑

i=1

θ̃
(n)
i,1 → 2 · 2α2

∫

R

[s1K
2(u) + s2K(u)]

α
2 du · 2

α−1
2√
2π

Γ

(

α+ 1

2

)

· (A
+
+A−)Γ(−α) cos

(πα

2

)

and, similarly as in Lemma 5,

n
∏

j=1

(

1 + θ̃
(n)
i

)

≃
n
∏

j=1

(

1 + θ̃
(n)
i,1

)

→ eθ
.
= L∞(s1, s2),

where

θ
.
=

2α√
π
(A+ +A−)Γ

(

α+ 1

2

)

Γ(−α) cos
(πα

2

)

∫

R

[s1K
2(u) + s2K(u)]

α
2 du.

The function L∞ is the Laplace transform of a probability law (bacause L∞(0, 0) = 1 and the function is

continuous at (0,0)), and we see that it is the one of a proper joint law having marginals Z2
1,α and Z2,α. In

fact, with s2 = 0 we have

e
2α√
π
(A

+
+A− )Γ(α+1

2 )Γ(−α) cos(πα2 )
∫

R
[s1K

2(u)]
α
2 du

= L∞(s1, 0) = lim
n

Ln(s1, 0)

= lim
n
E

[

e
−s1

∑n
i=1(Ki∆iJ̃)2

h2/α

]

:

∑n
i=1(Ki∆iJ̃)

2

h2/α

d≃
(

∑n
i=1Ki∆iJ̃

h1/α

)2

, as we saw above at 2), and, by Lemma 4, the latter term converges in

distribution to Z2
1,α.

On the other hand, with s1 = 0 we have

e
2α√
π
(A

+
+A− )Γ(α+1

2 )Γ(−α) cos(πα2 )
∫

R
[s2K(u)]

α
2 du

= L∞(0, s2) = lim
n

Ln(0, s2)

= lim
n
E

[

e
−s2

∑n
i=1 Ki(∆iJ̃)2

h2/α

]

and, by Lemma 5,
∑n
i=1Ki(∆iJ̃)

2

h2/α

d→ Z2,α. Thus L∞ describes a speci�c joint law of
(

Z2
1,α, Z2,α

)

.

Remark. The joint law of
(

Z2
1,α, Z2,α

)

has a Laplace transform of type e−C
∫

R
[s1K

2(u)+s2K(u)]
α
2 du with

positive C: no linear part in s1, s2 is present, thus there are no drift terms. The law could resemble a bidi-

mensional α/2-stable, however this is not the case, because it is concentrated on a parabola (if x2 = K(u)

then x1 = x22) rather than on the unit sphere.

Proof of theorem 2.

a) Since X is a càdlàg process, for �xed ε ∈ (0, 1) we have a.s. ν(ω, (ε, 1] × [0, T ]) < ∞, i.e. the jumps

occurring on [0, T ] with size larger than ε in absolute value are only �nitely many. De�ne now Nε
T the a.s.

�nite number of jumps of X with size absolute value |∆Xp| > ε, and Sεp the times of such jumps, p = 1, .., Nε
T .
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For any n, for any p = 1, .., Nε we call Ip = Iεp the unique interval (ti−1, ti] = (tεi−1, t
ε
i ] containing S

ε
p, and

we rename its extremes tip−1 = tiεp−1, tip = tiεp . For any ε > 0 we split

Xt = J̃εt − Cεt + J1,ε
t ,

where

J̃εt
.
=

∫ t

0

∫

|δ(x,s)|≤ε
δ(x, s)dµ̃, Cεt

.
=

∫ t

0

∫

|δ(x,s)|∈(ε,1]

δ(x, s)λ(x)dxds, J1,ε
t

.
=

∫ t

0

∫

|δ(x,s)|>ε
δ(x, s)dµ,

and we proceed through the following steps.

1) For any �xed ε ∈ (0, 1), J1,ε is a FA jump process with piece-wise constant paths, so that, by Lemma 1

we have that, as n → ∞, Fn(J1,ε)
a.s.→ F (J1,ε) with both f(x) = x and f(x) = x2, where F (J1,ε) is �nite

a.s..

2) Note that as ε→ 0 then, for both f(x) = x and f(x) = x2,

F (J1,ε) = K(0)f(∆J1,ε
t̄ )

a.s.→ F (X) = K(0)f(∆Xt̄).

3) Now we check that

∀η > 0, lim
ε→0

lim sup
n→∞

P
({

|Fn(X)− Fn(J1,ε)| > η
})

= 0. (44)

The three properties allow to conclude (10) by Proposition 2.2.1 in [14].

We de�ne

as(ε)
.
=

∫

|δ(s,x)|∈(ε,1]

δ(s, x)λ(x)dx, σ2
s(ε)

.
=

∫

|δ(s,x)|≤ε
δ2(s, x)λ(x)dx.

Note that a(0) is the process a that we de�ned in Section 3, and that it has �nite values only if X has �nite

variation jumps (α < 1). For proving part a), without loss of generality, through a localization procedure,

we can assume that for any �xed ε > 0 the processes as(ε) and σ2
s(ε) are bounded in absolute value by

constants Aε and Σε respectively, depending on ε.

Case f(x) = x:

P
({

|Fn(X)− Fn(J1,ε)| > η
})

≤ P
({

|
n
∑

i=1

Ki∆iJ̃
ε| > η

2

})

+ P
({

|
n
∑

i=1

Ki∆iC
ε| > η

2

})

:

the �rst probability is bounded by

||∑n
i=1Ki∆iJ̃

ε||L2

η/2
=

√

∑n
i=1K

2
i E[(∆iJ̃ε)2]

η/2

=

√

∑n
i=1K

2
i E[

∫ ti
ti−1

∫

|δ|≤ε δ
2λ(x)dxds]

η/2
≤
√

Σε ·∑n
i=1K

2
i∆i

η/2
,

having used for the �rst equality that Ki∆iJ̃
ε are martingale increments. Since under A1 we have K2 ∈

L1(R) then for �xed ε, as n → ∞, Σε
∑n
i=1K

2
i∆i ≃ Σεh → 0, then lim supn→∞ P

({

|∑n
i=1Ki∆iJ̃

ε| >
η
2

})

= 0 for all ε > 0, and

lim
ε→0

lim sup
n→∞

P
({

|
n
∑

i=1

Ki∆iJ̃
ε| > η

2

})

= 0.
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As for
∑n
i=1Ki∆iC

ε, we have
∣

∣

∣

n
∑

i=1

Ki∆iC
ε
∣

∣

∣ ≤ Aε
n
∑

i=1

Ki∆i,

which does not depend on ω and, for �xed ε, tends a.s. to 0, as n→ ∞, so again

lim
ε→0

lim sup
n→∞

P
({

|
n
∑

i=1

Ki∆iC
ε| > η

2

})

≤ lim
ε→0

lim sup
n→∞

P
({

Aε
n
∑

i=1

Ki∆i >
η

2

})

= lim
ε→0

0 = 0

For the case f(x) = x2 we reason similarly. In fact

Fn(X)− Fn(J1,ε) =

n
∑

i=1

Ki

(

∆iJ̃
ε
)2

+

n
∑

i=1

Ki (∆iC
ε)

2

+2
n
∑

i=1

Ki

(

∆iJ̃
ε∆iJ

1,ε −∆iJ̃
ε∆iC

ε −∆iJ
1,ε∆iC

ε
)

, (45)

and we show that for �xed ε each term tends to 0 in probability as n→ ∞:
∑n
i=1Ki

(

∆iJ̃
ε
)2

tends to 0 in

probability because its L1-norm tends to 0;
∑n
i=1Ki (∆iC

ε)
2 ≤ (Aε)

2∑n
i=1Ki∆

2
i ≤ (Aε)

2
∆max

∑n
i=1Ki∆i

a.s.→ 0.

Finally, the double products are all dealt with using the Schwartz inequality, and shown to be negligible:

∣

∣

∣

n
∑

i=1

Ki∆iZ∆iY
∣

∣

∣ =
∣

∣

∣

n
∑

i=1

√

Ki∆iZ
√

Ki∆iY
∣

∣

∣ ≤

√

√

√

√

n
∑

i=1

Ki(∆iZ)2

√

√

√

√

n
∑

i=1

Ki(∆iY )2,

and for each one of the three double products in (45) at least one of the square roots on the right hand

side above tends to 0 in probability, while
∑n
i=1Ki(∆iJ

1,ε)2 = Fn(J1,ε) converges to the �nite quantity

F (J1,ε) = K(0)(∆J1,ε
t̄ )2.

It follows that, for �xed ε > 0, Fn(X)− Fn(J1,ε)
P→ 0 as n→ ∞, thus again

lim
ε→0

lim sup
n→∞

P
({

|Fn(X)− Fn(J1,ε)| > η
})

= lim
ε→0

0 = 0.

b) We concentrate on the set {∆Xt̄ = 0}, having probability 1. On that set both the numerator and

the denominator of Tnt̄ tend to 0 in probability: using Lemmas 4 and 5 we reach the following speeds, as

explained below:

n
∑

i=1

Ki∆iX
d≃



















−ah, if α ∈ (0, 1)

−(A+ −A−)K(1) · h log 1
h , if α = 1 and A+ 6= A−

h
1
αZ1,α, if α ∈ (1, 2)

; (46)

n
∑

i=1

Ki(∆iX)2
d≃



















h
2
αZ2,α + oP (h

3
2∆

1
2 ), if α ∈ (0, 1)

h2Z2,α, if α = 1

h
2
αZ2,α, if α ∈ (1, 2),

(47)

where for α < 1 we have a = (A+ −A−)/(1− α). It follows that for α ∈ (0, 1) and a 6= 0 then

Tn
d≃ −a
√

h
2
α−2Z2,α +O

(

∆
h

)

+ oP

(
√

∆
h

)

→ −sgn(a) · ∞,
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for α = 1 then

Tn
d≃ − (A+ −A−)K(1)

√

Z2,α

log
1

h

a.s.→ −sgn(A+ −A−) · ∞

while for α ∈ (1, 2) numerator and denominator of Tnt̄ have the same speed, and by Lemma 6 the theorem

is proved.

To obtain (46) from Lemma 4, we simply note that a.s. the speed of
∑n
i=1Ki∆iJ

1 is K
(

t̄−Sp
h

)

, where

Sp is the time of the jump of J1 closest to t̄ (see the proof of Theorem 1 after (14)). Since K
(

t̄−Sp
h

)

= o(h∆)

by assumption A1.2, K
(

t̄−Sp
h

)

is negligible, for any α, with respect to ϕα(h).

To obtain (47) from Lemmas 4 and 5 we �rst note that, similarly as above,
∑n
i=1Ki(∆iJ

1)2 tends to

zero still at speed K
(

t̄−Sp
h

)

= o(h∆). Then

· for α ∈ (0, 1) the squared denominator of Tnt̄ is

n
∑

i=1

Ki(∆iX)2 =
n
∑

i=1

Ki

(

∫ ti

ti−1

∫

|x|≤1

xdµ
)2

+
n
∑

i=1

Ki(∆i · a)2 +
n
∑

i=1

Ki(∆iJ
1)2

−2∆a

n
∑

i=1

Ki

∫ ti

ti−1

∫

|x|≤1

xdµ− 2∆a

n
∑

i=1

Ki∆iJ
1 + 2

n
∑

i=1

Ki

(

∫ ti

ti−1

∫

|x|≤1

xdµ
)

∆iJ
1 :

within the last term
∑n
i=1

√
Ki

(

∫ ti
ti−1

∫

|x|≤1
xdµ

)√
Ki∆iJ

1 is dominated by
√

∑n
i=1Ki

(

∫ ti
ti−1

∫

|x|≤1
xdµ

)2√
∑n
i=1Ki(∆iJ1)2 = OP

(

h
1
α

√

K
(

t̄−Sp
h

)

)

= oP (h
√
h∆), thus the above dis-

play is asymptotically equivalent to

h
2
αZ2,α +OP

(

∆h+K

(

t̄− Sp

h

)

+∆h
1
α

)

+ oP (h
3
2∆

1
2 ) = h

2
αZ2,α + oP (h

3
2∆

1
2 ).

· for α = 1 we instead split ∆iX into ∆iJ̃ and ∆iJ
1 and, using again the Schwartz inequality, the mixed

term within the squared denominator of Tnt̄ is shown to be dominated by

2

√

√

√

√

n
∑

i=1

Ki

(

∆iJ̃
)2

√

√

√

√

n
∑

i=1

Ki(∆iJ1)2 = OP



h

√

√

√

√K

(

t̄− Sp

h

)



 = oP (h
3
2∆

1
2 ).

Thus
n
∑

i=1

Ki

(

∆iX
)2 d≃ h2Z2,α +OP

(

K

(

t̄− Sp

h

))

+ oP (h
3
2∆

1
2 )

d≃ h2Z2,α.

· for α ∈ (1, 2) we again split ∆iX into ∆iJ̃ and ∆iJ
1 and use the Schwartz inequality:

n
∑

i=1

Ki

(

∆iX
)2 d≃ h

2
αZ2,α +OP

(

K

(

t̄− Sp

h

))

+ oP (h
1
α

√
∆h)

d≃ h
2
αZ2,α.

Proof of Corollary 1. Let us split Y = Y 1 + J̃ , where Y 1
t
.
= Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs + J1

t , then

Tnt̄ =

∑n
i=1Ki∆iY

√
∑n
i=1Ki(∆iY )2

=

∑n
i=1Ki∆iY

1 +
∑n
i=1Ki∆iJ̃

√

∑n
i=1Ki(∆iY 1)2 +

∑n
i=1Ki(∆iJ̃)2 + 2

∑n
i=1Ki∆iY 1∆iJ̃
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with Sn
.
=
∑n
i=1Ki(∆iY

1)2, the above equals

∑n
i=1Ki∆iY

1

√
Sn

+
∑n
i=1Ki∆iJ̃√

Sn
√

1 +
∑n
i=1Ki(∆iJ̃)

2

Sn
+ 2

∑n
i=1Ki∆iY

1∆iJ̃

Sn

,

and we show that the last display tends to N (0, 1) in distribution.

In fact �rst of all note that with probability 1 there is no jump at t̄, and when ∆Xt̄ = 0 the leading term of Sn

is
∑n
i=1Ki(

∫ ti
ti−1

bsds +
∫ ti
ti−1

σsdWs)
2 ∼ hσ⋆t̄ ([18], thm 2.7) because

∑n
i=1Ki(∆iJ

1)2 ∼ K(
t̄−Sp
h ) = o(∆h).

Thus, with probability 1, Sn ∼ h.

Then, the �rst quotient of the above numerator tends in distribution to a standard Gaussian r.v. because

Y 1 has �nite variation jumps, so the result in [5] applies. We now show that all the other terms tend to 0.

If α ∈ (1, 2), by Lemma 4,
∑n
i=1Ki∆iJ̃ tends to 0 at speed h1/α << h1/2, thus the second quotient at

numerator tends to 0; the second term at denominator

∑n
i=1Ki(∆iJ̃)

2

Sn
∼ h

2
α

h
→ 0

and the third one
∑n
i=1Ki∆iY

1∆iJ̃

Sn
≤

√

∑n
i=1Ki(∆iJ̃)2

√
Sn

Sn
∼ h

1
α√
h
→ 0.

If instead α = 1, the second quotient at numerator is

∑n
i=1Ki∆iJ̃√

Sn
∼ h log 1

h√
h

→ 0,

the second term at denominator
∑n
i=1Ki(∆iJ̃)

2

Sn
∼ h2

h
→ 0

and the third one
∑n
i=1Ki∆iY

1∆iJ̃

Sn
≤

√

∑n
i=1Ki(∆iJ̃)2

√
Sn

Sn
∼ h√

h
→ 0.
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