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1 Introduction

In the field of equilibrium models, mathematical programs with complementarity constraints
(MPCC) form a class of important, but extremely difficult, problems. MPCC’s constitute a
subclass of the well-known mathematical programs with equilibrium constraints (MPEC), widely
studied in recent years. Their relevance comes from many applications like urban traffic control,
economy, problems arising from the electrical sector or from structural engineering [4, 5, 6,
27]. Their difficulty is due to the presence of the complementarity constraints, because the
feasible region may not enjoy some fundamental properties: it may be not convex, even not
connected and such that many of the standard constraint qualifications are violated at any
feasible point. This last lack implies that the usual Karush-Kuhn-Tucker (KKT) conditions
may not be fulfilled at an optimal solution, even in the linear case [15], denoted with LPCC.
Specific constraint qualifications (CQs) for the MPCC were introduced to try to overcome this
difficulty [8, 9, 15, 23, 24, 26, 31] and different notions of stationarity were also proposed [24].
Using these concepts, the behaviour of general nonlinear optimization algorithms for the MPCC
was studied. For example, interior point methods [18, 22], penalty approaches [12, 21, 29, 30],
relaxation methods [9, 13, 16, 25, 26], smoothing methods [1, 7, 28]. Also, many specific methods
which combine the previous approaches for the MPCC were developed [11, 14, 19]; such methods
have good convergence properties, but they are affected by the request of exact computation of
KKT points [17].

In [20] the authors consider the linear case and propose a reformulation of the problem by
means of a family of parameterized linear problems whose minimization leads to an optimal
solution of LPCC. Exploiting the classic tools of the duality theory, an iterative method is
outlined which explores the set of parameters, excluding at each step a subset of them, by means
of a suitable cut. Indeed, the optimal values of the linear problems associated with such a subset
are proved to be greater than or equal to the optimal value related to the current parameter. A
similar approach for LPCC can be found in [10, 32] where different kinds of cuts are considered.
In this work we define an algorithm which is implemented in an interactive way taking advantage
of some devices that speed up the solving procedure, owing to the decomposition of the given
problem in a sequence of parameterized problems.

The paper is organized as follows. In Section 2, we introduce the problem and describe the
decomposition method of LPCC in a family of parameterized problems. In Section 3, the main
results of [20] are resumed; in particular, we recall the sufficient optimality condition and how
to determine lower and upper bounds of the optimum value. Using the results of the previous
section, in Section 4, the iterative method is described and illustrated by means of an example.
Finally, in Section 5, some numerical experiments involving problems with different dimensions
are presented and commented.

2 A decomposition approach

We consider the following constrained minimization problem, whose objective function is linear
and having a linear complementarity constraint besides affine ones:

(P )
f0 := min(〈c, x〉+ 〈d, y〉)
s.t. (x, y) ∈ K := {(x, y) ∈ R

2n : Ax+By ≥ b, x ≥ 0, y ≥ 0, 〈x, y〉 = 0},

where A,B ∈ R
m×n, c, d ∈ R

n, b ∈ R
m and 〈·, ·〉 denotes the scalar product in R

n.
We will assume that the feasible set K is nonempty and a global minimum point of P exists;

call it (x0, y0). Let us introduce the following penalized form for the gradient of the objective
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function of P :

c(α) = (cj(αj) := cj + ρjαj , j = 1, ..., n),

d(α) = (dj(αj) := dj + σj(1− αj), j = 1, ..., n),

where α = (α1, ..., αn) ∈ ∆ := {0, 1}n. For the sake of simplicity, we have used for the penalized
form of the constants cj and dj (that are functions of αj) the same name of the constants. For
our purposes, we will assume that ρj and σj , j = 1, ..., n, are large enough positive constants;
the meaning of this assumption will be clear inside the proof of Theorem 1.

The given problem P can be associated with a family {P (α)}α∈∆ of subproblems

P (α)
f↓(α) := min [f(x, y;α) := 〈c(α), x〉+ 〈d(α), y〉]
s.t. (x, y) ∈ R := {(x, y) ∈ R

2n : Ax+By ≥ b, x ≥ 0, y ≥ 0}.

Assumption 1. Let us suppose that, for large enough ρj and σj , j = 1, ..., n, the objective
function of P (α) is bounded from below on R, ∀α ∈ ∆.

By Assumption 1, it follows that ∀α ∈ ∆ there exists a minimum point, say (x(α), y(α)), of
P (α). A condition that guarantees Assumption 1 is that 〈c, x〉 + 〈d, y〉 is bounded from below
on R, which obviously implies that the objective function of P is bounded from below on K,
which in turn yields that a global minimum point of P exists.

We have the following result.

Theorem 1. If Assumption 1 holds, then

f0 = min
α∈∆

f↓(α) = min
α∈∆

min
(x,y)∈R

f(x, y;α). (1)

Proof. Suppose that (x0, y0) is a minimum point of P , so that f0 = 〈c, x0〉+ 〈d, y0〉. Recalling
that ∆ is a finite set, let i = 1 and αi ∈ ∆ := {α1, α2, . . . , α2n}. From the definition of c(α) and
d(α), we have

f(x, y;αi) = 〈c, x〉+ 〈d, y〉+
n
∑

j=1

ρjα
i
jxj +

n
∑

j=1

σj(1− αi
j)yj , ∀(x, y) ∈ R.

Let vertR be the set of vertices of R. Consider (x̄, ȳ) ∈ vertR; if (x̄, ȳ) is such that

n
∑

j=1

ρjα
i
j x̄j +

n
∑

j=1

σj(1− αi
j)ȳj = 0 (2)

(which happens independently on ρ and σ), then 〈x̄, ȳ〉 = 0 and (x̄, ȳ) is a feasible solution of P .
Therefore, f0 ≤ f(x̄, ȳ;αi); choose ρi, σi ∈ R

n arbitrarily, for example ρi = σi = (1, . . . , 1) ∈ R
n.

Otherwise, if (x̄, ȳ) is a vertex of R such that (2) is not fulfilled, we can choose ρi = (ρi1, . . . , ρ
i
n)

and σi = (σi
1, . . . , σ

i
n) such that f0 ≤ f(x̄, ȳ;αi). In fact,

f(x̄, ȳ;αi) = 〈c, x̄〉+ 〈d, ȳ〉+
n
∑

j=1

ρijα
i
j x̄j +

n
∑

j=1

σi
j(1− αi

j)ȳj

and there exists j such that ρij x̄j > 0 (or σi
j ȳj > 0). Now, if

ρij ≥
〈c, x0 − x̄〉+ 〈d, y0 − ȳ〉

x̄j
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we get
〈c, x0〉+ 〈d, y0〉 ≤ 〈c, x̄〉+ 〈d, ȳ〉+ ρij x̄j ≤ f(x̄, ȳ;αi),

and this means f0 ≤ f(x̄, ȳ;αi). Analogously, in the case σi
j ȳj > 0.

Noticing that vertR is a finite set, it is possible to find a couple (ρi, σi) such that

f0 ≤ f(x, y;αi), ∀(x, y) ∈ vertR. (3)

From Assumption 1 (by further increasing some components of ρi and σi, if necessary) a
minimum point of P (α) exists and is attained in the set vertR. From (3), it follows f0 ≤ f↓(αi).
Now, consider αi+1; if f0 ≤ f(x, y;αi+1), ∀(x, y) ∈ vertR, with ρ = ρi and σ = σi, then set
ρi+1 = ρi and σi+1 = σi; in such a way, we obtain f0 ≤ f↓(αi+1). Otherwise, choose ρi+1 and
σi+1 by increasing the previous vectors ρ = ρi and σ = σi, in order to get f0 ≤ f↓(αi+1). Set
i = i+ 1 and repeat this procedure for all i = 2, .., 2n − 1. It turns out that

f0 ≤ min
α∈∆

f↓(α). (4)

Moreover, starting again from (x0, y0) minimum point of P , let us define the following vector
α0 = α(x0, y0):

α0 :=

{

α0
j = 0, if x0j > 0

α0
j = 1, if x0j = 0

The above vector α0 belongs to ∆ and f0 = f(x0, y0;α0). Since (x0, y0) ∈ R is a feasible
solution of the problem P (α0), then

f0 = f(x0, y0;α0) ≥ f↓(α0) ≥ min
α∈∆

f↓(α). (5)

Inequalities (4) and (5) imply (1) and this concludes the proof.

Based on Theorem 1, we can propose a decomposition approach for solving problem P .
In fact, Theorem 1 establishes that the minimum f0 of problem P can be achieved by first
determining f↓(α) ∀α ∈ ∆, and secondly by minimizing f↓(α) with respect to α ∈ ∆; in other
words, equation (1) decomposes the problem P in a sequence of subproblems P (α).

In view of the definition of α, ρj and σj , j = 1, ..., n, and of problem P (α), by setting
αj = 1 or αj = 0 one would expect xj = 0 or yj = 0, respectively, in an optimal solution of
P (α); however, in general, an optimal solution of P (α) will not necessarily comply with such an
expectation for a given α ∈ ∆. Anyway, if such an expectation does not occur for a given α ∈ ∆,
then f↓(α) > f0, provided that we choose ρ and σ large enough. Consequently, we should work
with the subset ∆̄ of ∆ whose elements fulfill the following definition.

Definition 1. Let ∆̄ be the set of all α ∈ ∆ such that the system

Ax+By ≥ b, x ≥ 0, y ≥ 0

is possible, when one sets xj = 0 for αj = 1 and yj = 0 for αj = 0, j = 1, ..., n.

Clearly, if a minimum point of P exists, then the set ∆̄ is nonempty.

Unfortunately, the cardinality of ∆, and also of ∆̄, is in general so large that the above
outlined decomposition is not, by itself, of use. We aim at solving P through the penalized
problems P (α)’s, by running as less as possible on α ∈ ∆: at step k, having solved P (αk), we
try to determine αk+1, such that

f(x(αk), y(αk), αk) > f(x(αk+1), y(αk+1), αk+1). (6)

An initial effort in this direction is described in the first part of next section.
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3 Optimality conditions and bounds for the optimum

Suppose that we have solved, at step k, the problem P (αk); we try to determine αk+1, such that
(6) holds. To this aim, we introduce the dual problem of P (α) given by:

P ∗(α)
max 〈λ, b〉
s.t. λ ∈ R∗(α) := {λ ∈ R

m : λA ≤ c(α), λB ≤ d(α), λ ≥ 0}.

Theorem 2. If αk+1 ∈ ∆k := {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}, where λ̄ is a maximum point

of P ∗(αk), then

f(x(αk), y(αk), αk) ≤ f(x(αk+1), y(αk+1), αk+1).

Proof. Observe that λ̄ is a feasible solution of P ∗(αk+1) so that the maximum of such a problem
is greater than or equal to that of P ∗(αk):

max
λ∈R∗(αk+1)

〈λ, b〉 ≥ 〈λ̄, b〉 := max
λ∈R∗(αk)

〈λ, b〉.

By the strong duality theorem, the minimum of P (αk+1) is greater than or equal to that of
P (αk).

By the previous theorem, we infer that a necessary condition for (6) to hold is that

αk+1 6∈ ∆k := {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}. (7)

In other words, having an optimal solution of P (αk) for some αk ∈ ∆, and, thus, a feasible
solution to the given problem P , a necessary condition for obtaining a problem P (αk+1) with a
minimum f↓(αk+1) < f↓(αk) (namely, a feasible solution of P "better" than the current one),
is that αk+1 belongs to the set ∆ \∆k.

Theorem 2 provides a criterion for eliminating the subset ∆k from the subsequent iterations;
observe that ∆k cannot be empty as it contains at least αk.

Let us introduce the following sets of indexes

Ix(λ̄) :=
{

j = 1, . . . , n :
〈λ̄, Aj〉 − cj

ρj
> 0

}

=
{

j = 1, . . . , n : 〈λ̄, Aj〉 − cj > 0
}

(8)

Iy(λ̄) :=
{

j = 1, . . . , n :
〈λ̄, Bj〉 − dj

σj
> 0

}

=
{

j = 1, . . . , n : 〈λ̄, Bj〉 − dj > 0
}

(9)

where, both in (8) and in (9), the second equality is true because ρj > 0 and σj > 0, j = 1, . . . , n.
The following results are proved in [20]. We assume that αk ∈ ∆ and λ̄ is a maximum point

of P ∗(αk).

Theorem 3. (sufficient optimality condition) If

Ix(λ̄) ∪ Iy(λ̄) = ∅, (10)

then an optimal solution (x̄k, ȳk) of the problem P (αk) is an optimal solution of problem P .

If the above sufficient condition is not satisfied, that is Ix(λ̄)∪Iy(λ̄) 6= ∅, the following result
establishes a condition equivalent to the necessary condition (7).
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Theorem 4. Suppose that Ix(λ̄) ∪ Iy(λ̄) 6= ∅ and α ∈ ∆. Then

α 6∈ {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)} (11)

iff
∑

i∈Ix(λ̄)

αi −
∑

j∈Iy(λ̄)

αj ≤ |Ix(λ̄)| − 1. (12)

Define the relaxed problem of P obtained by dropping the complementarity constraints, i.e.

(RP )

{

min(〈c, x〉+ 〈d, y〉) s.t.
Ax+By ≥ b, x ≥ 0, y ≥ 0

and denote by f̄ the optimal value of RP (possibly −∞).
The next result deepens the meaning of the sufficient optimality condition given by Theorem

3.

Proposition 1. Let α ∈ ∆ and λ̄ be an optimal solution of P ∗(α). If Ix(λ̄) ∪ Iy(λ̄) = ∅, then

f0 = f̄ .

Proof. The assumption Ix(λ̄)∪ Iy(λ̄) = ∅ is equivalent to say that λ̄A ≤ c , λ̄B ≤ d. Therefore,
since λ̄ ≥ 0, we have that λ̄ is a feasible solution for the dual of RP : if f̄ = −∞, we achieve
a contradiction. Suppose that f̄ > −∞; then, by strong duality f↓(α) = 〈λ̄, b〉 and, by weak
duality,

f↓(α) = 〈λ̄, b〉 ≤ f̄ ,

which implies f0 := minα∈∆ f↓(α) ≤ f̄ . On the other hand, f0 ≥ f̄ and this completes the
proof.

The sufficient optimality condition (10) given in Theorem 3 is a very restrictive condition.
Indeed, it directly implies that the minimum value of the relaxed problem RP is equal to the
one of P , as proved by Proposition 1.

Therefore, we propose an alternative iterative approach that leads, not only to a different
sufficient optimality condition, but mainly to the possibility to evaluate the difference between
the current value of the objective function of P and its minimum value, i.e., f↓(αk)−f0. We will
achieve this purpose by defining a finite sequence of lower and upper bounds of the minimum of
P .

We restrict our attention to the case where it is possible to find vectors of upper bounds,
say X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), for x and y respectively, in such a way that the
optimal value of problem P does not change. Therefore, alternatively to {P (α)}α∈∆, we can
associate with the given problem P the following family {Q(α)}α∈∆ of subproblems:

Q(α)

min(〈c, x〉+ 〈d, y〉)
s.t. Ax+By ≥ b,

0 ≤ xj ≤ Xj(1− αj), j = 1, . . . , n
0 ≤ yj ≤ Yjαj , j = 1, . . . , n.

We assume that Q(α) admits a solution, ∀α ∈ ∆.
Denote by S(α) the feasible set of Q(α). The dual of Q(α), say Q∗(α), is given by:

Q∗(α)

max
(

〈λ, b〉 −
∑n

j=1 µjXj(1− αj)−
∑n

j=1 νjYjαj

)

s.t. λA− µ ≤ c
λB − ν ≤ d
λ ≥ 0, µ ≥ 0, ν ≥ 0.
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An optimal basic solution of Q∗(α) can be immediately derived from an optimal basic solution
of P ∗(α), as proved by the following proposition [20].

Proposition 2. If λ̄ is an optimal basic solution of P ∗(α), then the vector (λ̄, µ̄, ν̄) ∈ R
m
+ ×

R
n
+ × R

n
+, where

µ̄j = max{0, 〈λ̄, Aj〉 − cj}, j = 1, . . . , n, (13a)

ν̄j = max{0, 〈λ̄, Bj〉 − dj}, j = 1, . . . , n (13b)

is an optimal basic solution of Q∗(α).

Let us observe that the feasible set of Q∗(α) does not depend on α; call this set S∗, ∀α ∈ ∆,
and notice that S∗ 6= ∅ by Proposition 2. Denote by V := vertS∗, the set of all vertices of S∗,
or, equivalently, of all basic solutions of Q∗(α). Then, we have the following result.

Theorem 5. The minimum f0 of problem P equals the minimum of the problem:

min
α,f

f

s.t. α ∈ ∆
f ≥

(

〈λh, b〉 −
∑n

j=1 µ
h
jXj(1− αj)−

∑n
j=1 ν

h
j Yjαj

)

, (λh, µh, νh) ∈ V.

(14)

Proof. The following relations are readily seen to hold:

f0 = min
α∈∆

min
(x,y)∈S(α)

(〈c, x〉+ 〈d, y〉)

= min
α∈∆

max
(λ,µ,ν)∈S∗

(

〈λ, b〉 −

n
∑

j=1

µjXj(1− αj)−

n
∑

j=1

νjYjαj

)

= min
α∈∆

max
(λh,µh,νh)∈V

(

〈λh, b〉 −

n
∑

j=1

µh
jXj(1− αj)−

n
∑

j=1

νhj Yjαj

)

.

(15)

The last equality and the introduction of the scalar variable f prove the thesis of the theorem.

Remark 1. Observe that if V̄ is any subset of V , then by (15) we have:

f0 ≥ min
α∈∆

max
(λh,µh,νh)∈V̄

(

〈λh, b〉 −

n
∑

j=1

µh
jXj(1− αj)−

n
∑

j=1

νhj Yjαj

)

. (16)

Therefore, the minimum in (16) is a lower bound t of f0. At every α met in the solution process,
an optimal basic solution of Q(α) and, hence, an optimal basic solution of Q∗(α) is available.
Let Vk be the set of the basic solutions of Q∗(αk) considered until step k. Thus, Vk which is
initially empty, gains a new element. Every time this happens, problem (16) may be solved to
find a new lower bound on f0, say it tk. Moreover, the minimum f↓(αk) of problem P (αk) for
every αk ∈ ∆, is obviously an upper bound on the optimal value f0; let Tk be the minimum
of all the previously found upper bounds. Obviously, at k-th step, the equality Tk = tk is
a sufficient condition for optimality; moreover, |Tk − tk| is un upper bound of the difference
between the current value of the objective function of P and its minimum. We can decide to
stop the iterative procedure if such a difference is small enough, in a sense that can be specified
case by case according to the meaning of the given complementarity problem.
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4 The iterative method

The analysis developed in the previous sections allows us to define an iterative method for the
minimization of the problem P .

General Algorithm

Step 0) (initialization).
Consider RP , the relaxed problem of P , and let f̄ be the optimal value of RP (possibly
−∞). If f̄ > −∞, let (x̄, ȳ) be an optimal solution of RP . If 〈x̄, ȳ〉 = 0, then (x̄, ȳ) is an
optimal solution of P too; hence → STOP. Otherwise (i.e., if f̄ = −∞ or 〈x̄, ȳ〉 > 0), set
k = 0, ∆0 = ∆, T−1 = +∞, t−1 = f̄ . Go to Step 1.

Step 1) (solution of problem P (αk)).
Choose αk ∈ ∆k and solve P (αk). Let (x(αk), y(αk)) be an optimal solution of P (αk)
with optimal value f↓(αk). If f↓(αk) < Tk−1 then Tk = f↓(αk); otherwise Tk = Tk−1. Go
to Step 2.

Step 2) (computation of a cut on the set ∆).
Let λ̄ be an optimal solution of P ∗(αk). If Ix(λ̄) ∪ Iy(λ̄) = ∅, then (x(αk), y(αk)) is an
optimal solution of P ; hence → STOP. Otherwise, by means of inequality (13), determine
the set {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}, that gives the vectors α to be rejected in
the sequel. Let1 ∆k+1 = ∆k \ {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}. If ∆k+1 = ∅, then
(x(αk), y(αk)) is an optimal solution of P ; hence → STOP. (Remark that ∆k+1 = ∅ is
implied by Ix(λ̄) ∪ Iy(λ̄) = ∅). Otherwise, go to Step 3.

Step 3) (computation of a lower bound).
Determine an optimal solution (λ̄, µ̄, ν̄) of the problem Q∗(αk) and let t the minimum in
(16) obtained by adding the (basic) solution (λ̄, µ̄, ν̄) to the set V̄ . If t > tk−1, then tk = t;
otherwise tk = tk−1. If Tk = tk then (x(αk), y(αk)) is an optimal solution of P ; hence →
STOP. Otherwise, set k = k + 1 and go to Step 1.

Remark 2. The following observations are worth noting:

(a) In the solution of problem P (α), we need to choose the components of the vectors ρ =
(ρ1, ρ2, . . . , ρn) and σ = (σ1, σ2, . . . , σn) to penalize the costs c(α) and d(α). To obtain
such a penalization, the components of ρ and σ must be of order of magnitude greater
than that of the elements of c and d. In the subsequent Example 1, any components of ρ
and σ will be set equal to 1010.

(b) In the formulation of problem Q(α) and hence of its dual Q∗(α), we need to choose the
values of the upper bounds X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) of which we have
assumed the existence. The selection of such vectors is a crucial aspect of the method.
Even if it is valid only for the particular case, a suggestion for this choice is given in
Example 1 at Step 3 of Iteration 1.

(c) If, at a certain iteration k, we can prove that f↓(α) ≥ f↓(αk) ∀α ∈ ∆k+1, then f↓(αk)
is the optimal value of P and the current solution (x(αk), y(αk)) is an optimal solution.
Suppose for example that |Ix(λ̄)| + |Iy(λ̄)| = 1; from the inequality (12) it follows that
there is a unique index j such that any α to be considered in the sequel has αj = 0 if

1Recall that {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)} is the set ∆k defined in (7).
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|Ix(λ̄)| = 1, and αj = 1 if |Iy(λ̄)| = 1. If, by solving RP with the additional condition
xj = 0 when αj = 1 or yj = 0 when αj = 0, we obtain a minimum greater than or equal
to f↓(αk), the current solution is an optimal one. Otherwise, such a minimum is a lower
bound of f0 and it will replace the current lower bound, computed at Step 3, if it is better.

(d) Recall that in the proposed decomposition method we should work with the subset ∆̄ of ∆,
introduced in Definition 1. If a vector α /∈ ∆̄, the optimal value of the corresponding P (α)
is of the same magnitude of ρj ’s and σj ’s. In this case, we skip Step 1 and we generate a
new α. We refer to this case as a null step.

Example 1. Let us apply the iterative method to the following problem P :

min(2x1 + 2x2 + x3 + 2x4 + 2y1 + 2y2 + 2y3 + 2y4)







































x1 + x4 + y1 + y2 + y3 ≥ 20
x1 + x2 + y1 + y3 ≥ 14

x2 + x3 + y1 ≥ 10
x2 + y3 + y4 ≥ 10

x1 + x3 + y4 ≥ 5
〈x, y〉 = 0
x ≥ 0, y ≥ 0

(17)

For the solution of some of the steps, the numerical software MATLAB has been used.

Step 0) The solution of the relaxed problem RP is x̄ =
(

5
2 , 0,

5
2 , 0

)

, ȳ =
(

15
2 , 0, 10, 0

)

, with
optimal value f̄ = 85

2 . As 〈x̄, ȳ〉 > 0 and hence the complementarity condition is not satisfied,
set k = 0, ∆0 = ∆ = {0, 1}4, T−1 = +∞, t−1 = f̄ = 85

2 . Go to Step 1.

Iteration 1 with k = 0
Step 1) Let’s take a first α0 = (0, 0, 0, 0). Let’s solve P (α0). We get

x(α0) = (5, 10, 0, 15) , y(α0) = (0, 0, 0, 0), with f↓(α0) = 60.

As f↓(α0) < Tk−1 then T0 = 60. Go to Step 2.
Step 2) The optimal solution of P ∗(α0) is λ̄ = (2, 0, 0, 2, 0). The sets of indexes defined in
(8) and (9) are Ix(λ̄) = ∅ and Iy(λ̄) = {3}. Since Ix(λ̄) ∪ Iy(λ̄) 6= ∅, according to Theorem
4 the subsequent α’s to be considered must satisfy the inequality α3 ≥ 1 (see inequality (12)).
Therefore, we can disregard all the α’s with α3 = 0, namely

α0 = (0, 0, 0, 0) ; (0, 0, 0, 1) ; (0, 1, 0, 0) ; (0, 1, 0, 1) ;

(1, 0, 0, 0) ; (1, 0, 0, 1) ; (1, 1, 0, 0) ; (1, 1, 0, 1).

Go to Step 3.
Step 3) Let us consider {Q(α)}α∈∆ where the upper bounds are

X =
(

20, 10, 20, 312
)

and Y =
(

20, 312 , 25, 10
)

.

The values of the upper bounds can be determined by combining the inequality

2x1 + 2x2 + x3 + 2x4 + 2y1 + 2y2 + 2y3 + 2y4 ≤ 60,
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given by the objective function less than or equal to its current value, with the inequalities
coming from the constraints. For example, by considering the first constraint together with the
above inequality, we get

40 + 2x2 + x3 + 2y4 ≤ 2(x1 + x4 + y1 + y2 + y3) + 2x2 + x3 + 2y4 ≤ 60,

that gives the bounds x2 ≤ 10, x3 ≤ 20 and y4 ≤ 10. Similar bounds for the other variables
may be obtained by means either of other constraints, taken singularly, or linear combinations of
them. The optimal solution of Q∗(α0), obtained from (13), is (λ̄; µ̄; ν̄) = (2, 0, 0, 2, 0; 0, 0, 0, 0; 0, 0, 2, 0).
Therefore, problem (16) is equivalent to

t = min
α,f

f s.t. α ∈ ∆ , f ≥ 60− 2Y3α3

with solution t = 10. Since t = 10 < t−1, set t0 = t−1 = 85
2 . As T0 6= t0, let us continue in Step

3. ∆1 = {(α1, α2, α3, α4) ∈ ∆ : α3 ≥ 1}. As ∆1 6= ∅, set k = 1 and go to Step 1.

Iteration 2 with k = 1
Step 1) We have to select α1 ∈ ∆1. Let us choose α1 = (0, 0, 1, 0) ∈ ∆1. The optimal solution
of P (α1) is

x(α1) = (5, 10, 0, 15) , y(α1) = (0, 0, 0, 0), with f↓(α1) = 60.

As f↓(α1) = T0 then T1 = T0 = 60. Go to Step 2.
Step 2) By solving P ∗(α1) we get λ̄ = (2, 0, 2, 0, 0). The sets of indexes defined in (8) and (9)
are Ix(λ̄) = {3} and Iy(λ̄) = {1}; Ix(λ̄) ∪ Iy(λ̄) 6= ∅. The subsequent vectors to be considered
belong to the set ∆2 = {(α1, α2, α3, α4) ∈ ∆ : α3 ≥ 1, α3−α1 ≤ 0}. Therefore, in the following
analysis we can disregard the following α’s

α1 = (0, 0, 1, 0) ; (0, 0, 1, 1) ; (0, 1, 1, 0) ; (0, 1, 1, 1).

Go to Step 3.
Step 3) The optimal solution of Q∗(α1) is (λ̄; µ̄; ν̄) = (2, 0, 2, 0, 0; 0, 0, 1, 0; 2, 0, 0, 0). Therefore,
problem (16) becomes

t = min
α,f

f s.t. α ∈ ∆ , f ≥ 60− 2Y3α3 ; f ≥ 60−X3(1− α3)− 2Y1α1

with solution t = 20; observe that this value of t (t = 20) improves the previous one (t = 10).
Since t = 20 < t0 =

85
2 , set t1 = t0. As T1 6= t1, let us continue in Step 3. As ∆2 6= ∅, set k = 2

and go to Step 1.

Iteration 3 with k = 2
Step 1) We have to choose α2 ∈ ∆2; let us take α2 = (1, 0, 1, 0). The solution of P (α2) produces
a null step (see item (d) of Remark 2). Let’s choose a different element in ∆2: α2 = (1, 0, 1, 1).
The optimal solution of P (α2) is

x(α2) = (0, 0, 0, 0) , y(α2) = (10, 0, 10, 5), with f↓(α2) = 50.

As f↓(α2) < T1 then T2 = 50. Go to Step 2.
Step 2) By solving P ∗(α2) we get λ̄ = (2, 0, 0, 0, 2). The sets of indexes defined in (8) and (9)
are Ix(λ̄) = {1, 3} and Iy(λ̄) = ∅; Ix(λ̄) ∪ Iy(λ̄) 6= ∅. The set ∆3 is given by the solutions of
the following system























α ∈ ∆

α3 ≥ 1

α3 − α1 ≤ 0

α1 + α3 ≤ 1

As ∆3 is empty, the current solution (x(α2), y(α2)) is an optimal solution of P . → STOP.
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5 Numerical experiments

By using MATLAB we have developed some numerical tests. The decomposition method requires
to process the set of binary vectors α ∈ ∆; therefore, a crucial aspect is the choice of αk ∈ ∆k in
Step 1. Since ∆k is given by a system of inequalities, each one defined by (12) (see Theorem 4),
to choose a new αk ∈ ∆k we solve such a system by using the MATLAB routine INTLINPROG,
where the objective function is a constant or is arbitrary.

We have tested randomly generated problems of different dimensions (m is the number of
linear constraints and 2n is the number of total variables). In order to generate the test problems
we used the MATLAB function RAND for the random construction of matrices A, B and vectors
c, d, b. With the aim of avoiding very dense matrices we converted to zero a fixed proportion of
elements. The results of the tests with n = 50, 100, 200 and m = n/2 are shown in the following
Tables 1-2-3 which report in the f̄ column the optimal value of the relaxed problem RP , in
the fval column the optimal value of the complementarity problem P , in the niter column the
number of iterations the method took to terminate (a maximum number of 350 iterations has
been set), in the null column the number of iterations that do not generate a cut (null steps)
and in the time column the total computational time.

Tables 1-2-3 may be compared with Tables 6.1-6.2-6.3 of [10] and Tables 5-6 of [32]; concern-
ing Tables 5-6 of [32], we have noticed that the computational time is roughly of the same order
of ours, while in Tables 6.1-6.2-6.3 of [10] the computational time is not reported. Particular
attention should be paid to the number of iterations corresponding to the number of the choices
of αk for different sizes of the problem: our tests show that in general there is not an exponential
growth w.r.t. the number of iterations, as the cutting technique on the α’s seems to be efficient.
The algorithm stops when the set ∆k turns out to be empty; for two problems (Problem n.1 in
Table 2 and Problem n.8 in Table 3) the maximum number of iterations is reached. We observe
that the number of iterations requested by our method is in general comparable with the number
of LPs considered in Tables 6.1-6.2-6.3 of [10] and with the number of nodes reported in Tables
5-6 of [32].

# f̄ fval niter null time(sec)

1 7.8556 7.9671 7 0 2.176
2 14.6305 14.6889 14 0 2.440
3 1.6133 1.7718 16 0 2.441
4 0.4049 0.4605 10 0 2.085
5 5.6777 6.7316 28 0 2.913
6 8.3240 8.4158 8 0 2.042
7 7.2269 7.2621 7 0 1.924
8 4.4460 4.5095 11 0 2.016
9 15.0657 15.1771 97 0 6.148
10 4.3320 4.3695 28 0 2.747

Table 1. Test problems with m = 25, n = 50
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# f̄ fval niter null time(sec)

1 3.2411 4.5590 350 0 –
2 11.4017 12.2509 110 0 6.961
3 9.2597 9.4326 11 0 2.129
4 6.4122 6.9625 116 0 8.489
5 8.7454 9.3954 22 0 2.901
6 5.2693 5.5325 11 0 2.320
7 6.6466 6.8519 17 0 2.366
8 10.8341 11.5061 17 0 2.391
9 7.0492 7.4918 20 0 2.552
10 1.4972 1.6253 16 0 2.423

Table 2. Test problems with m = 50, n = 100

# f̄ fval niter null time(sec)

1 −0.5737 −0.2342 22 0 5.148
2 9.4322 9.8799 130 0 12.476
3 10.5890 10.6160 26 0 5.106
4 5.4462 5.7384 8 0 3.005
5 5.8129 6.7195 142 0 20.624
6 3.0496 3.3473 20 0 3.887
7 1.4058 3.1474 12 0 3.570
8 4.9035 6.8678 350 0 –
9 8.7765 8.8197 12 0 2.525
10 8.0579 8.6748 28 0 4.813

Table 3. Test problems with m = 100, n = 200

We point out that for problems where m ≈ n the convergence is not always reached. In Table
4 we report the results of some experiments with m = 40 and n = 50. In half of the cases we have
convergence, while in two tests (5-9) of the other half, where the maximum number of iterations
is reached, we obtain a good approximation of the optimal value. For the remaining three cases
(2-4-7) the algorithm is not successful; we remark that in such cases there is a significant number
of null steps.

# f̄ fval niter null time(sec)

1 7.0898 7.1985 11 0 3.770
2 29.1028 40.4113 350 189 −
3 13.9111 14.6377 144 0 9.023
4 25.4643 29.5511 350 202 −
5 22.5266 22.7318 350 174 −
6 5.5505 5.6451 17 0 4.704
7 33.8596 41.6825 350 176 −
8 14.9497 15.2073 44 0 4.064
9 10.9119 11.4158 350 147 −
10 17.3990 18.1171 31 0 3.316

Table 4. Test problems with m = 40, n = 50
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6 Conclusions

We have recalled a decomposition method for a linear problem with complementarity constraints
in a sequence of parameterized problems. The method allows to define an algorithm that leads
to an optimal solution or to an approximation of it providing an estimate of the error. For
problems of different dimensions we have implemented some numerical experiments which show
that in most of the cases the method converges linearly w.r.t. the dimension n of the problem.
A completely unified MATLAB code fully implementing the whole algorithm is still in progress.
This is a possible further development, together with some more numerical testing.
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