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Abstract

Since the early 80s, orphan drug regulations have been introduced to stifR&lB for
rare diseases. We develop a theoretical model to study the heterogémgaigs on opti-
mal R&D decisions of the incentives for diseases with different levels efgence. We
show the mechanisms through which the type of incentives deployed bgrogphg regu-
lations may stimulate R&D more for orphan diseases with comparatively high prevalence
thus increasing inequality within the class of orphan diseases. Using datdhfed-ood and
Drug Administration on the number of orphan designations, our empirical anah®igss
that, while R&D has increased over time for all orphan diseases, the iednaadeen much
greater for the less rare. According to our baseline specification, theetiffe between
the predicted number of orphan designations for a disease belonging to ltestragd the
lowest class of prevalence is 5.6 times larger after 2008 than it was in 13&3findings
support the idea that the type of incentives in place may be responsitilisoncrease in
inequality within orphan diseases.
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1 Introduction

Orphan diseases are those that affect a small number ofidodig, with the exact definition
varying from one institutional context to another. Desfhefact that each of these diseases often
affects only few people, there are currently 7,000 orphaeralies described in the literature, so
that it is estimated that 25 to 30 million US citizens and 23@anillion EU residents suffer from
an orphan disease (Health and Safety, 2015). However,Haasl0% of rare diseases currently
known have an available treatment (Melnikava, 2012; Tambuy2010).

Given that the pharmaceutical industry is mainly respdaditr R&D investments for new
drugs, the allocation of resources across diseases isaifegtthe expected return on invest-
ments. Hence, the market size is a critical dimension. Theirgral and theoretical analysis
of the effect of market size on innovation identifies a pwsitielationship._Acemoglu and Linn
(2004) find that a 1% increase in potential market size is@atam with a 6% increase in the total
number of new drugs launched in the US market and with a 4% as& when only nongeneric
drugs are taken into account. The result is confirmed by Buioal. (2015), who find that R&D
efforts are directed towards larger markets, and estinhate dn average, additional revenues of
$2.5 billion are required to support the invention of one md@mical entity._Jobjérnsson et al.
(2016) propose a theoretical model to study how the intenadtetween the regulation of mar-
keting approval by institutions such as FDA and EMA and reirsbment decisions by pay-
ers affects R&D investment, showing that R&D investments ass likely if a disease is rare.
Barrenho et al. (2019) use data on marketing authorizatmedtain concentration curves and
concentration indexes of innovation, according to the éomf disease and the market size. They
find that innovation is concentrated toward diseases witheatgr market size, i.e. those with
higher prevalence or higher willingness to pay.

In addition to the limited size of the market, research ¢$fdirected towards orphan diseases
may be hindered by the difficulty in identifying patients kwitare diseases for clinical trials, in
the logistic organization of the trials themselves, by therpunderstanding of the course of the
disease, as well as by the low expertise in the medical cortyn{iiambuyzer, 2010).

In order to address the lack of incentives to undertake rekdargeting rare pathologies,
policy makers have introduced a number of tools to incergi\R&D for orphan diseases. The
main tools are tax credits on R&D expenditure, market exeitysfor new products, protocol
assistance and reduced marketing authorization fees. dtesgary formal step to access these
incentives is obtaining aorphan drug designatioODD) from the competent regulatory author-
ity. The first special legislation was introduced in the @diStates, with the Orphan Drug Act
(ODA), approved in 1983. Since then, several other countigve established regulations for
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the development of orphan drugs. The economic rationalth&se incentives can be hardly re-
lated to efficiency: given that R&D costs are largely indepaniabf the market size, other things
being equal, the expected return per unit of investmentrimgeof population health is lower
when the size of the market is smaller. On the other handugiléy aversion provides a strong
motivation, given the huge differences in the availabitityreatments between rare and common
diseases. The problem can also fit an equality of opportdratpework (Rais Ali and Tubeuf,
2019), given that the disease prevalence is clearly beyaddidual control(Roemer, 1998).

Overall, there seems to be a general consensus that spegightions adopted over the
world have contributed to closing the gap between orphamanebrphan diseases. Braun et al.
(2010), Lichtenberg and Waldfogel (2009) andlYin (2008)veleyidence of a positive impact
of the ODA on R&D directed to orphan diseases and Lichtent#20%) finds that an increased
availability of drugs for orphan diseases reduced moytafitpositive impact on the number of
designations and approvals for orphan drugs is also fouldimpe (Westermark et al., 2011).
On the other hand, concerns have been raised that part ofdtease in the number of designa-
tions and approvals might not be the result of a really inriegagffort, but rather due to strategic
behaviour by the pharmaceutical industry. For example (2009) highlights that firms have in-
centives to develop drugs for rare subdivisions of more comdiseases, pointing that as much
as 10% of innovations for orphan diseases would have beerlapmd even in absence of the
policy. It is therefore important that incentive policie afficiently designed, so to maximize
the social return on expenditure.

While most of the literature has addressed the question whegecial regulations are ef-
fective in reducing the gap between R&D for orphan and non amptiseases, far less atten-
tion has been devoted to the possibly heterogeneous impexdsadifferent orphan diseases.
However, this is an extremely relevant issue, given the mugeber of orphan diseases and the
large variability among them, along several dimensions.oAgnprevious studies on this topic,
Heemstra et al. (2009) take into account orphan desigrsitidBurope and the US, and highlight
a strong heterogeneity in the level of research effort acdifferent diseases, the heterogeneity
depending on the therapeutic class, prevalence and theanuhiscientific publications. _Yin
(2008) analyzes the impact of the ODA on R&D activity targgtiare diseases, proxied by the
number of clinical trials, and shows that the rarest diseasee benefited less from the intro-
duction of the special legislation in the United States.

The dimension of heterogeneity, on which this paper focusgsgevalence. Among orphan
diseases, there are some that affect almost 100,000 indigidvorldwide and others that only
record few cases. We believe that, if an equity argumentipesvthe rationale for incentivizing



orphan versus non-orphan diseases, the equity implicatibiihese incentives within the class of
orphan diseases cannot be disregarded. Our analysis agharatterizing the dynamic impact
of orphan regulations introduced over time and across c@snt

We use a simple theoretical model to study the impact of arpégulation on two outcomes:
i) the probability of having any investment in R&D for a cerntalisease ii) the intensity of the
R&D effort, which affects the probability of obtaining an ODTb account for the heterogeneity
in the tool set used in different contexts, we separatel\siciemoutput-relatedncentives (e.g.,
market exclusivity) andnput-relatedincentives (e.g., tax credits). We show that both types
of incentives have an unambiguously stronger effect on teedutcome for less rare diseases,
meaning that the impact on the probability of having any streent is larger for less rare diseases
among the orphan ones. This advantage of less rare disesagesater whermutput-related
incentives are in place. This means that the exposure torteza (incentives) changes with
the prevalence of the disease. In terms of investment iityentsis not possible to conclude
unambiguously whether more or less rare diseases benestfnoon the incentives.

The empirical counterpart of our theoretical model is a Z2efiated count data model, where
the dependent variable is the yearly number of ODD at theadeséevel, as a proxy for R&D
intensity. For the sake of consistency with the distribogiloassumptions that we make, the
excess of zeros is modelled using the Gumbel distributmreplace the standard Logit or Probit
model. We adopt a difference-in-differences approach phoéxthe fact that reforms have been
introduced at different points in time in different geognapareas and that, according to our
theoretical results, diseases with different prevalenightrhave benefited differently from the
regulations.

We find that, over time, R&D efforts have increased substiytiaore for less rare diseases
within the class of orphan diseases, thus increasing iniéguethin the class of orphan diseases.
These conclusions remain valid even when controlling foumlper of other factors potentially
affecting the relative convenience of investing in lessaAgs more rare diseases. To the best
of our knowledge, no evidence of this dynamics has been queiy reported. Based on our
theoretical results, we argue that the way in which orphaerntives were designed may have
contributed to widening this gap. By relying almost exclesponoutput-relatedncentives, the
European legislation may have exacerbated this tendency.

In terms of policy implications, our results suggest thHahequality aversion is a fundamen-
tal motivation for orphan legislation, then a revision oé incentive tool-kit should be consid-
ered, with the objective of curbing the widening of the gapMeein less and more rare orphan
diseases. One way of mitigating this tendency could be fotsie balance of incentives towards



input-relatedtools. A more radical reform could consider abandoning de& iof setting an arbi-
trary threshold of prevalence, below which all disease&fieinom the same type of incentives,
to move towards prevalence-dependent incentives.

The structure of the paper is as follows. Secfibn 2 desctiteedifferent regulations that have
been adopted over time. Sectidn 3 describes the model, whadived in Sectiohl4. Sectidh 5
and 6 describe, respectively, data and methodology forrtigrizal analysis, whose results are
presented in Sectidn 7. Sectidn 8 concludes and discussesliby implications.

2 Institutional context

Over the last 35 years, orphan drug regulations have begneatlim several countries around the
world (Pammolli et al., 2009). The US were the first countrdévelop a specific legislation. In
1983 the Congress signed the ODA, according to which a drugnsideredrphanif it treats
a rare disease or condition affecting fewer than 200,008qper in the US (about 6.25 in 10
thousand persons) or if it is not expected to be profitablaiwiseven years following approval
by the FDAJ.IJ The incentives for drugs designated as orphan are (1) assesfrom the Office
of Orphan Product Development during the development g9d@) tax credits (up to 50% of
clinical development costs); (3) exemption or waiver oflaggtion (filing) fees; (4) seven years
of marketing exclusivity and (5) subsidies for clinical trials from the Orphan Pradugrant
Program.

Special regulations with the same objectives have subs#yumren introduced in several
countries, such as Singapore (1991), Japan (1993), Aias(i®198), South Korea (1998), the

1This is the current definition of orphan drugs, that was ihiced with the Health Promotion and Disease
Prevention Amendments of 1984. Indeed, originally the @mbrug Act of 1983 defined a rare disease as one that
"occurs so infrequently in the United States that there issasonable expectation that the cost of developing and
making available in the United States a drug for such diseasendition will be recovered from the sales in the
United States of such drug". Other minor amendments of thA @Dk place over the years to mitigate strategic
behavior on the side of the firm (Herder, 2017).

2Market exclusivity represents a stronger protection fonsicompared to patents. While patents prevent other
companies from making, using, offering for sale, sellingd amporting for these purposes the drug, market ex-
clusivity implies that the regulatory agency cannot appramother drug for the same indication without the spon-
sor's consent. Moreover, patent protection is filed earlihendevelopment process, whereas market exclusivity is
granted when the product is launched in the market. As theldpment process can last many years (DiMasi et al.,
2016), empirical analysis has shown that market exclysigih average, extends patent protection by 0.8 years
(Seoane-Vazquez etlal., 2008). Furthermore, some orplugs dontain natural products for which it is not possible
to obtain patent protection_(Pammolli et al., 2009). Foisthesasons, we believe the fact that several countries
introduced or extended their patent coverage for pharnt@e¢siduring the analyzed period is not relevant for our
analysis.



EU (2000) and Taiwan (2008).In what follows we only consider the introduction of special
regulations in the three areas with the largest markets:Jaj@n and the EU.

In April 1993, Japan substantially revised its orphan meadigoroduct system, introduced in
1985, so as to extend the tools used to incentivize researolphan diseases. So, in addition to
the already existing (1) reductions in the required datapmlication, and (2) accelerated review
process, the following incentives were introduced: (3Xg@col assistance; (4) tax credits (up to
6% of clinical and non-clinical costs); (5) subsidies fanmal and nonclinical studies and (6)
ten years of market exclusivity. Compared to those introducelde US, incentives introduced
in Japan entail a longer period of market exclusivity, buivadr percentage for the computation
of the tax crediE In order to be designated as orphan, the drug, which has todveghighly
effective and safe, has to treat a rare and serious diseasmdition affecting less than 50,000
persons in Japan (about 4 in 10 thousand persons), and sedsdishould not have any other
available treatment. Since in Japan the incentive toolghvare the main focus of our analysis
were introduced in 1993, we refer to this as the date whengbeial legislation was introduced.

In December 1999, also the European Union approved a rémulah orphan medicinal
products: the Regulation (EC) No 141/2(ﬁ)crhe regulation establishes a procedure for desig-
nating orphan drugs and sets incentives for R&D. The incestirclude (1) protocol assistance,;
(2) access to a centralized procedure allowing immediat&etiag authorization in all member
states; (3) reduced fees for regulatory procedures andri4)dars of market exclusivity. In order
to benefit from the incentives, orphan drugs have to be datdras such before the marketing
authorization is granted. Moreover, the targeted drug dasat a condition affecting no more
than 5 in 10 thousand persons in the Community when the afiplicia made, or it has to treat a
life threatening or chronically debilitating conditionrfarhich it is unlikely, without incentives,
that the marketing of the medicinal product in the Communibyla generate sufficient return to
justify the necessary investm@ﬁtnally, there should exist no satisfactory alternative moels
authorized in the Community or the medicinal product has begosignificant benefit to those
affected by that condition (article 3 of the Regulation). Imli&idn to the incentives mentioned
in the regulation, some member states have introduced oteasures to support R&D, such as
tax reductions (allowed in France and the Netherlands)lthlaad Safety, 2015).

SWith the exception of Australia, all these countries previgxtra) market exclusivity for orphan drugs
(Sharma et all, 2010).

4Indeed, non-clinical costs per approved new compound diraaed to be lower than clinical costs (1 billion
US$ versus 1.5 billion US$, according to DiMasi et al. 2016).

SAs in the US, also in Europe several regulations took plate e first one. Also in this case, however, none
of the following six regulations modified the incentivesraduced with the first one and presented here.

6According ta_Tambuyzet (2010), more than 99.5% of orphaigaesions in Europe are granted because of the



Europe (2000)

US (1983) Japan (1993)
Disease:
Prevalence < 200,000in US < 50,000 in Japan
(6.25/10,000) (4/10,000)
Characteristics Rare or Rare
not profitable
Serious

No other treatment
available or
clinically superior

<5in 10,000

Rare or

not profitable & life-threatening

No other treatment
available or
clinically superior

Main incentives:

Tax credit Yes Yes
(50% clinical costs) (6% clinical and
non-clinical costs)

Market exclusivity Yes (7 years) Yes (10 years)

Reduced applic. fees Yes (waved) No
Protocol assist. Yes Yes
Subsidies for clinical trials Yes Yes

Member state
specific

Yes (10 years
Yes (reduced)
Yes
No

Table 1. Comparison of orphan drugs regulations in the USirdapd EU.

Incentives provided by the US, Japan and Europe are sunmedariZTabld 1, together with

requirements for drugs to be considered as orphan.

Since November 2007, the European Medicines Agency (EMA)tha FDA are collabo-
rating to encourage joint applications to the orphan dragustboth in Europe and the US. A
common application form has been developed, in an efforedinice the administrative burden
on the orphan drug sponsor (Braun €tlal., 2010; Mariz et al6P@Parallel applications in Japan
and Europe are also encouraged, although a common apptidatm is not in place yet, due to

administrative differences between the two offices (Marial g2016).

prevalence criteria.



3 The model

Let N/ firms be free to decide on the size of an R&D investmént> 0, targeting disease
J,» which affectsn; individuals. For an orphan drug, there are two key regwasteps in the
development process. In the first step, the firm that has deedla molecular entity applies for
an ODD. If granted, the ODD makes the firm eligible for any mioee related to the development
of an orphan drug. If the development process is succegsfoithpleted, the firm will approach
the second regulatory stage: marketing authorizationmRite perspective of the firm, both
stages entail uncertainty. Lgf(/) be the probability that the firm obtains an ODD, given the

R&D investment!/. For the functiorp?(I) we introduce the standard assumptiggs > 0 and
% < 0. Moreover, given that? is a probabilityp?(0) = 0 andlim;_, pf(I) = 1.

Conditional on obtaining an ODD, the firm will carry on the deysment process. With
probabilityp’” this will lead to the marketing approval of the prodﬁcﬁﬁiven the disease specific
per patient net revenue;, conditional on obtaining an ODD, the expected net reveayg i
m;. To simplify notation, we define the individual level expettnet revenue, conditional on
having obtained an ODD, a¥/;(2;) = pj*m;. The parametef; is a vector of disease specific
characteristics that may affect the probabifity and / or the net revenue;. For example, some
regulators grant a price premium to drugs targeting lifedtening conditions.

The expected profit for firm(1, 2, ..., N/) associated with an investmehtargeting disease
jis:

ETli; = p(D)[M; - ng] — 1 + 6y5. D

The termd;; is an idiosyncratic component aiming to capture any aduiti@omponent of the
expected profit that is only known to the firm. This may redoltexample, from the possibility
of exploiting knowledge acquired on other projects that firm had previously undertaken.
From the perspective of the researcldgr,is the realization of a random variable, with density
f(A). According to Eq[1L, a new drug that obtains market authtidadakes the whole market.
We believe that this simplifying assumption is reasonabbieleed, market exclusivity, which
is part of the set of incentives deployed for all regulatidescribed in Sectionl 2, prevents the
authorization of a new drug unless it is shown to be more &fiethan the current standard of
treatment. This suggests that, if a new drug is authorizatbwiarket exclusivity still holds, the
new drug is likely to take the whole market.

The aim of our analysis is to study the impact of differentriserof incentives among those
that have been introduced as part of the special legislation) the probability of having in-

"Without loss of generalityy" is assumed independent bf



vestment on a rare diseasi¢,the probability of having an orphan designation. Our analisi
carried outwithin the class of orphan diseases. In other words, we do not cbménge versus
non-rare disease, but more versus less rare diseases thighalass of orphan diseases. As a
result, we assume that all diseases are eligible for ineentiOur focus is on how the impact of
different types of incentives is affected by the prevalevican orphan disease.

Incentives can be distinguished into two categoriegput-relatecandinput-related Output-
relatedincentives are those that aim to increase the net marketuevef investments made on
orphan diseases. The best known instance of such instrusmatrket exclusivityto which all
products with an orphan designation are entitled. This isgfahe incentive package provided,
for example, by the US, Japan and Europe. We model this as leupae (= > 0), on net
revenues. This way of modelirautput-relatedncentives is sufficiently flexible to account also
for other types of incentives, such as a price premium to whit orphan drugs are equally
entitled.

Input-relatedincentives reduce the cost of R&D investment for rare diseagexamples
of such incentives include tax credits, reduced fees foketaauthorization applications and
protocol assistance. We model this type of incentive as lawahce on investment costs, such
that the investment cost borne by the firnT{g — v), with 0 < v < 1. To take the role of these
incentives into account, the expected profit function cawbten as:

ElL; = p{(1)[M; - nj](1+ z) — (1 — )1 + 6. ()

4 Optimal investment policy

In this section, we study the firms’ optimal investment ppbnd the impact of R&D incentives
on the expected number of ODD, our proxy for R&D effort. Theu®ds on how this impact
is affected by the size of the market (disease prevalencegnGhat innovations are protected
by market exclusivity and that only for a small fraction opban diseases (6%) more than one
treatment is authorized, we believe that it is reasonabiettoduce the simplifying assumption
that firms make their investment decisions independently.

We start by characterizing the decision from the perspeda single firm and then move
to the analysis of the outcome of these decisions at the in@lisease) level.



4.1 The firm’s decisions

The firm aims to maximize the expected profit in Ef. 2 with resfmet. The first order condition
Is:
opiI)  1-v
ol M;-n;(1+2)
The second order conditions are satisfied under the assumapbin the functional form
of p?(]) that were introduced above. EdJ] 3 implicitly defines the raptiinvestment level

®3)

I*(M;,n;) and highlights the well known role of market size as an inwerfor R&D invest-
ments: withn; small, other things being equal, the optimal investmerelles/lower.

4.1.1 Impact ofoutput-related incentives

We can use the implicit function theorem to study the impéetroincrease i on the optimal

level of investment:
ar- 1—7v

dz (82p?/8]2)Mjnj(l +2)% )
According to Eq[#, an increase iprovides an incentive to invest more, by reducing the value
on the right hand side of Ed.] 3. From the perspective of oulyaisa it is also interesting to
investigate how the marginal impact éhof an increase in varies withn;. Differentiating the
right hand side of Eq.]4 with respect#g obtains:

o021 _ (Op4/0I)(0Ppd)oI%) — (8%?/8[2)2( +2) orx
0z0n; (8%?/8[2)2(1 + 2)2 on;’
Given thatoI*/on; > 0 (see Eq[B), the sign of EQl 5 is the same as the sign of itsdimst t
Since(??’p?/a]?’ may be positiv@,the expression cannot be unambiguously signed. This means
that, conditional orf* > 0, we cannot unambiguously say whether the impact on the piittiya
of obtaining a designation of strengtheninganput-relatedncentive is greater for a more or a
less rare disease.

(®)

GivenI*(M;, n;), the firm will only invest if the expected profit at the time af/estment is
non-negative, i.e.:

Pl (Mj,my, 2,7))[M; - n](1+ 2) — (1= 9)I*(Mj, nj, 2,7) + 6;; > 0. (6)

It is then possible to define a minimum valuedgf, §;, such that the firm makes any investment

8Indeed, the sign is positive for the increasing and concanetfonal forms typically employed in economics.
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in R&D for diseasey:

Sj = (1 - 7)1*(Mj7 nj, 2, 7) - p;‘l(l*(Mj’ nj, 2, 7))[Mj ’ nj](l + Z) (7)
To investigate the impact of; on the decision whether to invest or not, we study the depen-
dency ofd; onn,. Observing that

0; = —EIL;(I*) + 65, (8)

which allows to simplify calculations through the applioat of the Envelope Theorem, the
following expression obtains:

96 .
87] = _p;l([ (Mj>nj7z77))Mj<1+Z) < 0. (9)
nj

Hence, other things being equal, for a comparatively regseadie the value of; must be larger
for the firm to decide to undertake any investment (Eq. 9).sThus less likely to observe R&D
investment in comparatively rare diseases.

Using a similar approach, we can study the impact of an iseréaz on the value of the
stochastic variable above which a positive amount is imgesthis leads to

agj d /7%

5 —p (I (Mj,nj,2,7)) - My -n; <0, (10)
which shows the role of in making it more likely that there is investment for diseasdy
reducing the value cﬁj. Also in this case, we are interested in the heterogenegosanof this
incentive tool across different classes of prevalence. Bgréntiating the right hand side of Eq.
with respect ta;, we obtain:

929, opd or

=M, | =L 4+ pd(I* . 11
9=0m, 7181 gn, " TR <0 (1)

The negative sign of the expression means that the impatisgorobability that the firm under-
takes any investment of an increaseiis larger for less rare diseases.
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4.1.2 Impact ofinput-related incentives

As for z, the impact o’ * of an increase iny is positive (see Eq.] 3). Concerning the heterogeneity
of the impact, using the same approach as above, we find that:

O (OPplfOI) (DI [ony)n; + 92pt /01
ovon;  (PpYORM; - n2(1+2)

(12)

As for z, this term cannot be unambiguously signed, meaning thaintpact of an increase
in v on I*, and hence on the probability of having an ODD, conditionainvesting, may be
increasing or decreasing in the disease prevalence.

Concerning the impact on the minimum value of the idiosynctatm that makes an invest-
ment in diseasg profitable, we have that,

9o, .
a—; = —I"(Mj,nj,z,7v) <0 (13)
and A
0%0; or
=— : 14
0vy0on, on; <0 (14)

Also in this case, the impact is greater for less rare disease
The following proposition states an important differeneween annput-relatedand an
output-relatedncentive:

Proposition 1. For both types of incentives, the reductiorﬁ;n's greater for less rare diseases.
However, while for arinput-relatedncentive this is due only to an indirect effect, for @utput-
relatedincentive there is both a direct and an indirect effect.

The proposition follows immediately from the comparisotvzEen Eq[Ill and Eq. 114.

In terms of magnitude, a marginal increase ican be interpreted as an increase by, £4.
in expected revenues from commercialization. Similadyf, it can be seen asi&; reduction
in the investment cost faced by the firm. As long as expecteshiees and investment costs are
sufficiently similar, the magnitudes of the two impacts cartbmpared by comparirﬁ?—;j with
%. This comparison shows that, starting from a situation withincentive ¢ = 0,~v = 0),
the introduction of amutput-relatedncentive provides a greater comparative advantage fer les

rare disease, than the introduction ofiaput-relatedincentiv

9To see this, substitute into Eg.111, the expressiongr n; from Eq.[3 and compare the resulting expression
with Eq.[13.
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4.2 Market outcomes

We can now move to the study of the impact of incentives at tbeade level, under the assump-
tion that theN/ firms make independent investment decisions, as chazadein the previous
subsection. We will focus on two outcomes:

1. the probability that at least one firm makes an R&D investrtaageting diseasg
2. the expected number of ODD for disegse

Starting with the first outcome of interest, investment bieast one firm occurs if

For the most common types of distributiofi§A), including the normal and the exponential,
the Gumbel distribution is the limiting distribution efax;{d;; } (Ahsanullah, 2016). We denote
by f¢(5) and FS($), respectively, the probability density function and thenailative density
function ofmax;{d;; }. The indicator functiorf can be used to define whether at least one firm
invests in diseasﬁ(If = 1) or not (Zf = 0). The probability that at least on firm investsjims

5,
P =1)=1- /_ " FS(8)ds. (16)

Following the analysis of the previous subsection, our $aswn how the impact of incentives
changes with prevalence, i.e.

PP(IZ]=1)  |0°FC(5)09;08;  OFC(0) %9 a7
020n; 962 On 0z 96 0z0n
and o o
PP =1) _|9PF9(0) 90, 00; | OF“(0) 979, (18)
oyon; 962 On Oy 86 Ovyon|’

According to the analysis presented in Secfion 4.1, the sfghe second term in brackets is
negative for both expressions. Since the derivativeﬁj ofith respect ton, z and~y are also
negative, the following proposition holds.

Proposition 2. 825;(5) < 0 is a sufficient condition for both aautput-relatecand aninput-

relatedincentive to increase the probability of observing invesiiin disease more for less
rare diseases.
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According to Eq[1l7 and 18 the condition is not necessary,usecH it is not satisfied, the
two terms in brackets have opposite signs. However, for cankat of interest, we argue that
the condition is very likely to be satisfied. One may think, égample, of a situation where the
distribution of A is symmetric. In this case, the condition of Proposifibnquiges that investing
in diseasg is optimal for less than half of the firms. Given the scarcitynwestment in R&D
for rare diseases, this is very likely to be satisfied.

We can now move to the study of the impact of incentives on tipeeted number of ODD,
conditional onZ/ = 1. Let N/ (5;) be the number of firms that decide to investjirbecause
d;; > 0,. For each of these firms, the investment decision has a Béiroatdtome, with prob-
ability of obtaining an ODD equal tp;l(];f). From Eq.[B, the optimal investment level, and
hence the probability of success, is the same for all firmssoich it is convenient to invest
in diseasej. The sum ofN/ () independent random variables with Bernoulli distributias h
aBinomial(Nf(Sj),p?(];)) distribution, whose limiting distribution iBoisson If we take this
approximation, the number of ODD, conditional on investimsrdistributedPoisson with pa-
rameter\; = N/(J;) -p;?(I;)

The following proposition summarizes the results of thetkécal analysis of the impact of
incentives on the expected number of ODD across differestsels of prevalence.

Proposition 3. Conditional on at least one firm investing in disegs¢he impact of incentives
on the expected number of orphan designations may be greakewer for less rare diseases.

The ambiguity of this impact follows from the fact that thepegted number of designations is
\j = N7(3;)-pd(I3). The impact on the probability of having at least one firm #tireg in market

j has been shown to be greater for less rare diseases. Howeseatpes not necessarily imply
that the impact orzin(gj) is also greater, as this depends on the distribution;,oMoreover, the
impact on; is also ambiguous (E@l 5 and Eql 12). This prevents us fronirgighe impact on
A, theoretically.

Table[2 summarizes our theoretical results, separatelthéotwo outcomes that have been
considered: the probability that at least one firm invests the expected number of ODD,
conditional on investment. For consistency with the ersplranalysis that follows, the table
refers toP(Z] = 0). Our main focus is on the lower part of the table, i.e. on hovithpact on
the two outcomes of interest changes with prevalence. Tdaqurs analysis has shown that both
input-relatedandoutput-relatedncentives tend to favor less rare diseases in terms of pildigab

19Given that), is disease specific, in the empirical analysis, where skd&@ases are considered, we refer to
theNegative Binomiatlistribution, to account for over-dispersion.
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Pr(Z] =0) #0DD (Z] = 1)

0; Aj = N/(8;) - pi(I7)
T n, Negative Positive
Tz Negative Positive
Ty Negative Positive
prevalence and exposure to treatment
1 z Larger for larget; Ambiguous
1 v Larger for largem; Ambiguous

Table 2: Summary of theoretical results

that at least one firm invests. For the impact on the expeatetbar of ODD, conditional on
having investment, the impact is ambiguous.

5 Data and measures

The first step in our analysis is the identification of the fisli of orphan diseases, i.e. those for
which a drug is eligible to obtain an ODD. For this purpose,relg on the Orphanet database
(INSERM,1999), which is the standard reference for inforarabn rare diseas@.The list of
rare diseases is systematically updated, as approxim2®@ynew diseases are described each
year (Westermark et al., 2011; Wastfelt etlal., 2006). Theigarused in the empirical analysis
was downloaded in October 2017. The full list downloadednt®®,530 records. However,
2,208 records do not refer to specific diseases, but to agtpeg of them (e.g. “Rare Pulmonary
Diseases”). For the purposes of the empirical analysiy, specific diseases will be considered,
following the criteria detailed in this section.

Our proxy of R&D efforts targeting rare diseases is the nunatb€@DD granted by the FDA
between 1983 and 2016. An ODD represents the “successhslataon of rare disease research
into an orphan drug discovery and development program” (H¢r@net al.| 2009). Having an
ODD is a necessary condition for the project, and eventdallyhe drug, to be eligible for the
incentives provided under the special legislation. In cangon with proxies of R&D used in
previous contributions, such as the number of clinicaldriaee, for example, Yin, 2008), ODD
have the advantage of being retrievable from a single adinative source.

We focus on designations in the US as it is the largest phautiaaemarket in the world;

1Orphanet was established in 1997 in France, to expand kdgelen rare diseases and to improve their di-
agnosis, care and treatment. Since 2000 the initiative igragean endeavor. Further information is available at
www.orpha.net.
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moreover, the ODA establishment in 1983 allows us to studyimamics in the number of des-
ignations over a long time span, including 1993, when Japaewed its orphan provisions, and
2000, when an orphan legislation was introduced in EuropgceShe pharmaceutical industry
is a global one, it is convenient for the inventor to apply tlee orphan drug status in several
countries to benefit from additional incentives, meanirag #DA data provide a reliable picture
of the global R&D activity. For each drug, the FDA provides thete of orphan designation,
marketing approval (if any), the designated indicatiord #e company sponsoring the request.

A major effort was undertaken to match the indications of FD& list of ODD with the
Orphanet list of diseases. Out of 3,996 ODD granted by the BB#ween 1983 to 2016, we
exclude 408 records referring to products for surgery, gmgen, transplant, diagnostics and
imaging procedures, while 199 records are dropped becatm@iation on the treated disease
cannot be retrieved from Orphanet. Moreover, in some cagesyere not able to match the
designated indication to a single disease, but rather toggregation of diseases (“group of
phenomes’|1 In this case, in order to be consistent in the definition ofrttaaket, we rely on
the hierarchical classification of orphan diseases praviteOrphanet to link the aggregation
with all relevant diseases belonging to it and match the FBgighation at the disease level. If
more than one disease is included in the group, one orphgdasignation is attributed to each
disease, i.e. a non-fractional count is adopted. In thestoless checks, we show results for the
case of fractional counting.

Orphanet also provides information on the class of preealari each disease at the coun-
try level, as well as Worldwid As a measure of market size, we refer to worldwide preva-
lence. When this information is missing, we consider prewadein Europe or, if missing, in
the US. Diseases belonging to the following prevalence etasse included in the analysis:
“<1/1,000,000”, “1-9/1,000,000", “1-9/100,000", and “]_19/,000” From Orphanet we also
retrieve additional information at the disease level, udahg the therapeutic class(es) of each
disease, information on the age of onset and age at deatleykrowihe latter is available only
for 28% of diseases). Ages are reported as antenatal, ronédncy, childhood, adolescence,
adulthood and elderly. We exclude from the analysis thoseadies emerging in the antenatal

12For example, some drugs were designated for the treatmeie dfypereosinophilic syndrome, which is clas-
sified as a “group of phenomes” in Orphanet and comprisesrdift diseases included in the Orphanet list (i.e.,
idiopathic hypereosinophilic syndrome, primary hypeneoghilic syndrome, and secondary hypereosinophilic syn-
drome).

3In few cases (6.7% of diseases), a numeric value for presalnalso provided. However, the availability of
this information is unevenly distributed among classesref@lence. Given these limitations, the point estimate of
prevalence is not used in the empirical analysis.

MInformation on prevalence refers to year 2017 and we areleralrack moves from one class to the other.
However, these are very unlikely to occur, given the widtthefclasses considered.
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period or causing death before birth (323 diseases). Weralsoved 568 diseases referring to
surgical procedures, and 192 items representing an old ndatere (these were moved to an
updated item).

Finally, we complement information provided by Orphanetwvain ad hoc search into Publ\/@j,
in order to gather information on the stock of knowledge facledisease. An automated search
was conducted on PubMed for each disease in our list, retgelie number of articles published
over the period 1970-2016 and containing the name of thasksia the title, abstract or content.
We use this information to construct a measure for the stbpkiblications G P), following the
perpetual inventory method:

SPj = Pj + (1 — p)SPjs1

whereP;; is the number of publications related to disease timet andp = 0.1 is the rate of
obsolescence of knowledge typically applied in the emdititaature (Keller/ 2002).

The information on publications is used both as a controbize to proxy the level of scien-
tific information available about the disease, as well as kecs¢hose diseases that had already
been discovered at a given point in time (Heemstra et al 9R0Mew pathologies are constantly
added to the list of orphan diseases, so that the list of krddsgases in October 2017 (the basis
of our analysis) might also include pathologies which weoé kmown at an earlier time. Of
course, a lack of ODD for a disease that has not been discoyetedannot be interpreted as a
lack of R&D effort targeting that disease. To account for,this include in our baseline analysis
diseasg only if its stock of publications it — 5 is positive (i.e.,.SP;;_5 > 0).

All'in all, our data comprise 136,036 observations (5,132dses over — at most — 34 years).
The distribution of diseases included in the analysis ammegalence classes is reported in
Table[3. Information on the prevalence is missing (or notigetumented) in Orphanet for a large
share of the diseases: these are considered as a sepasatefsteong the classes with known
prevalence, the large majority of diseases is classifield ajgirevalence lower than 1 in 1 million
(36.89%), with the “least rare” diseas€¥4) only accounting for 2.98% of the total. Table 3 also
shows how the average number of ODD per year changes fromasgeaflprevalence to another.
The reported numbers of ODD are calculated taking the aeevagr years in the study period
and over diseases in each class of prevalence. These diescsigtistics are coherent with our
theoretical results and in line with the literature sugipesa positive correlation between market
size and R&D effort/(Acemoglu and Linn, 2004; Dubois et/al.120

pubmed is a web-search service maintained by the US Natidioraty of Medicine. It comprises more than
28 million citations for biomedical literature from MEDLE life science journals, and online books. For more
information, please visit https://www.ncbi.nim.nih.gpubmed/.
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Prevalence number of % total avg. number of

diseases ODD per disease (yearly)
N1: <1/1,000,000 1,893 36.89 0.03
N2:1-9/1,000,000 208 3.99 0.13
N3:1-9/100,000 302 5.88 0.17
N4: 1-5/10,000 153 2.98 0.22
NO: Missing prev. 2,579 50.25 0.13
Total 5,132 100 —

Table 3: Distribution of the diseases among prevalencsetas

6 Empirical methods

The pharmaceutical market is characterized by the preseihowiltinational firms that serve
several markets. Hence, the number of designations paastisgranted in the US may be con-
sidered a reliable proxy for the global R&D effort. Over theokMhperiod considered in the
analysis, incentives were available in at least one gebigagpea. The incentives provided by
the reforms of Japan and Europe added to those provided b@E#ein the US. The theo-
retical results presented in Sectidn 4 show that the implbbth market exclusivity and tax
credits on the probability of having investment is positared, under reasonable assumptions,
it is greater for less rare diseases (Proposifion 2). Thi@s a different exposure to treat-
ment (incentives). We exploit these differences in time acmss classes of prevalence using a
difference-in-differences approach.

In the empirical analysis we cannot distinguish betweenrtipgact ofoutput-relatedversus
input-relatedincentives, as both of these were part of the US and Japatatiegis since their
introduction. However, the European regulation providegjuely output-relatedincentives,
whereas tax-related provisions are delegated to singletges. The fact that only two European
countries provide tax incentives (see Secfibn 2) allowsusterpret the effect observed after
2000 as the result of a wider applicability of market exalitgi Combined with the large size
of the European market, this might have increased ineguadiween more and less rare orphan
diseases (see Propositidn 1).

The empirical counterpart of our theoretical model is a Zerftated Negative Binomial
(ZINB) model: the inflated and the count part are respectiveligted to the probability of hav-
ing no R&D for a certain diseaséj’( = 0) and to the expected number of ODD conditional on
ij = 1. The unconditional expected number of ODD results from thalgination of the two
parts, which are jointly estimated via maximum likelihood.
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The ZINB model allows us to understand the determinants efttvo different processes
determining a zero outcome (Lambert, 1992): choice (thesd®tinot to invest in R&D) and
nature (the lack of innovative output, conditional on theeleof effort) (Winkelmann|, 2008).

R&D effort, proxied by the number of ODD targeting disease yeart, is therefore modeled

as:
0, ifz/=0

Yit = . (19)
vy, Z7=1

where:

. Ij is the binary variable introduced in Sect@ﬂf If = 0, the outcome is a “certain
zero”, also referred to as “strategic” or “structural” zé&taub and Winkelmann, 2013).
For the sake of consistency with the analysis of Se¢tiohwie2depart from the standard
assumption that the relevant probability distribution thee inflated part is eithdrogistic
or Normal (hence, the estimated model is either Logit or Probit) anjdsadhe model to
let the distribution béBumbe

e y;, is a count variable, representing the number of ODD targedisease in period¢.
From the analysis of Sectidn 4.2, under the assumptionsrahodel, its distribution can
be approximated by Roisson with parameter\; = N/(§;)) - pd(I7). However, given
that)\; is disease specific, when several diseases are considasatatural to refer to the
Negative Binomial distribution, to account for over-disgien. Wherny* = 0, zeros in the
outcome are due to nature.

As aresult, the density fay;, is:

Pr(Zj = 0) + [1 = Pr(Z] = 0)] Pr(y;, = 0) ify; =0

20
[1 —Pr(Z] = 0)] Pr(y;, > 0) if y; > 1. 20

f(yjt) =

The probability to be in the “certain zero” casﬁf(: 0) is estimated using the Gumbel
distribution:
Pr(If =0) = exp(— exp(—mgtﬁl)).
%\We do not make explicit reference to time here, as there nighaigs between R&D investments and ODD.

However, this does not affect our empirical strategy.
"The Stata code used for the estimation is available fromutieoas upon request.
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Conditional or[Zf = 1, the expected number of ODD is:

Aji = exp(2,Ba) (21)

The unconditional expected number of ODD is expressed ambication of the two processes:

E(yjilzj) = (1= Pr(Z] = 0)) - Ajy = (1 — exp(— exp(—=}, 1)) exp(a},52),  (22)
where

4 4 4 4
5B = o+ Z GNij + Z 7,Dp: + Z Z kip(Ni; X Dpy) + 0C;. (23)

i=0 p=1 i=0 p=1
Note that we normally use the same set of variables in the @uamul in the Negative Binomial
part of the model.Ni represents the class of prevalence, from the ranést ( <1/1,000,000")
to the least rare4: “1-5/10,000"; see Tablgl3). The binary variabl®p indicate relevant
periods of time, related to the introduction of special $éggion in the three geographic areas of
interest, and to the joint application for the US and Eurdi#83-1992; 1993-1999; 2000-2007
and 2008-201@ The coefficientss;, are the main parameters of interest, both in the Gumbel
and Negative Binomial part of the model, representing thietiftial effect of each reform for
diseases belonging to the class of prevaleNee with respect to those in the lowest class of
prevalence(' is a vector including additional control variables whicbgarding to the analysis
presented in Sectidd 4, may have an impact on R&D effort:

e a dummy variable indicating whether the disease causesapueendeath (in paediatric
age or adulthood). 9% of diseases included in the analysisféarwhich information on
the age at death is available) causes premature death. dinbbe might affect the per
patient net revenuey;, as some regulators grant a price premium to drugs targkfing
threatening conditions, and paediatric drugs are grarddiianal market exclusivi@

e a proxy for the probability of obtaining marketing authattion, p7*. This variable is con-
structed as the ratio between the sum of marketing authmiagranted in the previous
5 years and the sum of designations received in the previca®9%ears. We define the
variable at the level of the therapeutic area to overcomeptbblem of zeros at the de-
nominator, due to the large number of diseases with no ODDcMsider a time lag of up

8The first time period (1983-1992) aid1 are taken as reference categories.
1°The extra market exclusivity for paediatric drugs lasts &rgén Europe (Regulation (EC) No 1901/2006), and
6 months in US (Section 505(A) of the Food and Drug AdminigiraModernization Act of 1997).
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to 4 years as, from FDA data, about 50% of all approvals ta&egolithin 4 years from
designatio

e the stock of publications§ P. This variable is meant to account for the fact that advances
in scientific knowledge in one therapeutic area may incrdasprobability of obtaining an
ODD. Indeed, the pharmaceutical research is the leading@earha science-based sector
(Pavitt,/1984), because a large part of innovation builda@ademic research (Mansfield,
1995). As a result, inputs from science can play a relevdatinstimulating R&D efforts
at the market level.

Therapeutic class dummy variables, along with a dummy bkrimentifying genetic diseases,
are also include

7 Results

In Column (1) of Tablé ¥ we present the results of a simplifiedlehan which we do not account
for the heterogeneity in the effect of the regulations: wetdhe interaction terms from E@._P3.
These are included in our baseline specification, whosdtseste reported in Column (2). In
Columns (3)-(5) additional control variables are includedhie analysis. For each specification
we present the results of the zero inflated (Gumbel) partefibdel (probability of a “certain
zero”), and the “count” part (modeling the determinantsrofavation output for diseases not
included in the “certain zero” group).

Results in Column (1; Gumbel) show that it is more likely to haeeR&D effort (If =0)
for very rare diseases. Similarly, Column (1; count) shoves the expected number of ODD is
higher for the group of least rare diseases, and that thedunttion of special regulations over
time is associated with an increase in the number of ODD.

Interactions between the classes of prevalence and thepimeds are added both in the
Gumbel and the count parts of the model presented in Columrn(®yder to account for any
heterogeneity in the impact of reforms across classes ohj@ece. Results from Column (2;
Gumbel) point out that, in the first time period, it is moreelkto observe zero R&D investments

20This statistics is obtained by taking into account the destign-approval lag for designations that received
a marketing authorization. We only considered designatiintained before the year 2005, as the designation-
approval lag for more recent ODD would be censored. If alscemecent designations are taken into account, we
find that 60% of all approvals take place within 4 years frorsigieation.

2lwe consider 26 therapeutic class dummy variables correipgno the classification provided by Orphanet.
These are not mutually exclusive, as a disease may belongr® timan one classification. As an example, cranio-
pharyngioma is classified as neurological, endocrine, @ogplastic disease. It is also a genetic disease.
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for diseases belonging t§3 compared to the reference categailj. In order to analyze what
happens in subsequent time periods, we test the null hypsttieg Ni + Ni x Dt = 0. We
find that these sums are all negative and statistically fogmit, pointing out that in all periods
but the first the probability of a “certain zero” is lower foisdases belonging to classes other
than N1. As for the dynamics over time, the coefficients associaidti¢ interaction terms are
all negative and statistically significant: the reductinrthe probability of observing a “certain
zero” is greater for less rare diseases. As, in the conterbofinear models, statistical tests
about partial effects and interaction terms are not nedgssdormative (Greene, 2010), Figure
[ shows the dynamics in the predicted values from Column (@¢ter understand the role of the
interactions. Figurg]1(a) plots the predicted probabdithaving a “certain zero” as a function
of time for the classes of prevalendél and N4 From the second to the third period, when
market exclusivity is introduced also in Europe, the langeration in probability is detected for
the largest class of prevalence: fi the variation is of~39 percentage points as compared to
less than-10 for the other classes.

In the count part of the model (Column 2; count), the negatige ef the interaction terms
suggests that, for diseases not in the “certain zero" gribgextension of incentives favor more
diseases belonging to the lowest class of prevalentB:( conditional on having any R&D
investment, the extension of incentives reduces the gaggrims of ODD, between more and
less rare diseases. Recall that this outcome is related toptimaal level of investment in the
theoretical model[*) and that the results for the comparative statics ahdz are ambiguous.
The reduction in the gap highlighted by Column (2; count) shie in Figurd IL(b), plotting the
dynamics in the linear combinatior}tﬁz over time forN1 and N4. In Figure[1(c) we plot the
exponential value of the linear combination presentéd lx), Hs in Eq[21.

Graph (d) of Figuré]l shows the combined effect of the Gumbeithe count parts, i.e. the
predicted number of ODD per year per disease. Even when omggalation was in force only
in the US (1983-1999), the predicted number of ODD was lowedfseases belonging 91
compared to less rare disea@e@ver time, there has been an increase in the number of ODD
for all classes of prevalence, but this has been greateh®tess rare diseases. This means
that the magnitude of the heterogeneous impact on the pilitpalbundertaking any investment

22The plot including all classes of prevalence (Fidure 3) oreed in AppendiX’A and shows that the classes of
prevalenceV2 and N3 behave very similarly tav4.

23Note that the lower threshold for the definition of an orphaeadse in Japan (about 4 in 10 thousand) means
that some of the diseases belongingwté do not benefit from incentives in this country. Hence, stgrfrom period
D2, the estimated coefficients 8f4 and its interactions may represent a lower bound.

24A test on the predicted number of designations for diseaaeind) a prevalence of “<1/1,000,000V() and
for those having a prevalence of “1-9 /1,000,000 rejects the null hypothesis of no difference (p-value4@)0
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Figure 1: Predicted values for class of prevaleNde(continuous line) andV4 (dashed line): (a)
Predicted probability thaf; = 0; (b) linear combinatiorz;3,; (c) predicted number of ODD,
conditional onZ; > 0; (d) predicted number of ODD

(Gumbel part) outweighs the effects on research intensityr{t part), which goes in the opposite
direction. The difference between the predicted number@D@or a disease belonging to the
lowest class of prevalence and one in the highest class t&%e8 larger in the last period than
in the first one.

In Column (3) of Tablé 4 we take into account the charactesstf the disease in terms of
life expectancy, and include a dummy variable that identiiseases causing premature death
(FarlyD). This variable is not significant either in the Gumbel orhie tount part of the model,
but its joint effect in the two equations is statisticalljfelient from zero (p-value= 0.033).

In Column (4) we include the stock of publications at time 5 (in log) to proxy the level of
scientific knowledge related to diseaseanputs from science play a relevant role in stimulating
R&D efforts at the market level. Indeed, results highlighatth larger stock of publications
increases the number of ODD in the count part (it also redinasrobability of having a “certain
zero”, although not significantly).

Finally, in Column (5), we control for the average probapitf receiving a marketing autho-
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(1) (2 (3) (4) (5)
Gumbel count Gumbel count Gumbel count Gumbel count Gumbel count
N2 -1.264* 0.279 2.022 1.587* 1.931 1.535** 1.80r* 1.507* -1.718 -0.338
(0.505) (0.265) (1.271) (0.584) (0.997) (0.548) (0.917) (0.554) 0.9 (0.397)
N3 -1.330**  0.445* 1.392*  1.496** 1.374* 1.472* 1.363 1.444 -0.918 0.194
(0.431) (0.185) (0.644) (0.387) (0.636) (0.362) (0.723) (0.393) 4@®.6 (0.325)
N4 -3.025*  0.369* 1.318 1.792+ 1.200 1.758* 1.317 1.749  -1.010 0.507
(1.389) (0.186) (1.685) (0.669) (1.805) (0.666) (1.950) (0.782) 1@®.6 (0.333)
NO -0.112 0.114 2.496* 1.428* 2.450** 1.456* 2.392* 1580 -1.116* -0.296
(0.231) (0.129) (0.478) (0.476) (0.538) (0.447) (0.555) (0.385) 0.4 (0.264)
D2 0.053 0.473* 3.172* 2.051¥* 3.134** 2.040** 3.018* 2.046**
(0.201) (0.111) (0.657) (0.449) (0.680) (0.469) (0.689) (0.402)
D3 0.101 1.038* 2.704* 2.140* 2.629* 2.105* 2520** 2.120**  -0.453 0.111
(0.289) (0.149) (0.907) (0.322) (0.759) (0.344) (0.648) (0.356) 0O@.5 (0.310)
D4 0.265 1.947* 2.485* 3.112* 2.426** 3.090** 2.34r* 3.119* -0.623 1.1306~
(0.287) (0.152) (0.809) (0.300) (0.692) (0.321) (0.617) (0.345) 5.4 (0.292)
N2 x D2 -3.415* -1.732* -3.335** -1.695** -3.191* -1.738*
(1.043) (0.525) (0.966) (0.566) (0.963) (0.546)
N2 x D3 -3.139* -1.325* -3.010* -1.269* -2.846** -1.321* 0.399 0.418
(1.303) (0.575) (1.049) (0.563) (0.955) (0.560) (0.822) (0.402)
N2 x D4 -3.568* -1.347* -3.442* -1.307* -3.274* -1.408* 0.126 0.390
(1.329) (0.584) (1.088) (0.586) (0.993) (0.591) (0.733) (0.335)
N3 x D2 -2.549* -1.286** -2.478** -1.253** -2.324** -1.251*
(0.733) (0.407) (0.724) (0.461) (0.751) (0.421)
N3 x D3 -2.626* -1.01r* -2552* -0.972* -2.412* -1.055" -0.158 0.148
(0.698) (0.335) (0.639) (0.347) (0.656) (0.372) (0.695) (0.282)
N3 x D4 -2.855* -1.114** -2.800** -1.089** -2.718** -1.266™ -0.512 -0.069
(0.781) (0.354) (0.722) (0.361) (0.712) (0.396) (0.656) (0.266)
N4 x D2 -2.416 -1.239 -2.291 -1.193 -2.326 -1.275%
(1.624) (0.708)  (1.784) (0.714) (1.870)  (0.748)
N4 x D3 -4.327* -1.438* -4.183* -1.372* -4.187* -1.535 -1.896 -0.294
(1.636) (0.688) 1.774) (0.686) (2.917) (0.793) (1.123) (0.332)
N4 x D4 -4.561* -1.607* -4.475* -1565* -4.495* -1.803* -2.281* -0.575
(1.612) (0.718) (2.747) (0.706) (1.881) (0.815) (0.989) (0.351)
NO x D2 -3.660** -1.870** -3.631** -1.869** -3.524** -1.918**
(0.631) (0.640) (0.732) (0.624) (0.691) (0.460)
NO x D3 -3.043* -1.308** -2.992* -1.291* -2.883* -1.378**  0.659 0.531
(0.578) (0.396) (0.548) (0.395) (0.562) (0.364) (0.466) (0.289)
NO x D4 -2.481*  -1.392** -2.447~ -1.385* -2.386** -1.519* 1.078** 0.344
(0.501) (0.404) (0.531) (0.391) (0.557) (0.364) (0.381) (0.278)
EarlyD -0.258 0.218 -0.187 0.230 -0.123 0.310
(0.363) (0.153) (0.350) (0.147) (0.318) (0.143)
In(SPj;_5) -0.033 0.077* -0.045 0.076*
(0.028) (0.018) (0.038) (0.025)
Py -0.267 0.079
(0.489) (0.269)
Constant 1.047 -3.590 -1.351 -4.729* -1.285 -4.745** -0.996 -4.960** 2.098** -3.050**
(0.641) (0.288) (0.889) (0.299) (0.720) (0.301) (0.602) (0.329) 6@®.5 (0.328)
In(a) 1.014* 0.898** 0.893** 0.794* 0.711*
(0.176) (0.250) (0.202) (0.160) (0.264)
N 136036 136036 136036 136036 105359
AlIC 56111.23 56006.45 55958.26 55702.65 48933.29
BIC 56808.49 56939.41 56910.86 56674.90 49803.72

Robust (clustered across pathologies) standard erroer@nfheses.
Therapeutic class and genetic dummy variables includeti §pecifications.
*p < 0.10, ** p < 0.05, *** p < 0.01

Table 4: Results of model estimation
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rization for drugs belonging to each therapeutic classs,Towever, causes a sample reduction,
since the probability of success cannot be computed forsyE@83-1990. Given the large re-
duction in the number of observations for the first time peélcomprising years 1983 to 1992),
we omit this time period from the estimation. In comparing tlsults with those of the other
columns, it is important to note that in Column (5) the refeeetime period is changed to 1993-
1999. The coefficient for the probability of success (negaith the Gumbel part of the model
and positive in the count part, as expected) is not statistisgnificant.

Importantly, results about the heterogeneous effect oh@mgRegulations across classes of
prevalence reported in Column (3)-(5) confirm results of thsetine specification reported in
Column (2).

Overall, these results show that moving from the period wdrdy the ODA was effective in
the US to periods when additional regulations were enfqrtiesl probability of observing any
R&D investment (zero inflated part of the model) has incredaedore for less rare diseases.
Although, conditional on investment taking place, the etpé number of ODD (count part of
the model) moves in the opposite direction, the net impastilislargely in favor of less rare
diseases (see Figurke 1(d)). This empirical evidence is stamiwith the theoretical analysis of
the impact of the incentives deployed, which shows a greageosure to treatment for less rare
diseases in terms of probability that at least one firm irsv@topositio 11). This suggests that
the introduction of the incentives in Japan and Europe mag pkyed a crucial role in widening
the gap between more and less rare orphan diseases. lrufzartibe European legislation may
have exacerbated this tendency, by relying mainlpotput-relatedncentives, which favor less
rare diseases both through an indirect and a direct mech@Rispositiori ). This interpretation
is robust to the addition of other variables that, accordmthe theory, may be responsible for
determining the relative size of the incentives. The negtige presents additional robustness
checks.

7.1 Robustness checks

We organize our robustness checks along two dimensionst, fie consider different ways of
measuring the dependent variable (the number of ODD at eade level; see Taljle 5). Then,
we modify the sample and introduce additional control J@lda (Tablé B).
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7.1.1 Counting the number of ODD

In Column (1) of Tabléhb we exclude from the count of ODD thosggleations that are received
after the drug has already received marketing approval fimesather indications. In this case,
the innovation can be considered less substatit’lhen excluding these designations from the
count, results are qualitatively similar to those repoitetiablel4.

In Column (2) we take into account the possibility that, evéthan immediate impact of the
reform on the research effort, the increase in the numberdd @ay be observed with delay.
We therefore consider the effect of independent varialiésng ¢ on the number of ODD in
t + 5. The five-year window has been selected as it is the avenagesfpan from the beginning
of clinical trials to the ODD applicatio@ When the time lag is taken into account, the estimated
effect of the reforms is larger, as can be seen from the cdsgueof Figuré 2(d) and Figufe 1(d).
This result is in line with the idea that, not taking into agnbthe lag, the outcome is associated
with a period when the last reform has not produced its effett Therefore, the results that do
not take into account the research designation lag may beex lmound.

In Column (3) a different approach is adopted for the all@aratf ODD originally assigned
to multiple diseases: instead of counting one ODD for eactcineal disease, we use fractional
counting. Estimated coefficients change and we no longegrebsstatistical significance for
the interaction terms in the count part of the model. Howeresults in the Gumbel part are
confirmed, with larger decrease in the probability of obsena “certain zero” for diseases in
the largest class of prevalenc¥4). In terms of the dynamics in the expected number of ODD,
estimates of the interaction terms confirm the increasifigtafirected towards less rare diseases
(in class of prevalenc&'2, N3, and/N4) as compared to more rare diseases (cMsp

Finally, in Column (4) only ODD assigned to private comparaesincluded in the analysis
(96% of the ODD in our sample), therefore excluding those Cd3Bigned to universities, hos-
pitals or medical centers, not-profit organizations antepatissociations. Our main results are
again unaffected.

25The relevant information was retrieved from the list of aapkdesignated products with at least one marketing
approval for a common disease indication provided by the BDéthe Drugs@FDA database.

26The five-year window is estimated by combining our own corapah on FDA data and data on drug de-
velopment length provided hy DiMasi et/ al. (2016). Accogdio our computation, thaveragetime lag between
designation and marketing approval for drugs designatéatd@005 is 68 months (again, we consider the 2005
limit to avoid data censoring that characterizes more regears). DiMasi et al! (2016) reports a time period of 126
months from synthesis to approval. By taking the differelpesveen these two numbers, we find that designations
take place on average five years after synthesis of the camdpdthis result is in line with Hay et al. (2014), who
find that ODD are most often received when a drug is in phade®id roughly five years from synthesis (according
tolDiMasi et al.| 2016).
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1) (2 (3) (4)
excl.appr. Yjtts fractional firm only
Gumbel count Gumbel count Gumbel count Gumbel count
N2 1.871 1.544*  1.945* 1.643* 8.573* 1.643* 2.338* 1.449*
(1.068) (0.619) (0.924) (0.482) (2.950) (0.650) (1.151) .6Qq0)
N3 1.318* 1.483** 2.061 1.795* 7.705** 2.225** 1.435* 1.411**
(0.643) (0.369) (1.323) (0.500) (2.263) (0.527) (0.598) .310)
N4 1.587 1.667 2.457* 2.280* 10.597* 2.802** 1.040 1.656
(1.820) (0.752) (2.174) (0.577) (3.593) (0.523) (1.764) .530)
NO 2.672* 1.554* 2.397* 1.218*  4.848* 0.682 2.628* 1.346**
(0.508) (0.401) (0.494) (0.284) (1.674) (0.507) (0.461) .29a)
D2 3.220* 2.148* 3.482* 2.38F**  6.323** 0.330 3.686* 1.982**
(0.687) (0.360) (0.582) (0.309) (1.992) (0.523) (0.593) .303)
D3 2.702* 2161~ 3.507** 2.675* 6.014* 0.483 2.997* 2.169**
(0.587) (0.340) (0.537) (0.283) (1.967) (0.560) (0.483) .262)
D4 2.384* 3.082* 2.630* 3.137* 6.157* 1.392* 2.746™ 3.133**
(0.589) (0.329) (0.498) (0.257) (1.997) (0.508) (0.429) .2%8)
N2 x D2 -3.254* -1.738* -3.487** -1.989** -26.443** -0.229 -3.825* -1.590**
(2.003) (0.564) (2.137) (0.492) (8.355) (0.594) (0.922) .4%0)
N2 x D3 -2.979* -1.304* -3.746** -1.436** -42.482* 0.060 -3.5160 -1.175
(2.017) (0.610) (0.966) (0.497) (17.204) (0.706) (1.515) 0.643)
N2 x D4 -3.427F* -1.339 -3.258* -1.285* -56.202** 0.385 -3.725* -1.148*
(1.146) (0.693) (0.832) (0.447) (15.616) (0.653) (1.080) 0.563)
N3 x D2 -2.483* -1.345* -3.698** -1.826** -4.896* 0.049  -3.144* -1.320*
(0.786) (0.391) (0.881) (0.432) (2.204) (0.551) (0.864) .368)
N3 x D3 -2.499* -1.023* -3.675* -1.480"* -5.995** 0.364 -2.876* -0.961**
(0.593) (0.361) (1.066) (0.486) (2.074) (0.582) (0.616) .303)
N3 x D4 -2.748* -1.090** -4.01F* -1.401* -5.723* 0.564  -3.091~ -1.040**
(0.653) (0.374) (2.305) (0.531) (2.023) (0.542) (0.582) .370)
N4 x D2 -2.539 -1.137 -4.332* -2.148* -3.878 -0.016 -2.499  -1.09%
(2.772) (0.722) (1.270) (0.617) (2.288) (0.559) (1.738) .5%)
N4 x D3 -4.642* -1.408 -6.202** -2.126** -12.653** 0.460 -4.514 -1.300*
(1.804) (0.771) (1.322) (0.646) (4.346) (0.603) (1.800) .519)
N4 x D4 -4.950* -1.513 -6.265** -2.020** -12.963** 0.323  -4.800* -1.448**
(2.792) (0.791) (1.555) (0.616) (4.390) (0.556) (1.840) .588)
NO x D2 -3.838* -2.036** -3.366** -1.596** -6.699** -0.135 -4.105* -1.765**
(0.636) (0.428) (0.594) (0.332) (2.139) (0.542) (0.589) .389)
NO x D3 -3.225* -1.440* -2.985* -1.242* -6.627* 0.265  -3.191~ -1.246**
(0.504) (0.380) (0.562) (0.311) (2.153) (0.580) (0.495) .290)
NO x D4 -2.588* -1.480* -2.067** -1.08T** -6.906** 0.034 -2.544* -1.317*
(0.511) (0.353) (0.518) (0.288) (2.190) (0.528) (0.451) .289)
Constant -1.248 -4.779* -1.693** -4573* -25.435* -6.064** -1.402* -4.667**
(0.611) (0.334) (0.524) (0.268) (7.812) (0.507) (0.600) .319)
In(a) 0.922** 0.849** -0.429 1.038*
(0.187) (0.160) (0.311) (0.128)
N 136036 111023 136036 136036
AIC 54366.23 50339.77 21282.44 54258.32
BIC 55299.19 51253.43 22185.94 55191.29

Robust (clustered across pathologies) standard erroeréntheses.
Therapeutic class and genetic dummy variables includell specifications.
*p < 0.10,** p < 0.05, ** p < 0.01

Table 5: Results — Robustness checks on the way the number ofi©OmD&asured
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Figure 2: Predicted number of ODD when considering a five &g in the regressors (see
Column (2), Tablels).

7.1.2 Sample issues and control variables

In the count part of the model presented in Column (1) of Tableesadd as additional controls
the interactions between therapeutic class dumnii€s ) and period dummi@ These inter-
action terms aim at capturing the effect of technologictdmas at the therapeutic class level.
In the case that technological breakthroughs, fosteriade¥el of innovative effort in a specific
therapeutic class, take place in the same years as the orpdaations, the omission of thera-
peutic classes specific trends might bias our results intbsepce of correlation with the level
of prevalence. However, results confirm the negative andsstatly significant effect of the
interaction terms between class of prevalence and periourdes.

In Column (2) we include a proxy for the net revenue at the irrgide\‘/el In particular, we
consider the ratio between the producer price index of pheentical and medicine manufac-
turing, and the price index for private fixed investment iteilectual property products for firms

2"The interaction terms are included only in the count parhefrhodel due to a lower BIC with respect to models
where the interaction terms are included also (or only) @@umbel part of the model.

280n the basis of our theoretical model, disease-specificavenues ;) should affect incentives to undertake
R&D investments. Unfortunately, we are not aware of rebgioxies for net revenues, as well as price indexes or
dynamics in R&D costs, at the disease-level.
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@) @) ®) (4)

TC; x Dp, mg; all obs. SPsz_5 >0
Gumbel count Gumbel count Gumbel count Gumbel count
N2 0.834 1.521* 1.693 1.484* 2.848** 1.439* 2.909* 2.300**
(0.656) (0.613) (2.009) (0.559) (0.653) (0.458) (0.567) .4%@)
N3 0.210 1.439+ 1.127 1.409*  1.690** 1.171** 0.775 1.588*
(0.567) (0.461) (0.609) (0.353) (0.503) (0.225) (0.579) .398)
N4 0.559 1.668* 1.024 1.715* 0.836 1.324+* 1.418 1.904+*
(0.789) (0.616) (1.440) (0.567) (1.569) (0.445) (1.132) .54@)
NO 0.471 0.668 0.260 1.322 2.695* 1.118** 3.715* 2.315*
(0.489) (0.426) (0.635) (0.393) (0.381) (0.245) (1.205) .780)
D2 0.722 0.487 3.318 1.61r* 3.824* 1.904* 2.624** 1.888**
(0.559) (0.434) (0.627) (0.424) (0.366) (0.244) (0.837) .64Q@)
D3 0.518 0.675 3.135¢ 1.413* 3.658* 2.176* 3.417* 2.724*
(0.621) (0.468) (0.742) (0.339) (0.329) (0.233) (0.806) .478)
D4 0.366 1.475* 3.735** 1.706** 3.054** 2.952** 3.026** 3.481**

(0.552)  (0.449) (0.680) (0.338) (0.353) (0.231)  (0.867) .470)
N2x D2 -2.056* -1516* -3.127* -1.652** -3.819™* -1.502** -3.327** -1.713
(0.864) (0.564) (0.959) (0.521) (0.738) (0.450) (1.228) .94@)
N2x D3 -1.928* -1206 -2.780* -1.219* -4.309** -1.408* -3.656* -1.925**
(0.793) (0.628) (1.064) (0.559) (0.913) (0.520)  (0.910) .583)
N2x D4 -2.439" -1.284* -3.339% -1.244* -4.02F* -1.040 -4.183* -1.919*
(0.724)  (0.620) (1.067) (0.569) (0.857) (0.543) (0.771) .620)
N3x D2 -1238 -1.060° -2.234* -1.189* -2.992** -0.965" -2.375* -1.342*
(0.764)  (0.446)  (0.666) (0.393) (0.494) (0.253)  (0.895) .68®)
N3x D3 -1.378* -1.062* -2.328* -0.915* -3.246™ -0.864** -3.004** -1.521*
(0.700)  (0.474) (0.611) (0.332) (0.468) (0.251) (0.839) .510)
N3x D4 -1675* -1.059* -2.636* -1.028* -3.148* -0.810"* -2.798* -1.343*
(0.812) (0.494) (0.674) (0.344) (0.483) (0.283) (0.751) .5%a)
Nix D2 -1112  -0.707 -2.099 -1.160 -2.467 -0.969* -1.846  -1.057
(0.842) (0.572) (1.446) (0.602) (1.468) (0.457) (1.134) .69B)
N4x D3 -3.642" -1.359* -3.968* -1.354* -3.500* -1.208** -3.617* -1.633**
(0.925)  (0.620)  (1.440) (0.578) (1.343) (0.427) (1.021) .589)
N4x D4 -3.846" -1.435* -4.335* -1507* -2.470 -0.949* -3.221* -1.586*
(0.831) (0.620) (1.379) (0.599) (1.482) (0.476) (1.030) .576)
NOx D2 -1.41F> -0.947* -3.730* -1.782* -3.877" -1.509** -3.381* -1.986"*
(0.547)  (0.419) (0.611) (0.518) (0.427) (0.293) (0.847) .6%3)
NOx D3 -1.006 -0.647 -3.372* -1.197* -3.561* -1.171* -4.012* -2.024*
(0.587) (0.431) (0.565) (0.345) (0.397) (0.284)  (0.853) .5{O)
NOx D4 -0482  -0.608 -3.598° -1.262** -2.726™ -1.053** -3.391** -1.895**
(0.517)  (0.417) (0.550) (0.345) (0.428) (0.278) (0.959) .581)

mg: -1.759*  1.511**
(0.325) (0.180)
mg; X NO 1.655**
(0.333)

Constant ~ 0.748 -3.355 0.949 -6.367* -1.035* -4.025** -0.616 -4.299*
(0.611)  (0.477) (0.890) (0.404) (0.416) (0.207)  (0.669) .3(®)

In(a) 0.780° 0.825 0.788" 0.581"
(0.171) (0.209) (0.163) (0.231)
N 136036 133348 212092 91392
AIC 55485.69 55477.80 71869.02 37279.63
BIC 57214.13 56438.27 72844.17 38174.81

Robust (clustered across pathologies) standard erroerémntheses.
Therapeutic class and genetic dummy variables includel pecifications.
*p < 0.10, ** p < 0.05, *** p < 0.01
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operating in pharmaceutical and medicine manufacturin@ (@®xy for R&D expenditure@
The ratio between the two indexes has grown substantiadly e observation period. We also
include an interaction term betweeéy) (missing prevalence) and the ratio in the Gumbel part
of the mode@ In the count part of the model, the coefficients/o?, D3 and D4 are smaller
compared to our baseline specification, as part of the ef@etptured by the increasing trend in
the ratio over time. However, the main result of our analissimaffected.

In Column (3) we consider the full set of diseases, removiegstilection of the basis of the
stock of publications. In this case, al8& and N4 become significant in the first period, unlike
in the models that disregard diseases that cannot be reétagery publications, especially in the
Gumbel part of the model. This may be due to the fact that mioteodiseases that are added
after the first year belong t&'1.

Finally, in Column (4), we consider the balanced panel ofaliss that were known at the
beginning of our observation period (i.e., with a positiadue ofS P;_; in year 1983). By using
a balanced set of observations, we aim at investigating lveinedur results are driven by the
composition of the sample.

Allin all, the robustness checks performed in this sectmmficm the main results from Table

8 Concluding remarks

Since the early 80s, regulators have started to addresadkeflincentives to invest in innovation
for rare diseases by means of specific provisions. As thenpdiaeutical market is a global one,
these incentives for the development of orphan drugs havellated over time as new countries
have introduced them. There is ample evidence that thisftasdsed investments in projects
targeting rare diseases, meaning a potential reductioreguiality between orphan and common
diseases. In this paper, we study the distribution of R&D regfavithin the class of orphan
diseases, with a focus on heterogeneity with respect t@f@eve.

We developed a theoretical model to show that the type of ihaethat is used may be

2980th indexes have been downloaded from the Federal Reseoreic Data. See: https:/fred.stlouisfed.org.
Data are no available for the producer price index in 1983habone observation for each disease is lost.

30In unreported analyses we have considered the interactitvelen all classes of prevalence and the industry-
wide margin both in the Gumbel and count part of the model.s Thimotivated by the fact that, theoretically, an
increase inM; works as an increase i meaning that the size of the impact dependspnOnly the interaction
term betweenVO0 and the ratio in the Gumbel part of the model is statisticdlfferent from zero, so only this
interaction is retained in the estimated model in Column T&js model has also to be preferred with respect to the
model where all interactions are included according to thgeBian Information Criterion (BIC).
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crucial to define the relative convenience to invest acrafésrent classes of prevalence. In
particular, we consider botbutput-relatedincentives, such as market exclusivity, angut-
relatedincentives, such as tax credits. The model shows that bpistpf incentive increase
more theprobability of observing investmefdr a less rare disease. This is due to both a direct
and an indirect impact fooutput-relatedincentives, whereas fdnput-relatedincentives the
impact is only indirect. It is not possible to conclude unajabusly whether the impact of the
incentives on theptimal level of R&D investmelmcreases or decreases with the prevalence of
the disease.

We use the number of orphan designations, a condition torbe&igible for incentives, as
a proxy of R&D effort, to investigate the impact of the intration of incentives in different
geographic areas over time. We find that the number of designsahas increased over time
for all orphan diseases, but inequality within orphan diesahas also increased: the difference
between the predicted number of orphan designations fos@ade belonging to the highest
and the lowest class of prevalence is 5.6 times larger inabethan in the first period of the
analysis. The gap between less and more rare diseases seleane twidened after 2000, when
the orphan legislation was introduced in the EU. We arguitiiedarge weight obutput-related
incentives embodied in this legislation, when comparedefample with the US legislation,
combined with the large size of the EU market, may have dautted substantially to this result.
If the reduction of inequality in the distribution of R&D effts is an objective of European
policy makers, then the weight afiput-relatedincentives should be increased. However, the
adoption of some of these incentives, such as tax creditgo@manore challenging than in other
regulatory frameworks, due to the fact that single EU menabentries are still responsible for
the definition of fiscal policies. In this context, an extemsof the incentive tool set to include
provisions that can be tailored to the prevalence of a disshselld also be considered.
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A Appendix

In Figure[3 we report the equivalent of Figlire 1 with a line éaich class of prevalence. The
figure is obtained using the estimated coefficients of ouelbss model, reported in Column (2)
of Table[4.
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