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Abstract

Since the early 80s, orphan drug regulations have been introduced to stimulate R&D for

rare diseases. We develop a theoretical model to study the heterogeneousimpact on opti-

mal R&D decisions of the incentives for diseases with different levels of prevalence. We

show the mechanisms through which the type of incentives deployed by orphan drug regu-

lations may stimulate R&D more for orphan diseases with comparatively high prevalence,

thus increasing inequality within the class of orphan diseases. Using data from the Food and

Drug Administration on the number of orphan designations, our empirical analysis shows

that, while R&D has increased over time for all orphan diseases, the increase has been much

greater for the less rare. According to our baseline specification, the difference between

the predicted number of orphan designations for a disease belonging to the highest and the

lowest class of prevalence is 5.6 times larger after 2008 than it was in 1983.Our findings

support the idea that the type of incentives in place may be responsible forthis increase in

inequality within orphan diseases.
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1 Introduction

Orphan diseases are those that affect a small number of individuals, with the exact definition

varying from one institutional context to another. Despitethe fact that each of these diseases often

affects only few people, there are currently 7,000 orphan diseases described in the literature, so

that it is estimated that 25 to 30 million US citizens and 27 to36 million EU residents suffer from

an orphan disease (Health and Safety, 2015). However, less than 10% of rare diseases currently

known have an available treatment (Melnikova, 2012; Tambuyzer, 2010).

Given that the pharmaceutical industry is mainly responsible for R&D investments for new

drugs, the allocation of resources across diseases is affected by the expected return on invest-

ments. Hence, the market size is a critical dimension. The empirical and theoretical analysis

of the effect of market size on innovation identifies a positive relationship. Acemoglu and Linn

(2004) find that a 1% increase in potential market size is associated with a 6% increase in the total

number of new drugs launched in the US market and with a 4% increase when only nongeneric

drugs are taken into account. The result is confirmed by Dubois et al. (2015), who find that R&D

efforts are directed towards larger markets, and estimate that, on average, additional revenues of

$2.5 billion are required to support the invention of one newchemical entity. Jobjörnsson et al.

(2016) propose a theoretical model to study how the interaction between the regulation of mar-

keting approval by institutions such as FDA and EMA and reimbursement decisions by pay-

ers affects R&D investment, showing that R&D investments are less likely if a disease is rare.

Barrenho et al. (2019) use data on marketing authorizations to obtain concentration curves and

concentration indexes of innovation, according to the burden of disease and the market size. They

find that innovation is concentrated toward diseases with a greater market size, i.e. those with

higher prevalence or higher willingness to pay.

In addition to the limited size of the market, research efforts directed towards orphan diseases

may be hindered by the difficulty in identifying patients with rare diseases for clinical trials, in

the logistic organization of the trials themselves, by the poor understanding of the course of the

disease, as well as by the low expertise in the medical community (Tambuyzer, 2010).

In order to address the lack of incentives to undertake research targeting rare pathologies,

policy makers have introduced a number of tools to incentivize R&D for orphan diseases. The

main tools are tax credits on R&D expenditure, market exclusivity for new products, protocol

assistance and reduced marketing authorization fees. The necessary formal step to access these

incentives is obtaining anorphan drug designation(ODD) from the competent regulatory author-

ity. The first special legislation was introduced in the United States, with the Orphan Drug Act

(ODA), approved in 1983. Since then, several other countries have established regulations for
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the development of orphan drugs. The economic rationale forthese incentives can be hardly re-

lated to efficiency: given that R&D costs are largely independent of the market size, other things

being equal, the expected return per unit of investment in terms of population health is lower

when the size of the market is smaller. On the other hand, inequality aversion provides a strong

motivation, given the huge differences in the availabilityof treatments between rare and common

diseases. The problem can also fit an equality of opportunityframework (Raïs Ali and Tubeuf,

2019), given that the disease prevalence is clearly beyond individual control (Roemer, 1998).

Overall, there seems to be a general consensus that special regulations adopted over the

world have contributed to closing the gap between orphan andnon-orphan diseases. Braun et al.

(2010), Lichtenberg and Waldfogel (2009) and Yin (2008) show evidence of a positive impact

of the ODA on R&D directed to orphan diseases and Lichtenberg (2013) finds that an increased

availability of drugs for orphan diseases reduced mortality. A positive impact on the number of

designations and approvals for orphan drugs is also found inEurope (Westermark et al., 2011).

On the other hand, concerns have been raised that part of the increase in the number of designa-

tions and approvals might not be the result of a really innovative effort, but rather due to strategic

behaviour by the pharmaceutical industry. For example, Yin(2009) highlights that firms have in-

centives to develop drugs for rare subdivisions of more common diseases, pointing that as much

as 10% of innovations for orphan diseases would have been developed even in absence of the

policy. It is therefore important that incentive policies are efficiently designed, so to maximize

the social return on expenditure.

While most of the literature has addressed the question whether special regulations are ef-

fective in reducing the gap between R&D for orphan and non orphan diseases, far less atten-

tion has been devoted to the possibly heterogeneous impact across different orphan diseases.

However, this is an extremely relevant issue, given the hugenumber of orphan diseases and the

large variability among them, along several dimensions. Among previous studies on this topic,

Heemstra et al. (2009) take into account orphan designations in Europe and the US, and highlight

a strong heterogeneity in the level of research effort across different diseases, the heterogeneity

depending on the therapeutic class, prevalence and the number of scientific publications. Yin

(2008) analyzes the impact of the ODA on R&D activity targeting rare diseases, proxied by the

number of clinical trials, and shows that the rarest diseases have benefited less from the intro-

duction of the special legislation in the United States.

The dimension of heterogeneity, on which this paper focuses,is prevalence. Among orphan

diseases, there are some that affect almost 100,000 individuals worldwide and others that only

record few cases. We believe that, if an equity argument provides the rationale for incentivizing
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orphan versus non-orphan diseases, the equity implications of these incentives within the class of

orphan diseases cannot be disregarded. Our analysis aims atcharacterizing the dynamic impact

of orphan regulations introduced over time and across countries.

We use a simple theoretical model to study the impact of orphan regulation on two outcomes:

i) the probability of having any investment in R&D for a certain disease ii) the intensity of the

R&D effort, which affects the probability of obtaining an ODD. To account for the heterogeneity

in the tool set used in different contexts, we separately consideroutput-relatedincentives (e.g.,

market exclusivity) andinput-related incentives (e.g., tax credits). We show that both types

of incentives have an unambiguously stronger effect on the first outcome for less rare diseases,

meaning that the impact on the probability of having any investment is larger for less rare diseases

among the orphan ones. This advantage of less rare diseases is greater whenoutput-related

incentives are in place. This means that the exposure to treatment (incentives) changes with

the prevalence of the disease. In terms of investment intensity, it is not possible to conclude

unambiguously whether more or less rare diseases benefit more from the incentives.

The empirical counterpart of our theoretical model is a ZeroInflated count data model, where

the dependent variable is the yearly number of ODD at the disease level, as a proxy for R&D

intensity. For the sake of consistency with the distributional assumptions that we make, the

excess of zeros is modelled using the Gumbel distribution, to replace the standard Logit or Probit

model. We adopt a difference-in-differences approach to exploit the fact that reforms have been

introduced at different points in time in different geographic areas and that, according to our

theoretical results, diseases with different prevalence might have benefited differently from the

regulations.

We find that, over time, R&D efforts have increased substantially more for less rare diseases

within the class of orphan diseases, thus increasing inequality within the class of orphan diseases.

These conclusions remain valid even when controlling for a number of other factors potentially

affecting the relative convenience of investing in less vis-a-vis more rare diseases. To the best

of our knowledge, no evidence of this dynamics has been previously reported. Based on our

theoretical results, we argue that the way in which orphan incentives were designed may have

contributed to widening this gap. By relying almost exclusively onoutput-relatedincentives, the

European legislation may have exacerbated this tendency.

In terms of policy implications, our results suggest that, if inequality aversion is a fundamen-

tal motivation for orphan legislation, then a revision of the incentive tool-kit should be consid-

ered, with the objective of curbing the widening of the gap between less and more rare orphan

diseases. One way of mitigating this tendency could be to shift the balance of incentives towards
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input-relatedtools. A more radical reform could consider abandoning the idea of setting an arbi-

trary threshold of prevalence, below which all diseases benefit from the same type of incentives,

to move towards prevalence-dependent incentives.

The structure of the paper is as follows. Section 2 describesthe different regulations that have

been adopted over time. Section 3 describes the model, whichis solved in Section 4. Section 5

ans 6 describe, respectively, data and methodology for the empirical analysis, whose results are

presented in Section 7. Section 8 concludes and discusses the policy implications.

2 Institutional context

Over the last 35 years, orphan drug regulations have been adopted in several countries around the

world (Pammolli et al., 2009). The US were the first country todevelop a specific legislation. In

1983 the Congress signed the ODA, according to which a drug is consideredorphanif it treats

a rare disease or condition affecting fewer than 200,000 persons in the US (about 6.25 in 10

thousand persons) or if it is not expected to be profitable within seven years following approval

by the FDA.1 The incentives for drugs designated as orphan are (1) assistance from the Office

of Orphan Product Development during the development process; (2) tax credits (up to 50% of

clinical development costs); (3) exemption or waiver of application (filing) fees; (4) seven years

of marketing exclusivity2 and (5) subsidies for clinical trials from the Orphan Products Grant

Program.

Special regulations with the same objectives have subsequently been introduced in several

countries, such as Singapore (1991), Japan (1993), Australia (1998), South Korea (1998), the

1This is the current definition of orphan drugs, that was introduced with the Health Promotion and Disease
Prevention Amendments of 1984. Indeed, originally the Orphan Drug Act of 1983 defined a rare disease as one that
"occurs so infrequently in the United States that there is noreasonable expectation that the cost of developing and
making available in the United States a drug for such diseaseor condition will be recovered from the sales in the
United States of such drug". Other minor amendments of the ODA took place over the years to mitigate strategic
behavior on the side of the firm (Herder, 2017).

2Market exclusivity represents a stronger protection for firms compared to patents. While patents prevent other
companies from making, using, offering for sale, selling, and importing for these purposes the drug, market ex-
clusivity implies that the regulatory agency cannot approve another drug for the same indication without the spon-
sor’s consent. Moreover, patent protection is filed early inthe development process, whereas market exclusivity is
granted when the product is launched in the market. As the development process can last many years (DiMasi et al.,
2016), empirical analysis has shown that market exclusivity, on average, extends patent protection by 0.8 years
(Seoane-Vazquez et al., 2008). Furthermore, some orphan drugs contain natural products for which it is not possible
to obtain patent protection (Pammolli et al., 2009). For these reasons, we believe the fact that several countries
introduced or extended their patent coverage for pharmaceuticals during the analyzed period is not relevant for our
analysis.
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EU (2000) and Taiwan (2000).3 In what follows we only consider the introduction of special

regulations in the three areas with the largest markets: US,Japan and the EU.

In April 1993, Japan substantially revised its orphan medicinal product system, introduced in

1985, so as to extend the tools used to incentivize research on orphan diseases. So, in addition to

the already existing (1) reductions in the required data forapplication, and (2) accelerated review

process, the following incentives were introduced: (3) protocol assistance; (4) tax credits (up to

6% of clinical and non-clinical costs); (5) subsidies for clinical and nonclinical studies and (6)

ten years of market exclusivity. Compared to those introducedin the US, incentives introduced

in Japan entail a longer period of market exclusivity, but a lower percentage for the computation

of the tax credit.4 In order to be designated as orphan, the drug, which has to be proved highly

effective and safe, has to treat a rare and serious disease orcondition affecting less than 50,000

persons in Japan (about 4 in 10 thousand persons), and such disease should not have any other

available treatment. Since in Japan the incentive tools which are the main focus of our analysis

were introduced in 1993, we refer to this as the date when the special legislation was introduced.

In December 1999, also the European Union approved a regulation on orphan medicinal

products: the Regulation (EC) No 141/2000.5 The regulation establishes a procedure for desig-

nating orphan drugs and sets incentives for R&D. The incentives include (1) protocol assistance;

(2) access to a centralized procedure allowing immediate marketing authorization in all member

states; (3) reduced fees for regulatory procedures and (4) ten years of market exclusivity. In order

to benefit from the incentives, orphan drugs have to be designated as such before the marketing

authorization is granted. Moreover, the targeted drug has to treat a condition affecting no more

than 5 in 10 thousand persons in the Community when the application is made, or it has to treat a

life threatening or chronically debilitating condition for which it is unlikely, without incentives,

that the marketing of the medicinal product in the Community would generate sufficient return to

justify the necessary investment;6 finally, there should exist no satisfactory alternative methods

authorized in the Community or the medicinal product has to bring significant benefit to those

affected by that condition (article 3 of the Regulation). In addition to the incentives mentioned

in the regulation, some member states have introduced othermeasures to support R&D, such as

tax reductions (allowed in France and the Netherlands) (Health and Safety, 2015).

3With the exception of Australia, all these countries provide (extra) market exclusivity for orphan drugs
(Sharma et al., 2010).

4Indeed, non-clinical costs per approved new compound are estimated to be lower than clinical costs (1 billion
US$ versus 1.5 billion US$, according to DiMasi et al. 2016).

5As in the US, also in Europe several regulations took place after the first one. Also in this case, however, none
of the following six regulations modified the incentives introduced with the first one and presented here.

6According to Tambuyzer (2010), more than 99.5% of orphan designations in Europe are granted because of the
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US (1983) Japan (1993) Europe (2000)
Disease:

Prevalence < 200,000 in US < 50,000 in Japan < 5 in 10,000
(6.25/10,000) (4/10,000)

Characteristics Rare or Rare Rare or
not profitable not profitable & life-threatening

Serious

No other treatment No other treatment
available or available or

clinically superior clinically superior

Main incentives:

Tax credit Yes Yes Member state
(50% clinical costs) (6% clinical and specific

non-clinical costs)

Market exclusivity Yes (7 years) Yes (10 years) Yes (10 years)

Reduced applic. fees Yes (waved) No Yes (reduced)

Protocol assist. Yes Yes Yes

Subsidies for clinical trials Yes Yes No

Table 1: Comparison of orphan drugs regulations in the US, Japan and EU.

Incentives provided by the US, Japan and Europe are summarized in Table 1, together with

requirements for drugs to be considered as orphan.

Since November 2007, the European Medicines Agency (EMA) and the FDA are collabo-

rating to encourage joint applications to the orphan drug status both in Europe and the US. A

common application form has been developed, in an effort to reduce the administrative burden

on the orphan drug sponsor (Braun et al., 2010; Mariz et al., 2016). Parallel applications in Japan

and Europe are also encouraged, although a common application form is not in place yet, due to

administrative differences between the two offices (Mariz etal., 2016).

prevalence criteria.
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3 The model

Let N f firms be free to decide on the size of an R&D investment,I ≥ 0, targeting disease

j, which affectsnj individuals. For an orphan drug, there are two key regulatory steps in the

development process. In the first step, the firm that has developed a molecular entity applies for

an ODD. If granted, the ODD makes the firm eligible for any incentive related to the development

of an orphan drug. If the development process is successfully completed, the firm will approach

the second regulatory stage: marketing authorization. From the perspective of the firm, both

stages entail uncertainty. Letpd
j (I) be the probability that the firm obtains an ODD, given the

R&D investmentI. For the functionpd
j (I) we introduce the standard assumptions

∂pd
j

∂I
> 0 and

∂2pd
j

∂I2 < 0. Moreover, given thatpd
j is a probability,pd

j (0) = 0 andlimI→∞ pd
j (I) = 1.

Conditional on obtaining an ODD, the firm will carry on the development process. With

probabilitypm
j this will lead to the marketing approval of the product.7 Given the disease specific

per patient net revenuemj, conditional on obtaining an ODD, the expected net revenue is pm
j ·

mj. To simplify notation, we define the individual level expected net revenue, conditional on

having obtained an ODD, asMj(Ωj) = pm
j mj. The parameterΩj is a vector of disease specific

characteristics that may affect the probabilitypm
j and / or the net revenuemj. For example, some

regulators grant a price premium to drugs targeting life threatening conditions.

The expected profit for firmi (1, 2, . . . , N f ) associated with an investmentI targeting disease

j is:

EΠij = pd
j (I)[Mj · nj] − I + δij. (1)

The termδij is an idiosyncratic component aiming to capture any additional component of the

expected profit that is only known to the firm. This may result,for example, from the possibility

of exploiting knowledge acquired on other projects that thefirm had previously undertaken.

From the perspective of the researcher,δij is the realization of a random variable, with density

f(∆). According to Eq. 1, a new drug that obtains market authorization takes the whole market.

We believe that this simplifying assumption is reasonable.Indeed, market exclusivity, which

is part of the set of incentives deployed for all regulationsdescribed in Section 2, prevents the

authorization of a new drug unless it is shown to be more effective than the current standard of

treatment. This suggests that, if a new drug is authorized while market exclusivity still holds, the

new drug is likely to take the whole market.

The aim of our analysis is to study the impact of different forms of incentives among those

that have been introduced as part of the special legislationon: i) the probability of having in-

7Without loss of generality,pm
j is assumed independent ofI.
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vestment on a rare disease,ii) the probability of having an orphan designation. Our analysis is

carried outwithin the class of orphan diseases. In other words, we do not contrast rare versus

non-rare disease, but more versus less rare diseases withinthe class of orphan diseases. As a

result, we assume that all diseases are eligible for incentives. Our focus is on how the impact of

different types of incentives is affected by the prevalenceof an orphan disease.

Incentives can be distinguished into two categories:output-relatedandinput-related. Output-

related incentives are those that aim to increase the net market revenue of investments made on

orphan diseases. The best known instance of such instrumentis market exclusivity, to which all

products with an orphan designation are entitled. This is part of the incentive package provided,

for example, by the US, Japan and Europe. We model this as a mark-up, z (z ≥ 0), on net

revenues. This way of modelingoutput-relatedincentives is sufficiently flexible to account also

for other types of incentives, such as a price premium to which all orphan drugs are equally

entitled.

Input-related incentives reduce the cost of R&D investment for rare diseases. Examples

of such incentives include tax credits, reduced fees for market authorization applications and

protocol assistance. We model this type of incentive as an allowance on investment costs, such

that the investment cost borne by the firm isI(1 − γ), with 0 ≤ γ ≤ 1. To take the role of these

incentives into account, the expected profit function can bewritten as:

EΠij = pd
j (I)[Mj · nj](1 + z) − (1 − γ)I + δij. (2)

4 Optimal investment policy

In this section, we study the firms’ optimal investment policy and the impact of R&D incentives

on the expected number of ODD, our proxy for R&D effort. The focus is on how this impact

is affected by the size of the market (disease prevalence). Given that innovations are protected

by market exclusivity and that only for a small fraction of orphan diseases (6%) more than one

treatment is authorized, we believe that it is reasonable tointroduce the simplifying assumption

that firms make their investment decisions independently.

We start by characterizing the decision from the perspective of a single firm and then move

to the analysis of the outcome of these decisions at the market (disease) level.
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4.1 The firm’s decisions

The firm aims to maximize the expected profit in Eq. 2 with respect to I. The first order condition

is:
∂pd

j (I)

∂I
=

1 − γ

Mj · nj(1 + z)
. (3)

The second order conditions are satisfied under the assumptions on the functional form

of pd
j (I) that were introduced above. Eq. 3 implicitly defines the optimal investment level

I∗(Mj, nj) and highlights the well known role of market size as an incentive for R&D invest-

ments: withnj small, other things being equal, the optimal investment level is lower.

4.1.1 Impact ofoutput-related incentives

We can use the implicit function theorem to study the impact of an increase inz on the optimal

level of investment:
dI∗

dz
= −

1 − γ

(∂2pd
j /∂I2)Mjnj(1 + z)2

. (4)

According to Eq. 4, an increase inz provides an incentive to invest more, by reducing the value

on the right hand side of Eq. 3. From the perspective of our analysis, it is also interesting to

investigate how the marginal impact onI∗ of an increase inz varies withnj. Differentiating the

right hand side of Eq. 4 with respect tonj obtains:

∂2I∗

∂z∂nj

=
(∂pd

j /∂I)(∂3pd
j /∂I3) − (∂2pd

j /∂I2)2

(∂2pd
j /∂I2)2(1 + z)2

(1 + z)
∂I∗

∂nj

. (5)

Given that∂I∗/∂nj > 0 (see Eq. 3), the sign of Eq. 5 is the same as the sign of its first term.

Since∂3pd
j /∂I3 may be positive,8 the expression cannot be unambiguously signed. This means

that, conditional onI∗ > 0, we cannot unambiguously say whether the impact on the probability

of obtaining a designation of strengthening anoutput-relatedincentive is greater for a more or a

less rare disease.

GivenI∗(Mj, nj), the firm will only invest if the expected profit at the time of investment is

non-negative, i.e.:

pd
j (I∗(Mj, nj, z, γ))[Mj · nj](1 + z) − (1 − γ)I∗(Mj, nj, z, γ) + δij ≥ 0. (6)

It is then possible to define a minimum value ofδij, δ̂j, such that the firm makes any investment

8Indeed, the sign is positive for the increasing and concave functional forms typically employed in economics.
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in R&D for diseasej:

δ̂j = (1 − γ)I∗(Mj, nj, z, γ) − pd
j (I∗(Mj, nj, z, γ))[Mj · nj](1 + z). (7)

To investigate the impact ofnj on the decision whether to invest or not, we study the depen-

dency ofδ̂j onnj. Observing that

δ̂j = −EΠij(I
∗) + δij, (8)

which allows to simplify calculations through the application of the Envelope Theorem, the

following expression obtains:

∂δ̂j

∂nj

= −pd
j (I∗(Mj, nj, z, γ))Mj(1 + z) < 0. (9)

Hence, other things being equal, for a comparatively rare disease the value ofδij must be larger

for the firm to decide to undertake any investment (Eq. 9). Thus, it is less likely to observe R&D

investment in comparatively rare diseases.

Using a similar approach, we can study the impact of an increase inz on the value of the

stochastic variable above which a positive amount is invested. This leads to

∂δ̂j

∂z
= −pd

j (I∗(Mj, nj, z, γ)) · Mj · nj < 0, (10)

which shows the role ofz in making it more likely that there is investment for diseasej, by

reducing the value of̂δj. Also in this case, we are interested in the heterogeneous impact of this

incentive tool across different classes of prevalence. By differentiating the right hand side of Eq.

10 with respect tonj, we obtain:

∂2δ̂j

∂z∂nj

= −Mj

[

∂pd
j

∂I

∂I∗

∂nj

nj + pd
j (I∗)

]

< 0. (11)

The negative sign of the expression means that the impact on the probability that the firm under-

takes any investment of an increase inz is larger for less rare diseases.
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4.1.2 Impact ofinput-related incentives

As for z, the impact onI∗ of an increase inγ is positive (see Eq. 3). Concerning the heterogeneity

of the impact, using the same approach as above, we find that:

∂2I∗

∂γ∂nj

=
(∂3pd

j /∂I3)(∂I∗/∂nj)nj + ∂2pd
j /∂I2

(∂2pd
j /∂I2)2Mj · n2

j(1 + z)
. (12)

As for z, this term cannot be unambiguously signed, meaning that theimpact of an increase

in γ on I∗, and hence on the probability of having an ODD, conditional on investing, may be

increasing or decreasing in the disease prevalence.

Concerning the impact on the minimum value of the idiosyncratic term that makes an invest-

ment in diseasej profitable, we have that,

∂δ̂j

∂γ
= −I∗(Mj, nj, z, γ) < 0 (13)

and
∂2δ̂j

∂γ∂nj

= −
∂I∗

∂nj

< 0. (14)

Also in this case, the impact is greater for less rare diseases.

The following proposition states an important difference between aninput-relatedand an

output-relatedincentive:

Proposition 1. For both types of incentives, the reduction inδ̂j is greater for less rare diseases.

However, while for aninput-relatedincentive this is due only to an indirect effect, for anoutput-

relatedincentive there is both a direct and an indirect effect.

The proposition follows immediately from the comparison between Eq. 11 and Eq. 14.

In terms of magnitude, a marginal increase inz can be interpreted as an increase by, e.g.1%

in expected revenues from commercialization. Similarly, for γ, it can be seen as a1% reduction

in the investment cost faced by the firm. As long as expected revenues and investment costs are

sufficiently similar, the magnitudes of the two impacts can be compared by comparing∂
2δ̂j

∂z∂nj
with

∂2δ̂j

∂γ∂n
. This comparison shows that, starting from a situation withno incentive (z = 0, γ = 0),

the introduction of anoutput-relatedincentive provides a greater comparative advantage for less

rare disease, than the introduction of aninput-relatedincentive.9

9To see this, substitute into Eq. 11, the expression forMj · nj from Eq. 3 and compare the resulting expression
with Eq. 14.
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4.2 Market outcomes

We can now move to the study of the impact of incentives at the disease level, under the assump-

tion that theN f firms make independent investment decisions, as characterized in the previous

subsection. We will focus on two outcomes:

1. the probability that at least one firm makes an R&D investment targeting diseasej;

2. the expected number of ODD for diseasej.

Starting with the first outcome of interest, investment by atleast one firm occurs if

max
i

{δij} > δ̂j. (15)

For the most common types of distributionsf(∆), including the normal and the exponential,

the Gumbel distribution is the limiting distribution ofmaxi{δij} (Ahsanullah, 2016). We denote

by fG(δ̃) andF G(δ̃), respectively, the probability density function and the cumulative density

function ofmaxi{δij}. The indicator functionII
j can be used to define whether at least one firm

invests in diseasej (II
j = 1) or not (II

j = 0). The probability that at least on firm invests inj is

P(II
j = 1) = 1 −

∫ δ̂j

−∞

fG(δ̃)dδ̃. (16)

Following the analysis of the previous subsection, our focus is on how the impact of incentives

changes with prevalence, i.e.

∂2P(II
j = 1)

∂z∂nj

= −





∂2F G(δ̃)

∂δ̃2

∂δ̂j

∂n

∂δ̂j

∂z
+

∂F G(δ̃)

∂δ̃

∂2δ̂j

∂z∂n



 (17)

and
∂2P(II

j = 1)

∂γ∂nj

= −





∂2F G(δ̃)

∂δ̃2

∂δ̂j

∂n

∂δ̂j

∂γ
+

∂F G(δ̃)

∂δ̃

∂2δ̂j

∂γ∂n



 . (18)

According to the analysis presented in Section 4.1, the signof the second term in brackets is

negative for both expressions. Since the derivatives ofδ̂j with respect ton, z andγ are also

negative, the following proposition holds.

Proposition 2. ∂2F G(δ̃)

∂δ̃2
≤ 0 is a sufficient condition for both anoutput-relatedand an input-

relatedincentive to increase the probability of observing investment in diseasej more for less

rare diseases.
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According to Eq. 17 and 18 the condition is not necessary, because if it is not satisfied, the

two terms in brackets have opposite signs. However, for our market of interest, we argue that

the condition is very likely to be satisfied. One may think, for example, of a situation where the

distribution of∆ is symmetric. In this case, the condition of Proposition 2 requires that investing

in diseasej is optimal for less than half of the firms. Given the scarcity of investment in R&D

for rare diseases, this is very likely to be satisfied.

We can now move to the study of the impact of incentives on the expected number of ODD,

conditional onII
j = 1. Let Ñ f (δ̂j) be the number of firms that decide to invest inj, because

δij > δ̂j. For each of these firms, the investment decision has a Bernoulli outcome, with prob-

ability of obtaining an ODD equal topd
j (I∗

j ). From Eq. 3, the optimal investment level, and

hence the probability of success, is the same for all firms forwhich it is convenient to invest

in diseasej. The sum ofÑ f (δ̂j) independent random variables with Bernoulli distribution has

a Binomial(Ñ f (δ̂j), pd
j (I∗

j )) distribution, whose limiting distribution isPoisson. If we take this

approximation, the number of ODD, conditional on investment is distributedPoisson, with pa-

rameterλj = Ñ f (δ̂j) · pd
j (I∗

j ).10

The following proposition summarizes the results of the theoretical analysis of the impact of

incentives on the expected number of ODD across different classes of prevalence.

Proposition 3. Conditional on at least one firm investing in diseasej, the impact of incentives

on the expected number of orphan designations may be greateror lower for less rare diseases.

The ambiguity of this impact follows from the fact that the expected number of designations is

λj = Ñ f (δ̂j)·p
d
j (I∗

j ). The impact on the probability of having at least one firm investing in market

j has been shown to be greater for less rare diseases. However,this does not necessarily imply

that the impact oñN f (δ̂j) is also greater, as this depends on the distribution ofδij. Moreover, the

impact onI∗

j is also ambiguous (Eq. 5 and Eq. 12). This prevents us from signing the impact on

λj theoretically.

Table 2 summarizes our theoretical results, separately forthe two outcomes that have been

considered: the probability that at least one firm invests and the expected number of ODD,

conditional on investment. For consistency with the empirical analysis that follows, the table

refers toP(II
j = 0). Our main focus is on the lower part of the table, i.e. on how the impact on

the two outcomes of interest changes with prevalence. The previous analysis has shown that both

input-relatedandoutput-relatedincentives tend to favor less rare diseases in terms of probability

10Given thatλj is disease specific, in the empirical analysis, where several diseases are considered, we refer to
theNegative Binomialdistribution, to account for over-dispersion.
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Pr(II
j = 0) # ODD (II

j = 1)
δ̂j λj = Ñ f (δ̂j) · pd

j (I∗)

↑ nj Negative Positive
↑ z Negative Positive
↑ γ Negative Positive
prevalence and exposure to treatment
↑ z Larger for largernj Ambiguous
↑ γ Larger for largernj Ambiguous

Table 2: Summary of theoretical results

that at least one firm invests. For the impact on the expected number of ODD, conditional on

having investment, the impact is ambiguous.

5 Data and measures

The first step in our analysis is the identification of the fulllist of orphan diseases, i.e. those for

which a drug is eligible to obtain an ODD. For this purpose, werely on the Orphanet database

(INSERM, 1999), which is the standard reference for information on rare diseases.11 The list of

rare diseases is systematically updated, as approximately250 new diseases are described each

year (Westermark et al., 2011; Wästfelt et al., 2006). The version used in the empirical analysis

was downloaded in October 2017. The full list downloaded counts 9,530 records. However,

2,208 records do not refer to specific diseases, but to aggregations of them (e.g. “Rare Pulmonary

Diseases”). For the purposes of the empirical analysis, only specific diseases will be considered,

following the criteria detailed in this section.

Our proxy of R&D efforts targeting rare diseases is the numberof ODD granted by the FDA

between 1983 and 2016. An ODD represents the “successful translation of rare disease research

into an orphan drug discovery and development program” (Heemstra et al., 2009). Having an

ODD is a necessary condition for the project, and eventuallyfor the drug, to be eligible for the

incentives provided under the special legislation. In comparison with proxies of R&D used in

previous contributions, such as the number of clinical trials (see, for example, Yin, 2008), ODD

have the advantage of being retrievable from a single administrative source.

We focus on designations in the US as it is the largest pharmaceutical market in the world;

11Orphanet was established in 1997 in France, to expand knowledge on rare diseases and to improve their di-
agnosis, care and treatment. Since 2000 the initiative is a European endeavor. Further information is available at
www.orpha.net.
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moreover, the ODA establishment in 1983 allows us to study the dynamics in the number of des-

ignations over a long time span, including 1993, when Japan reviewed its orphan provisions, and

2000, when an orphan legislation was introduced in Europe. Since the pharmaceutical industry

is a global one, it is convenient for the inventor to apply forthe orphan drug status in several

countries to benefit from additional incentives, meaning that FDA data provide a reliable picture

of the global R&D activity. For each drug, the FDA provides thedate of orphan designation,

marketing approval (if any), the designated indication, and the company sponsoring the request.

A major effort was undertaken to match the indications of theFDA list of ODD with the

Orphanet list of diseases. Out of 3,996 ODD granted by the FDAbetween 1983 to 2016, we

exclude 408 records referring to products for surgery, prevention, transplant, diagnostics and

imaging procedures, while 199 records are dropped because information on the treated disease

cannot be retrieved from Orphanet. Moreover, in some cases,we were not able to match the

designated indication to a single disease, but rather to an aggregation of diseases (“group of

phenomes”).12 In this case, in order to be consistent in the definition of themarket, we rely on

the hierarchical classification of orphan diseases provided by Orphanet to link the aggregation

with all relevant diseases belonging to it and match the FDA designation at the disease level. If

more than one disease is included in the group, one orphan drug designation is attributed to each

disease, i.e. a non-fractional count is adopted. In the robustness checks, we show results for the

case of fractional counting.

Orphanet also provides information on the class of prevalence of each disease at the coun-

try level, as well as worldwide.13 As a measure of market size, we refer to worldwide preva-

lence. When this information is missing, we consider prevalence in Europe or, if missing, in

the US. Diseases belonging to the following prevalence classes are included in the analysis:

“<1/1,000,000”, “1-9/1,000,000”, “1-9/100,000”, and “1-5/10,000”.14 From Orphanet we also

retrieve additional information at the disease level, including the therapeutic class(es) of each

disease, information on the age of onset and age at death (however, the latter is available only

for 28% of diseases). Ages are reported as antenatal, neonatal, infancy, childhood, adolescence,

adulthood and elderly. We exclude from the analysis those diseases emerging in the antenatal

12For example, some drugs were designated for the treatment ofthe hypereosinophilic syndrome, which is clas-
sified as a “group of phenomes” in Orphanet and comprises different diseases included in the Orphanet list (i.e.,
idiopathic hypereosinophilic syndrome, primary hypereosinophilic syndrome, and secondary hypereosinophilic syn-
drome).

13In few cases (6.7% of diseases), a numeric value for prevalence is also provided. However, the availability of
this information is unevenly distributed among classes of prevalence. Given these limitations, the point estimate of
prevalence is not used in the empirical analysis.

14Information on prevalence refers to year 2017 and we are unable to track moves from one class to the other.
However, these are very unlikely to occur, given the width ofthe classes considered.
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period or causing death before birth (323 diseases). We alsoremoved 568 diseases referring to

surgical procedures, and 192 items representing an old nomenclature (these were moved to an

updated item).

Finally, we complement information provided by Orphanet with an ad hoc search into PubMed,15

in order to gather information on the stock of knowledge for each disease. An automated search

was conducted on PubMed for each disease in our list, retrieving the number of articles published

over the period 1970-2016 and containing the name of the disease in the title, abstract or content.

We use this information to construct a measure for the stock of publications (SP ), following the

perpetual inventory method:

SPjt = Pjt + (1 − ρ)SPj,t−1

wherePjt is the number of publications related to diseasej at timet andρ = 0.1 is the rate of

obsolescence of knowledge typically applied in the empirical literature (Keller, 2002).

The information on publications is used both as a control variable to proxy the level of scien-

tific information available about the disease, as well as to select those diseases that had already

been discovered at a given point in time (Heemstra et al., 2009). New pathologies are constantly

added to the list of orphan diseases, so that the list of knowndiseases in October 2017 (the basis

of our analysis) might also include pathologies which were not known at an earlier time. Of

course, a lack of ODD for a disease that has not been discoveredyet, cannot be interpreted as a

lack of R&D effort targeting that disease. To account for this, we include in our baseline analysis

diseasej only if its stock of publications int − 5 is positive (i.e.,SPj,t−5 > 0).

All in all, our data comprise 136,036 observations (5,132 diseases over – at most – 34 years).

The distribution of diseases included in the analysis amongprevalence classes is reported in

Table 3. Information on the prevalence is missing (or not yetdocumented) in Orphanet for a large

share of the diseases: these are considered as a separate class. Among the classes with known

prevalence, the large majority of diseases is classified with a prevalence lower than 1 in 1 million

(36.89%), with the “least rare” diseases (N4) only accounting for 2.98% of the total. Table 3 also

shows how the average number of ODD per year changes from one class of prevalence to another.

The reported numbers of ODD are calculated taking the average over years in the study period

and over diseases in each class of prevalence. These descriptive statistics are coherent with our

theoretical results and in line with the literature suggesting a positive correlation between market

size and R&D effort (Acemoglu and Linn, 2004; Dubois et al., 2015).

15Pubmed is a web-search service maintained by the US NationalLibraty of Medicine. It comprises more than
28 million citations for biomedical literature from MEDLINE, life science journals, and online books. For more
information, please visit https://www.ncbi.nlm.nih.gov/pubmed/.
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Prevalence number of % total avg. number of
diseases ODD per disease (yearly)

N1: <1/1,000,000 1,893 36.89 0.03
N2: 1-9/1,000,000 208 3.99 0.13
N3: 1-9/100,000 302 5.88 0.17
N4: 1-5/10,000 153 2.98 0.22
N0: Missing prev. 2,579 50.25 0.13
Total 5,132 100 –

Table 3: Distribution of the diseases among prevalence classes

6 Empirical methods

The pharmaceutical market is characterized by the presenceof multinational firms that serve

several markets. Hence, the number of designations per disease granted in the US may be con-

sidered a reliable proxy for the global R&D effort. Over the whole period considered in the

analysis, incentives were available in at least one geographic area. The incentives provided by

the reforms of Japan and Europe added to those provided by theODA in the US. The theo-

retical results presented in Section 4 show that the impact of both market exclusivity and tax

credits on the probability of having investment is positiveand, under reasonable assumptions,

it is greater for less rare diseases (Proposition 2). This implies a different exposure to treat-

ment (incentives). We exploit these differences in time andacross classes of prevalence using a

difference-in-differences approach.

In the empirical analysis we cannot distinguish between theimpact ofoutput-relatedversus

input-relatedincentives, as both of these were part of the US and Japan regulations since their

introduction. However, the European regulation provides uniquely output-relatedincentives,

whereas tax-related provisions are delegated to single countries. The fact that only two European

countries provide tax incentives (see Section 2) allows us to interpret the effect observed after

2000 as the result of a wider applicability of market exclusivity. Combined with the large size

of the European market, this might have increased inequality between more and less rare orphan

diseases (see Proposition 1).

The empirical counterpart of our theoretical model is a ZeroInflated Negative Binomial

(ZINB) model: the inflated and the count part are respectivelyrelated to the probability of hav-

ing no R&D for a certain disease (II
j = 0) and to the expected number of ODD conditional on

II
j = 1. The unconditional expected number of ODD results from the combination of the two

parts, which are jointly estimated via maximum likelihood.
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The ZINB model allows us to understand the determinants of the two different processes

determining a zero outcome (Lambert, 1992): choice (the decision not to invest in R&D) and

nature (the lack of innovative output, conditional on the level of effort) (Winkelmann, 2008).

R&D effort, proxied by the number of ODD targeting diseasej in yeart, is therefore modeled

as:

yjt =











0, if II
j = 0

y∗

jt, if II
j =1

(19)

where:

• II
j is the binary variable introduced in Section 4.2.16 If II

j = 0, the outcome is a “certain

zero”, also referred to as “strategic” or “structural” zero(Staub and Winkelmann, 2013).

For the sake of consistency with the analysis of Section 4.2,we depart from the standard

assumption that the relevant probability distribution forthe inflated part is eitherLogistic

or Normal (hence, the estimated model is either Logit or Probit) and adjust the model to

let the distribution beGumbel;17

• y∗

jt is a count variable, representing the number of ODD targeting diseasej in period t.

From the analysis of Section 4.2, under the assumptions of our model, its distribution can

be approximated by aPoisson, with parameterλj = Ñ f (δ̂j)) · pd
j (I∗

j ). However, given

thatλj is disease specific, when several diseases are considered, it is natural to refer to the

Negative Binomial distribution, to account for over-dispersion. Wheny∗ = 0, zeros in the

outcome are due to nature.

As a result, the density foryjt is:

f(yjt) =











Pr(II
j = 0) + [1 − Pr(II

j = 0)] Pr(y∗

jt = 0) if yjt = 0

[1 − Pr(II
j = 0)] Pr(y∗

jt > 0) if yjt ≥ 1.
(20)

The probability to be in the “certain zero” case (II
j = 0) is estimated using the Gumbel

distribution:

Pr(II
j = 0) = exp(− exp(−x′

jtβ1)).

16We do not make explicit reference to time here, as there mightbe lags between R&D investments and ODD.
However, this does not affect our empirical strategy.

17The Stata code used for the estimation is available from the authors upon request.
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Conditional onII
j = 1, the expected number of ODD is:

λjt = exp(x′

jtβ2) (21)

The unconditional expected number of ODD is expressed as a combination of the two processes:

E(yjt|xjt) = (1 − Pr(II
j = 0)) · λjt = (1 − exp(− exp(−x′

jtβ1))) exp(x′

jtβ2), (22)

where

x′

jtβ = α +
4

∑

i=0

ζiNij +
4

∑

p=1

τpDpt +
4

∑

i=0

4
∑

p=1

κip(Nij × Dpt) + θCjt. (23)

Note that we normally use the same set of variables in the Gumbel and in the Negative Binomial

part of the model.Ni represents the class of prevalence, from the rarest (N1: “<1/1,000,000”)

to the least rare (N4: “1-5/10,000”; see Table 3). The binary variablesDp indicate relevant

periods of time, related to the introduction of special legislation in the three geographic areas of

interest, and to the joint application for the US and Europe:1983-1992; 1993-1999; 2000-2007

and 2008-2016.18 The coefficientsκip are the main parameters of interest, both in the Gumbel

and Negative Binomial part of the model, representing the differential effect of each reform for

diseases belonging to the class of prevalenceNi, with respect to those in the lowest class of

prevalence.C is a vector including additional control variables which, according to the analysis

presented in Section 4, may have an impact on R&D effort:

• a dummy variable indicating whether the disease causes premature death (in paediatric

age or adulthood). 9% of diseases included in the analysis (and for which information on

the age at death is available) causes premature death. This variable might affect the per

patient net revenue,mj, as some regulators grant a price premium to drugs targetinglife

threatening conditions, and paediatric drugs are granted additional market exclusivity;19

• a proxy for the probability of obtaining marketing authorization,pm
j . This variable is con-

structed as the ratio between the sum of marketing authorizations granted in the previous

5 years and the sum of designations received in the previous 5to 9 years. We define the

variable at the level of the therapeutic area to overcome theproblem of zeros at the de-

nominator, due to the large number of diseases with no ODD. Weconsider a time lag of up

18The first time period (1983-1992) andN1 are taken as reference categories.
19The extra market exclusivity for paediatric drugs lasts 2 years in Europe (Regulation (EC) No 1901/2006), and

6 months in US (Section 505(A) of the Food and Drug Administration Modernization Act of 1997).

20



to 4 years as, from FDA data, about 50% of all approvals take place within 4 years from

designation;20

• the stock of publications,SP . This variable is meant to account for the fact that advances

in scientific knowledge in one therapeutic area may increasethe probability of obtaining an

ODD. Indeed, the pharmaceutical research is the leading example of a science-based sector

(Pavitt, 1984), because a large part of innovation builds onacademic research (Mansfield,

1995). As a result, inputs from science can play a relevant role in stimulating R&D efforts

at the market level.

Therapeutic class dummy variables, along with a dummy variable identifying genetic diseases,

are also included.21

7 Results

In Column (1) of Table 4 we present the results of a simplified model in which we do not account

for the heterogeneity in the effect of the regulations: we omit the interaction terms from Eq. 23.

These are included in our baseline specification, whose results are reported in Column (2). In

Columns (3)-(5) additional control variables are included in the analysis. For each specification

we present the results of the zero inflated (Gumbel) part of the model (probability of a “certain

zero”), and the “count” part (modeling the determinants of innovation output for diseases not

included in the “certain zero” group).

Results in Column (1; Gumbel) show that it is more likely to haveno R&D effort (II
j = 0)

for very rare diseases. Similarly, Column (1; count) shows that the expected number of ODD is

higher for the group of least rare diseases, and that the introduction of special regulations over

time is associated with an increase in the number of ODD.

Interactions between the classes of prevalence and the timeperiods are added both in the

Gumbel and the count parts of the model presented in Column (2), in order to account for any

heterogeneity in the impact of reforms across classes of prevalence. Results from Column (2;

Gumbel) point out that, in the first time period, it is more likely to observe zero R&D investments

20This statistics is obtained by taking into account the designation-approval lag for designations that received
a marketing authorization. We only considered designations obtained before the year 2005, as the designation-
approval lag for more recent ODD would be censored. If also more recent designations are taken into account, we
find that 60% of all approvals take place within 4 years from designation.

21We consider 26 therapeutic class dummy variables corresponding to the classification provided by Orphanet.
These are not mutually exclusive, as a disease may belong to more than one classification. As an example, cranio-
pharyngioma is classified as neurological, endocrine, and neoplastic disease. It is also a genetic disease.
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for diseases belonging toN3 compared to the reference category (N1). In order to analyze what

happens in subsequent time periods, we test the null hypothesis thatNi + Ni × Dt = 0. We

find that these sums are all negative and statistically significant, pointing out that in all periods

but the first the probability of a “certain zero” is lower for diseases belonging to classes other

thanN1. As for the dynamics over time, the coefficients associated to the interaction terms are

all negative and statistically significant: the reduction in the probability of observing a “certain

zero” is greater for less rare diseases. As, in the context ofnonlinear models, statistical tests

about partial effects and interaction terms are not necessarily informative (Greene, 2010), Figure

1 shows the dynamics in the predicted values from Column (2) tobetter understand the role of the

interactions. Figure 1(a) plots the predicted probabilityof having a “certain zero” as a function

of time for the classes of prevalenceN1 andN4.22 From the second to the third period, when

market exclusivity is introduced also in Europe, the largervariation in probability is detected for

the largest class of prevalence: forN4 the variation is of−39 percentage points as compared to

less than−10 for the other classes.23

In the count part of the model (Column 2; count), the negative sign of the interaction terms

suggests that, for diseases not in the “certain zero" group,the extension of incentives favor more

diseases belonging to the lowest class of prevalence (N1): conditional on having any R&D

investment, the extension of incentives reduces the gap, interms of ODD, between more and

less rare diseases. Recall that this outcome is related to theoptimal level of investment in the

theoretical model (I∗) and that the results for the comparative statics ofγ andz are ambiguous.

The reduction in the gap highlighted by Column (2; count) is visible in Figure 1(b), plotting the

dynamics in the linear combinationxjtβ̂2 over time forN1 andN4. In Figure 1(c) we plot the

exponential value of the linear combination presented in 1(b), as in Eq. 21.

Graph (d) of Figure 1 shows the combined effect of the Gumbel and the count parts, i.e. the

predicted number of ODD per year per disease. Even when orphan regulation was in force only

in the US (1983-1999), the predicted number of ODD was lower for diseases belonging toN1

compared to less rare diseases.24 Over time, there has been an increase in the number of ODD

for all classes of prevalence, but this has been greater for the less rare diseases. This means

that the magnitude of the heterogeneous impact on the probability of undertaking any investment

22The plot including all classes of prevalence (Figure 3) is reported in Appendix A and shows that the classes of
prevalenceN2 andN3 behave very similarly toN4.

23Note that the lower threshold for the definition of an orphan disease in Japan (about 4 in 10 thousand) means
that some of the diseases belonging toN4 do not benefit from incentives in this country. Hence, starting from period
D2, the estimated coefficients ofN4 and its interactions may represent a lower bound.

24A test on the predicted number of designations for diseases having a prevalence of “<1/1,000,000” (N1) and
for those having a prevalence of “1-9 /1,000,000” (N2) rejects the null hypothesis of no difference (p-value=0.041).
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Figure 1: Predicted values for class of prevalenceN1 (continuous line) andN4 (dashed line): (a)
Predicted probability thatIj = 0; (b) linear combinationxjtβ̂2; (c) predicted number of ODD,
conditional onIj > 0; (d) predicted number of ODD

(Gumbel part) outweighs the effects on research intensity (count part), which goes in the opposite

direction. The difference between the predicted number of ODD for a disease belonging to the

lowest class of prevalence and one in the highest class is 5.6times larger in the last period than

in the first one.

In Column (3) of Table 4 we take into account the characteristics of the disease in terms of

life expectancy, and include a dummy variable that identifiesdiseases causing premature death

(EarlyD). This variable is not significant either in the Gumbel or in the count part of the model,

but its joint effect in the two equations is statistically different from zero (p-value= 0.033).

In Column (4) we include the stock of publications at timet − 5 (in log) to proxy the level of

scientific knowledge related to diseasej: inputs from science play a relevant role in stimulating

R&D efforts at the market level. Indeed, results highlight that a larger stock of publications

increases the number of ODD in the count part (it also reducesthe probability of having a “certain

zero”, although not significantly).

Finally, in Column (5), we control for the average probability of receiving a marketing autho-

23



(1) (2) (3) (4) (5)
Gumbel count Gumbel count Gumbel count Gumbel count Gumbel count

N2 -1.264∗∗ 0.279 2.022 1.587∗∗∗ 1.931∗ 1.535∗∗∗ 1.801∗∗ 1.507∗∗∗ -1.718∗ -0.338
(0.505) (0.265) (1.271) (0.584) (0.997) (0.548) (0.917) (0.554) (0.908) (0.397)

N3 -1.330∗∗∗ 0.445∗∗ 1.392∗∗ 1.496∗∗∗ 1.374∗∗ 1.472∗∗∗ 1.363∗ 1.444∗∗∗ -0.918 0.194
(0.431) (0.185) (0.644) (0.387) (0.636) (0.362) (0.723) (0.393) (0.643) (0.325)

N4 -3.025∗∗ 0.369∗∗ 1.318 1.792∗∗∗ 1.200 1.758∗∗∗ 1.317 1.749∗∗ -1.010∗ 0.507
(1.389) (0.186) (1.685) (0.669) (1.805) (0.666) (1.950) (0.782) (0.612) (0.333)

N0 -0.112 0.114 2.496∗∗∗ 1.428∗∗∗ 2.450∗∗∗ 1.456∗∗∗ 2.392∗∗∗ 1.580∗∗∗ -1.116∗∗∗ -0.296
(0.231) (0.129) (0.478) (0.476) (0.538) (0.447) (0.555) (0.385) (0.404) (0.264)

D2 0.053 0.473∗∗∗ 3.172∗∗∗ 2.051∗∗∗ 3.134∗∗∗ 2.040∗∗∗ 3.018∗∗∗ 2.046∗∗∗

(0.201) (0.111) (0.657) (0.449) (0.680) (0.469) (0.689) (0.402)
D3 0.101 1.038∗∗∗ 2.704∗∗∗ 2.140∗∗∗ 2.629∗∗∗ 2.105∗∗∗ 2.520∗∗∗ 2.120∗∗∗ -0.453 0.111

(0.289) (0.149) (0.907) (0.322) (0.759) (0.344) (0.648) (0.356) (0.506) (0.310)
D4 0.265 1.947∗∗∗ 2.485∗∗∗ 3.112∗∗∗ 2.426∗∗∗ 3.090∗∗∗ 2.341∗∗∗ 3.119∗∗∗ -0.623 1.130∗∗∗

(0.287) (0.152) (0.809) (0.300) (0.692) (0.321) (0.617) (0.345) (0.450) (0.292)
N2 × D2 -3.415∗∗∗ -1.732∗∗∗ -3.335∗∗∗ -1.695∗∗∗ -3.191∗∗∗ -1.738∗∗∗

(1.043) (0.525) (0.966) (0.566) (0.963) (0.546)
N2 × D3 -3.139∗∗ -1.325∗∗ -3.010∗∗∗ -1.269∗∗ -2.846∗∗∗ -1.321∗∗ 0.399 0.418

(1.303) (0.575) (1.049) (0.563) (0.955) (0.560) (0.822) (0.402)
N2 × D4 -3.568∗∗∗ -1.347∗∗ -3.442∗∗∗ -1.307∗∗ -3.274∗∗∗ -1.406∗∗ 0.126 0.390

(1.329) (0.584) (1.088) (0.586) (0.993) (0.591) (0.733) (0.335)
N3 × D2 -2.549∗∗∗ -1.286∗∗∗ -2.478∗∗∗ -1.253∗∗∗ -2.324∗∗∗ -1.251∗∗∗

(0.733) (0.407) (0.724) (0.461) (0.751) (0.421)
N3 × D3 -2.626∗∗∗ -1.011∗∗∗ -2.552∗∗∗ -0.972∗∗∗ -2.412∗∗∗ -1.055∗∗∗ -0.158 0.148

(0.698) (0.335) (0.639) (0.347) (0.656) (0.372) (0.695) (0.282)
N3 × D4 -2.855∗∗∗ -1.114∗∗∗ -2.800∗∗∗ -1.089∗∗∗ -2.718∗∗∗ -1.266∗∗∗ -0.512 -0.069

(0.781) (0.354) (0.722) (0.361) (0.712) (0.396) (0.656) (0.266)
N4 × D2 -2.416 -1.239∗ -2.291 -1.193∗ -2.326 -1.275∗

(1.624) (0.708) (1.784) (0.714) (1.870) (0.748)
N4 × D3 -4.327∗∗∗ -1.438∗∗ -4.183∗∗ -1.372∗∗ -4.187∗∗ -1.535∗ -1.896∗ -0.294

(1.636) (0.688) (1.774) (0.686) (1.917) (0.793) (1.123) (0.332)
N4 × D4 -4.561∗∗∗ -1.607∗∗ -4.475∗∗ -1.565∗∗ -4.495∗∗ -1.803∗∗ -2.281∗∗ -0.575

(1.612) (0.718) (1.747) (0.706) (1.881) (0.815) (0.989) (0.351)
N0 × D2 -3.660∗∗∗ -1.870∗∗∗ -3.631∗∗∗ -1.869∗∗∗ -3.524∗∗∗ -1.918∗∗∗

(0.631) (0.640) (0.732) (0.624) (0.691) (0.460)
N0 × D3 -3.043∗∗∗ -1.308∗∗∗ -2.992∗∗∗ -1.291∗∗∗ -2.883∗∗∗ -1.378∗∗∗ 0.659 0.531∗

(0.578) (0.396) (0.548) (0.395) (0.562) (0.364) (0.466) (0.289)
N0 × D4 -2.481∗∗∗ -1.392∗∗∗ -2.447∗∗∗ -1.385∗∗∗ -2.386∗∗∗ -1.519∗∗∗ 1.078∗∗∗ 0.344

(0.501) (0.404) (0.531) (0.391) (0.557) (0.364) (0.381) (0.278)
EarlyD -0.258 0.218 -0.187 0.230 -0.123 0.310∗∗

(0.363) (0.153) (0.350) (0.147) (0.318) (0.143)
ln(SPj,t−5) -0.033 0.077∗∗∗ -0.045 0.076∗∗∗

(0.028) (0.018) (0.038) (0.025)
pm

j -0.267 0.079
(0.489) (0.269)

Constant 1.047 -3.590∗∗∗ -1.351 -4.729∗∗∗ -1.285∗ -4.745∗∗∗ -0.996∗ -4.960∗∗∗ 2.098∗∗∗ -3.050∗∗∗

(0.641) (0.288) (0.889) (0.299) (0.720) (0.301) (0.602) (0.329) (0.569) (0.328)
ln(α) 1.014∗∗∗ 0.898∗∗∗ 0.893∗∗∗ 0.794∗∗∗ 0.711∗∗∗

(0.176) (0.250) (0.202) (0.160) (0.264)
N 136036 136036 136036 136036 105359
AIC 56111.23 56006.45 55958.26 55702.65 48933.29
BIC 56808.49 56939.41 56910.86 56674.90 49803.72

Robust (clustered across pathologies) standard errors in parentheses.

Therapeutic class and genetic dummy variables included in all specifications.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Results of model estimation
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rization for drugs belonging to each therapeutic class. This, however, causes a sample reduction,

since the probability of success cannot be computed for years 1983-1990. Given the large re-

duction in the number of observations for the first time period (comprising years 1983 to 1992),

we omit this time period from the estimation. In comparing the results with those of the other

columns, it is important to note that in Column (5) the reference time period is changed to 1993-

1999. The coefficient for the probability of success (negative in the Gumbel part of the model

and positive in the count part, as expected) is not statistically significant.

Importantly, results about the heterogeneous effect of Orphan Regulations across classes of

prevalence reported in Column (3)-(5) confirm results of the baseline specification reported in

Column (2).

Overall, these results show that moving from the period whenonly the ODA was effective in

the US to periods when additional regulations were enforced, the probability of observing any

R&D investment (zero inflated part of the model) has increasedfar more for less rare diseases.

Although, conditional on investment taking place, the expected number of ODD (count part of

the model) moves in the opposite direction, the net impact isstill largely in favor of less rare

diseases (see Figure 1(d)). This empirical evidence is consistent with the theoretical analysis of

the impact of the incentives deployed, which shows a greaterexposure to treatment for less rare

diseases in terms of probability that at least one firm invests (Proposition 1). This suggests that

the introduction of the incentives in Japan and Europe may have played a crucial role in widening

the gap between more and less rare orphan diseases. In particular, the European legislation may

have exacerbated this tendency, by relying mainly onoutput-relatedincentives, which favor less

rare diseases both through an indirect and a direct mechanism(Proposition 1). This interpretation

is robust to the addition of other variables that, accordingto the theory, may be responsible for

determining the relative size of the incentives. The next section presents additional robustness

checks.

7.1 Robustness checks

We organize our robustness checks along two dimensions. First, we consider different ways of

measuring the dependent variable (the number of ODD at the disease level; see Table 5). Then,

we modify the sample and introduce additional control variables (Table 6).
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7.1.1 Counting the number of ODD

In Column (1) of Table 5 we exclude from the count of ODD those designations that are received

after the drug has already received marketing approval for some other indications. In this case,

the innovation can be considered less substantial.25 When excluding these designations from the

count, results are qualitatively similar to those reportedin Table 4.

In Column (2) we take into account the possibility that, even with an immediate impact of the

reform on the research effort, the increase in the number of ODD may be observed with delay.

We therefore consider the effect of independent variables at time t on the number of ODD in

t + 5. The five-year window has been selected as it is the average time span from the beginning

of clinical trials to the ODD application.26 When the time lag is taken into account, the estimated

effect of the reforms is larger, as can be seen from the comparison of Figure 2(d) and Figure 1(d).

This result is in line with the idea that, not taking into account the lag, the outcome is associated

with a period when the last reform has not produced its effectyet. Therefore, the results that do

not take into account the research designation lag may be a lower bound.

In Column (3) a different approach is adopted for the allocation of ODD originally assigned

to multiple diseases: instead of counting one ODD for each matched disease, we use fractional

counting. Estimated coefficients change and we no longer observe statistical significance for

the interaction terms in the count part of the model. However, results in the Gumbel part are

confirmed, with larger decrease in the probability of observing a “certain zero” for diseases in

the largest class of prevalence (N4). In terms of the dynamics in the expected number of ODD,

estimates of the interaction terms confirm the increasing effort directed towards less rare diseases

(in class of prevalenceN2, N3, andN4) as compared to more rare diseases (classN1).

Finally, in Column (4) only ODD assigned to private companiesare included in the analysis

(96% of the ODD in our sample), therefore excluding those ODDassigned to universities, hos-

pitals or medical centers, not-profit organizations and patient associations. Our main results are

again unaffected.

25The relevant information was retrieved from the list of orphan-designated products with at least one marketing
approval for a common disease indication provided by the FDAand the Drugs@FDA database.

26The five-year window is estimated by combining our own computation on FDA data and data on drug de-
velopment length provided by DiMasi et al. (2016). According to our computation, theaveragetime lag between
designation and marketing approval for drugs designated before 2005 is 68 months (again, we consider the 2005
limit to avoid data censoring that characterizes more recent years). DiMasi et al. (2016) reports a time period of 126
months from synthesis to approval. By taking the differencebetween these two numbers, we find that designations
take place on average five years after synthesis of the compound. This result is in line with Hay et al. (2014), who
find that ODD are most often received when a drug is in phase 2, that is roughly five years from synthesis (according
to DiMasi et al., 2016).
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(1) (2) (3) (4)
excl.appr. yj,t+5 fractional firm only

Gumbel count Gumbel count Gumbel count Gumbel count
N2 1.871∗ 1.544∗∗ 1.945∗∗ 1.643∗∗∗ 8.573∗∗∗ 1.643∗∗ 2.338∗∗ 1.449∗∗

(1.068) (0.619) (0.924) (0.482) (2.950) (0.650) (1.151) (0.607)
N3 1.318∗∗ 1.483∗∗∗ 2.061 1.795∗∗∗ 7.705∗∗∗ 2.225∗∗∗ 1.435∗∗ 1.411∗∗∗

(0.643) (0.369) (1.323) (0.500) (2.263) (0.527) (0.598) (0.310)
N4 1.587 1.667∗∗ 2.457∗∗ 2.280∗∗∗ 10.597∗∗∗ 2.802∗∗∗ 1.040 1.656∗∗∗

(1.820) (0.752) (1.174) (0.577) (3.593) (0.523) (1.764) (0.530)
N0 2.672∗∗∗ 1.554∗∗∗ 2.397∗∗∗ 1.218∗∗∗ 4.848∗∗∗ 0.682 2.628∗∗∗ 1.346∗∗∗

(0.508) (0.401) (0.494) (0.284) (1.674) (0.507) (0.461) (0.294)
D2 3.220∗∗∗ 2.148∗∗∗ 3.482∗∗∗ 2.381∗∗∗ 6.323∗∗∗ 0.330 3.686∗∗∗ 1.982∗∗∗

(0.687) (0.360) (0.582) (0.309) (1.992) (0.523) (0.593) (0.303)
D3 2.702∗∗∗ 2.161∗∗∗ 3.507∗∗∗ 2.675∗∗∗ 6.014∗∗∗ 0.483 2.997∗∗∗ 2.169∗∗∗

(0.587) (0.340) (0.537) (0.283) (1.967) (0.560) (0.483) (0.262)
D4 2.384∗∗∗ 3.082∗∗∗ 2.630∗∗∗ 3.137∗∗∗ 6.157∗∗∗ 1.392∗∗∗ 2.746∗∗∗ 3.133∗∗∗

(0.589) (0.329) (0.498) (0.257) (1.997) (0.508) (0.429) (0.255)
N2 × D2 -3.254∗∗∗ -1.738∗∗∗ -3.487∗∗∗ -1.989∗∗∗ -26.443∗∗∗ -0.229 -3.825∗∗∗ -1.590∗∗∗

(1.003) (0.564) (1.137) (0.492) (8.355) (0.594) (0.922) (0.457)
N2 × D3 -2.979∗∗∗ -1.304∗∗ -3.746∗∗∗ -1.436∗∗∗ -42.482∗∗ 0.060 -3.510∗∗ -1.175∗

(1.017) (0.610) (0.966) (0.497) (17.204) (0.706) (1.515) (0.643)
N2 × D4 -3.427∗∗∗ -1.339∗ -3.258∗∗∗ -1.285∗∗∗ -56.202∗∗∗ 0.385 -3.725∗∗∗ -1.148∗∗

(1.146) (0.693) (0.832) (0.447) (15.616) (0.653) (1.080) (0.563)
N3 × D2 -2.483∗∗∗ -1.345∗∗∗ -3.698∗∗∗ -1.826∗∗∗ -4.896∗∗ 0.049 -3.144∗∗∗ -1.320∗∗∗

(0.786) (0.391) (0.881) (0.432) (2.204) (0.551) (0.864) (0.365)
N3 × D3 -2.499∗∗∗ -1.023∗∗∗ -3.675∗∗∗ -1.480∗∗∗ -5.995∗∗∗ 0.364 -2.876∗∗∗ -0.961∗∗∗

(0.593) (0.361) (1.066) (0.486) (2.074) (0.582) (0.616) (0.303)
N3 × D4 -2.748∗∗∗ -1.090∗∗∗ -4.011∗∗∗ -1.401∗∗∗ -5.723∗∗∗ 0.564 -3.091∗∗∗ -1.040∗∗∗

(0.653) (0.374) (1.305) (0.531) (2.023) (0.542) (0.582) (0.321)
N4 × D2 -2.539 -1.137 -4.332∗∗∗ -2.148∗∗∗ -3.878∗ -0.016 -2.499 -1.091∗∗

(1.772) (0.722) (1.270) (0.617) (2.288) (0.559) (1.738) (0.531)
N4 × D3 -4.642∗∗ -1.408∗ -6.202∗∗∗ -2.126∗∗∗ -12.653∗∗∗ 0.460 -4.514∗∗ -1.300∗∗

(1.804) (0.771) (1.322) (0.646) (4.346) (0.603) (1.800) (0.514)
N4 × D4 -4.950∗∗∗ -1.513∗ -6.265∗∗∗ -2.020∗∗∗ -12.963∗∗∗ 0.323 -4.800∗∗∗ -1.448∗∗∗

(1.792) (0.791) (1.555) (0.616) (4.390) (0.556) (1.840) (0.538)
N0 × D2 -3.838∗∗∗ -2.036∗∗∗ -3.366∗∗∗ -1.596∗∗∗ -6.699∗∗∗ -0.135 -4.105∗∗∗ -1.765∗∗∗

(0.636) (0.428) (0.594) (0.332) (2.139) (0.542) (0.589) (0.339)
N0 × D3 -3.225∗∗∗ -1.440∗∗∗ -2.985∗∗∗ -1.242∗∗∗ -6.627∗∗∗ 0.265 -3.191∗∗∗ -1.246∗∗∗

(0.504) (0.380) (0.562) (0.311) (2.153) (0.580) (0.495) (0.297)
N0 × D4 -2.588∗∗∗ -1.480∗∗∗ -2.067∗∗∗ -1.081∗∗∗ -6.906∗∗∗ 0.034 -2.544∗∗∗ -1.317∗∗∗

(0.511) (0.353) (0.518) (0.288) (2.190) (0.528) (0.451) (0.289)
Constant -1.248∗∗ -4.779∗∗∗ -1.693∗∗∗ -4.573∗∗∗ -25.435∗∗∗ -6.064∗∗∗ -1.402∗∗ -4.667∗∗∗

(0.611) (0.334) (0.524) (0.268) (7.812) (0.507) (0.600) (0.319)
ln(α) 0.922∗∗∗ 0.849∗∗∗ -0.429 1.038∗∗∗

(0.187) (0.160) (0.311) (0.128)
N 136036 111023 136036 136036
AIC 54366.23 50339.77 21282.44 54258.32
BIC 55299.19 51253.43 22185.94 55191.29

Robust (clustered across pathologies) standard errors in parentheses.

Therapeutic class and genetic dummy variables included in all specifications.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Results – Robustness checks on the way the number of ODDis measured
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Figure 2: Predicted number of ODD when considering a five years lag in the regressors (see
Column (2), Table 5).

7.1.2 Sample issues and control variables

In the count part of the model presented in Column (1) of Table 6, we add as additional controls

the interactions between therapeutic class dummies (TCj) and period dummies.27 These inter-

action terms aim at capturing the effect of technological reforms at the therapeutic class level.

In the case that technological breakthroughs, fostering the level of innovative effort in a specific

therapeutic class, take place in the same years as the orphanregulations, the omission of thera-

peutic classes specific trends might bias our results in the presence of correlation with the level

of prevalence. However, results confirm the negative and statistically significant effect of the

interaction terms between class of prevalence and period dummies.

In Column (2) we include a proxy for the net revenue at the industry level.28 In particular, we

consider the ratio between the producer price index of pharmaceutical and medicine manufac-

turing, and the price index for private fixed investment in intellectual property products for firms

27The interaction terms are included only in the count part of the model due to a lower BIC with respect to models
where the interaction terms are included also (or only) in the Gumbel part of the model.

28On the basis of our theoretical model, disease-specific net revenues (mj) should affect incentives to undertake
R&D investments. Unfortunately, we are not aware of reliable proxies for net revenues, as well as price indexes or
dynamics in R&D costs, at the disease-level.
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(1) (2) (3) (4)
TCj × Dpj mgt all obs. SP83−5 > 0

Gumbel count Gumbel count Gumbel count Gumbel count
N2 0.834 1.521∗∗ 1.693∗ 1.484∗∗∗ 2.848∗∗∗ 1.439∗∗∗ 2.909∗∗∗ 2.300∗∗∗

(0.656) (0.613) (1.009) (0.559) (0.653) (0.458) (0.567) (0.454)
N3 0.210 1.439∗∗∗ 1.127∗ 1.409∗∗∗ 1.690∗∗∗ 1.171∗∗∗ 0.775 1.588∗∗∗

(0.567) (0.461) (0.609) (0.353) (0.503) (0.225) (0.579) (0.396)
N4 0.559 1.668∗∗∗ 1.024 1.715∗∗∗ 0.836 1.324∗∗∗ 1.418 1.904∗∗∗

(0.789) (0.616) (1.440) (0.567) (1.569) (0.445) (1.132) (0.544)
N0 0.471 0.668 0.260 1.322∗∗∗ 2.695∗∗∗ 1.118∗∗∗ 3.715∗∗∗ 2.315∗∗∗

(0.489) (0.426) (0.635) (0.393) (0.381) (0.245) (1.205) (0.780)
D2 0.722 0.487 3.318∗∗∗ 1.611∗∗∗ 3.824∗∗∗ 1.904∗∗∗ 2.624∗∗∗ 1.888∗∗∗

(0.559) (0.434) (0.627) (0.424) (0.366) (0.244) (0.837) (0.643)
D3 0.518 0.675 3.135∗∗∗ 1.413∗∗∗ 3.658∗∗∗ 2.176∗∗∗ 3.417∗∗∗ 2.724∗∗∗

(0.621) (0.468) (0.742) (0.339) (0.329) (0.233) (0.806) (0.475)
D4 0.366 1.475∗∗∗ 3.735∗∗∗ 1.706∗∗∗ 3.054∗∗∗ 2.952∗∗∗ 3.026∗∗∗ 3.481∗∗∗

(0.552) (0.449) (0.680) (0.338) (0.353) (0.231) (0.867) (0.477)
N2 × D2 -2.056∗∗ -1.516∗∗∗ -3.127∗∗∗ -1.652∗∗∗ -3.819∗∗∗ -1.502∗∗∗ -3.327∗∗∗ -1.713∗

(0.864) (0.564) (0.959) (0.521) (0.738) (0.450) (1.228) (0.942)
N2 × D3 -1.928∗∗ -1.206∗ -2.780∗∗∗ -1.219∗∗ -4.309∗∗∗ -1.408∗∗∗ -3.656∗∗∗ -1.925∗∗∗

(0.793) (0.628) (1.064) (0.559) (0.913) (0.520) (0.910) (0.583)
N2 × D4 -2.439∗∗∗ -1.284∗∗ -3.339∗∗∗ -1.244∗∗ -4.021∗∗∗ -1.040∗ -4.183∗∗∗ -1.919∗∗∗

(0.724) (0.620) (1.067) (0.569) (0.857) (0.543) (0.771) (0.621)
N3 × D2 -1.238 -1.060∗∗ -2.234∗∗∗ -1.189∗∗∗ -2.992∗∗∗ -0.965∗∗∗ -2.375∗∗∗ -1.342∗∗

(0.764) (0.446) (0.666) (0.393) (0.494) (0.253) (0.895) (0.636)
N3 × D3 -1.378∗∗ -1.062∗∗ -2.328∗∗∗ -0.915∗∗∗ -3.246∗∗∗ -0.864∗∗∗ -3.004∗∗∗ -1.521∗∗∗

(0.700) (0.474) (0.611) (0.332) (0.468) (0.251) (0.839) (0.517)
N3 × D4 -1.675∗∗ -1.059∗∗ -2.636∗∗∗ -1.028∗∗∗ -3.148∗∗∗ -0.810∗∗∗ -2.798∗∗∗ -1.343∗∗

(0.812) (0.494) (0.674) (0.344) (0.483) (0.283) (0.751) (0.551)
N4 × D2 -1.112 -0.707 -2.099 -1.160∗ -2.467∗ -0.969∗∗ -1.846 -1.057

(0.842) (0.572) (1.446) (0.602) (1.468) (0.457) (1.134) (0.695)
N4 × D3 -3.642∗∗∗ -1.359∗∗ -3.968∗∗∗ -1.354∗∗ -3.590∗∗∗ -1.208∗∗∗ -3.617∗∗∗ -1.633∗∗∗

(0.925) (0.620) (1.440) (0.578) (1.343) (0.427) (1.021) (0.589)
N4 × D4 -3.846∗∗∗ -1.435∗∗ -4.335∗∗∗ -1.507∗∗ -2.470∗ -0.949∗∗ -3.221∗∗∗ -1.586∗∗∗

(0.831) (0.620) (1.379) (0.599) (1.482) (0.476) (1.030) (0.576)
N0 × D2 -1.411∗∗∗ -0.947∗∗ -3.730∗∗∗ -1.782∗∗∗ -3.877∗∗∗ -1.509∗∗∗ -3.381∗∗∗ -1.986∗∗∗

(0.547) (0.419) (0.611) (0.518) (0.427) (0.293) (0.847) (0.653)
N0 × D3 -1.006∗ -0.647 -3.372∗∗∗ -1.197∗∗∗ -3.561∗∗∗ -1.171∗∗∗ -4.012∗∗∗ -2.024∗∗∗

(0.587) (0.431) (0.565) (0.345) (0.397) (0.284) (0.853) (0.519)
N0 × D4 -0.482 -0.608 -3.598∗∗∗ -1.262∗∗∗ -2.726∗∗∗ -1.053∗∗∗ -3.391∗∗∗ -1.895∗∗∗

(0.517) (0.417) (0.550) (0.345) (0.428) (0.278) (0.959) (0.531)
mgt -1.759∗∗∗ 1.511∗∗∗

(0.325) (0.180)
mgt × N0 1.655∗∗∗

(0.333)
Constant 0.748 -3.355∗∗∗ 0.949 -6.367∗∗∗ -1.035∗∗ -4.025∗∗∗ -0.616 -4.299∗∗∗

(0.611) (0.477) (0.890) (0.404) (0.416) (0.207) (0.669) (0.375)
ln(α) 0.780∗∗∗ 0.825∗∗∗ 0.788∗∗∗ 0.581∗∗

(0.171) (0.209) (0.163) (0.231)
N 136036 133348 212092 91392
AIC 55485.69 55477.80 71869.02 37279.63
BIC 57214.13 56438.27 72844.17 38174.81

Robust (clustered across pathologies) standard errors in parentheses.

Therapeutic class and genetic dummy variables included in all specifications.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Results – Robustness checks: sample issues and additional control variables
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operating in pharmaceutical and medicine manufacturing (asa proxy for R&D expenditures).29

The ratio between the two indexes has grown substantially over the observation period. We also

include an interaction term betweenN0 (missing prevalence) and the ratio in the Gumbel part

of the model.30 In the count part of the model, the coefficients ofD2, D3 andD4 are smaller

compared to our baseline specification, as part of the effectis captured by the increasing trend in

the ratio over time. However, the main result of our analysisis unaffected.

In Column (3) we consider the full set of diseases, removing the selection of the basis of the

stock of publications. In this case, alsoN2 andN4 become significant in the first period, unlike

in the models that disregard diseases that cannot be relatedto any publications, especially in the

Gumbel part of the model. This may be due to the fact that most of the diseases that are added

after the first year belong toN1.

Finally, in Column (4), we consider the balanced panel of diseases that were known at the

beginning of our observation period (i.e., with a positive value ofSPt−5 in year 1983). By using

a balanced set of observations, we aim at investigating whether our results are driven by the

composition of the sample.

All in all, the robustness checks performed in this section confirm the main results from Table

4.

8 Concluding remarks

Since the early 80s, regulators have started to address the lack of incentives to invest in innovation

for rare diseases by means of specific provisions. As the pharmaceutical market is a global one,

these incentives for the development of orphan drugs have cumulated over time as new countries

have introduced them. There is ample evidence that this has increased investments in projects

targeting rare diseases, meaning a potential reduction in inequality between orphan and common

diseases. In this paper, we study the distribution of R&D efforts within the class of orphan

diseases, with a focus on heterogeneity with respect to prevalence.

We developed a theoretical model to show that the type of incentive that is used may be

29Both indexes have been downloaded from the Federal Reserve Economic Data. See: https://fred.stlouisfed.org.
Data are no available for the producer price index in 1983, sothat one observation for each disease is lost.

30In unreported analyses we have considered the interaction between all classes of prevalence and the industry-
wide margin both in the Gumbel and count part of the model. This is motivated by the fact that, theoretically, an
increase inMj works as an increase inz, meaning that the size of the impact depends onnj . Only the interaction
term betweenN0 and the ratio in the Gumbel part of the model is statisticallydifferent from zero, so only this
interaction is retained in the estimated model in Column (2). This model has also to be preferred with respect to the
model where all interactions are included according to the Bayesian Information Criterion (BIC).
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crucial to define the relative convenience to invest across different classes of prevalence. In

particular, we consider bothoutput-relatedincentives, such as market exclusivity, andinput-

related incentives, such as tax credits. The model shows that both types of incentive increase

more theprobability of observing investmentfor a less rare disease. This is due to both a direct

and an indirect impact foroutput-relatedincentives, whereas forinput-related incentives the

impact is only indirect. It is not possible to conclude unambiguously whether the impact of the

incentives on theoptimal level of R&D investmentincreases or decreases with the prevalence of

the disease.

We use the number of orphan designations, a condition to become eligible for incentives, as

a proxy of R&D effort, to investigate the impact of the introduction of incentives in different

geographic areas over time. We find that the number of designations has increased over time

for all orphan diseases, but inequality within orphan diseases has also increased: the difference

between the predicted number of orphan designations for a disease belonging to the highest

and the lowest class of prevalence is 5.6 times larger in the last than in the first period of the

analysis. The gap between less and more rare diseases seems to have widened after 2000, when

the orphan legislation was introduced in the EU. We argue that the large weight ofoutput-related

incentives embodied in this legislation, when compared forexample with the US legislation,

combined with the large size of the EU market, may have contributed substantially to this result.

If the reduction of inequality in the distribution of R&D efforts is an objective of European

policy makers, then the weight ofinput-relatedincentives should be increased. However, the

adoption of some of these incentives, such as tax credits, may be more challenging than in other

regulatory frameworks, due to the fact that single EU membercountries are still responsible for

the definition of fiscal policies. In this context, an extension of the incentive tool set to include

provisions that can be tailored to the prevalence of a disease, should also be considered.
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A Appendix

In Figure 3 we report the equivalent of Figure 1 with a line foreach class of prevalence. The

figure is obtained using the estimated coefficients of our baseline model, reported in Column (2)

of Table 4.
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Figure 3: Predicted values for all classes of prevalence: (a) Predicted probability thatIj = 0; (b) linear combinationxjtβ̂2; (c)
predicted number of ODD, conditional onIj > 0; (d) predicted number of ODD
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