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A CONCEPT OF SINCERITY FOR COMBINATORIAL VOTING∗
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ABSTRACT. A basic problem in voting theory is that all the strategy profiles in

which nobody is pivotal are Nash equilibria. We study elections where voters

decide simultaneously on several binary issues. We extend the concept of con-

ditional sincerity introduced by Alesina and Rosenthal (1996) and propose an

intuitive and simple criterion to refine equilibria in which players are not piv-

otal. This is shown to have a foundation in a refinement of perfection that takes

into account the material voting procedure. We prove that in large elections the

proposed solution is characterized through a weaker definition of Condorcet

winner and always survives sophisticated voting.

KEY WORDS. Voting theory, multi-issue elections, strategic voting, perfect equi-

librium.

JEL CLASSIFICATION. C72, D72.

1. INTRODUCTION

Democracy can be realized through two basic forms, the representative one

and the direct one. In a representative democracy people elect government of-

ficials and/or parliamentary members who exercise the political power taking

final decisions. On the contrary, in a direct democracy people participate in the

decision making personally. Modern democracies are typically representative,

nevertheless some forms of direct democracy still persist, mostly through ref-

erenda. When such a form of democracy is carried out several issues are often

proposed together, so that citizens express their preferences on those issues in

the same ballot.1 If the referendum is just on a single issue the theory unam-

biguously tells us that each citizen should express her preferences sincerely, be-

cause this is her dominant strategy. Things become much more obscure in case

multiple referenda are held simultaneously. In this paper, we try to shed some
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1An example is given by the recent November 2016 California ballot, in which citizens have

been asked to vote on seventeen issues, including marijuana legalization, gun control, drug

prices, and condoms in porn.
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light on the problems that arise in such a situation and we propose a solution in

the same spirit as in the single-issue setting.

In case an elector is called to vote on multiple issues she may have non-

separable preferences on them, meaning that she may prefer that a given issue

passes or not depending on the resolution of the others. This is the source of the

difficulties in this context. As a matter of fact, when preferences are separable

the theory tells us the right behavior again, that is, voting sincerely on every sin-

gle issue is the dominant strategy. When preferences are non-separable, instead,

sincerity may lead to the worst outcome for everybody. Consider for example a

referendum with three issues and three voters, and suppose that the worst alter-

native for everybody is that all the three issues pass together. Player 1 prefers

that the first two issues pass to every other possible alternative, player 2 that

the second and the third issues pass, while player 3’s best outcome is that the

first and the third issues pass. Under sincerity every issue takes the majority, so

every player’s worst scenario occurs. Note that in this case the sincere strategy

profile is not even a Nash equilibrium. Player 1 for instance cannot affect the

decision on the third issue, which passes independently of her vote, while she is

pivotal for the first two issues. Approving both of them is clearly not a best reply

for her, as it would induce her worst alternative.

It is known that even focusing on Nash equilibria would be unsatisfactory

in a voting contest. In fact, with at least three players, for any outcome there

is a Nash equilibrium inducing it, e.g. the strategy profile in which everybody

approves that outcome so that nobody is pivotal. This is obviously true also in

the single-issue case as well as in any two-candidate majority election. Even if

in mass elections voters are typically not pivotal, in those cases the theory pre-

scribes the use of dominant strategies due to the fact that there is always a slight

probability of being decisive. This fact can be formally justified either assuming

some sort of incomplete information or using solution concepts that embed some

uncertainty in the actual strategy played by the opponents, as trembling-hand

perfection à la Selten (1975).

In the multi-issue setting, a clear analysis of the problem under incomplete

information is offered by Ahn and Oliveros (2012). In this paper we focus on

the complete information case. We adopt a concept of sincerity, that we call

“issue sincerity”, which is based on the idea of conditional sincerity introduced

by Alesina and Rosenthal (1996) in a multiple-election context. In particular,

given a reference outcome, the issue sincere strategy for a voter prescribes to

vote sincerely issue by issue, considering as fixed the outcome of the others. An

issue sincere strategy combination is a profile in which every voter’s strategy is

issue sincere given the outcome that such a combination induces. We show that
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the conditions for the existence of an issue sincere strategy combination are

equivalent to the conditions for the existence of a local Condorcet winner, that

is, an outcome that the majority prefers to every other alternative that differs in

one issue only.

The concept of issue sincerity naturally arises from the idea that voters are

typically not decisive and, even if there is a small probability that they are piv-

otal, being pivotal for more than one issue is much less probable than being

pivotal for a single issue. We formalize this idea using a refinement of trembling-

hand perfection that takes into account the material voting procedure. Roughly

speaking, we limit the probability of making mistakes on a set of issues to be of

smaller order than the probability of making mistakes on any of its subsets. We

prove that such a solution concept coincides in pure strategies with the concept

of issue sincere Nash equilibrium.

In voting theory it is standard to advocate the principle of stability against

iterated elimination of dominated strategies, called “sophisticated voting” from

Farquharson (1969) on. In this view, we analyze whether such a principle can

eliminate an issue sincere Nash equilibrium. We define a simpler process, that

we call “iterated determinacy of issues”, which reduces a game fixing the out-

come of an issue whenever it is determined by the undominated behavior of

the majority of the voters. We show that every issue sincere equilibrium out-

come survives this procedure, which coincides with iterated dominance except

for very specific knife-edge cases.

To present the difficulties and the results in this voting context, we offer sev-

eral examples characterized by few players and few issues. Nevertheless, any

argument we give holds in general. Real-life multi-issue referenda typically in-

volve a huge number of voters. To describe large electorates one could choose

to specify every single voter’s preferences, however this is not the most common

approach. In the same vein as Debreu and Scarf (1963), we instead interpret

a large electorate as the result of replicas of an original smaller one. We prove

that for large elections an outcome is an issue sincere equilibrium outcome if and

only if it is a local Condorcet winner. Moreover, we show that an issue sincere

Nash equilibrium is stable against sophisticated voting, as iterated determinacy

of issues and iterated dominance turn out to coincide.

Some political science papers have pointed out a few problems related to non-

separable preferences across multiple issues. Brams et al. (1997, 1998) present

several examples of non-separable preferences, and observe that if voters vote

sincerely the winning outcome may receive the fewest votes, a phenomenon that

they call “the paradox of multiple elections”. Lacy and Niou (2000) show that

under sincere voting a Condorcet loser can be the outcome of the election, and
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that both sincere and sophisticated voting can fail to select a Condorcet winner

when it exists. This does not happen under sophisticated sequential voting. In

our work we assume that voters vote strategically and simultaneously on the

different issues and we propose a solution concept that also guarantees such

positive results.

Ahn and Oliveros (2012) consider strategic and simultaneous voting as well

but under the assumption of incomplete information, and employ the solution

concept of symmetric undominated Nash equilibrium. They focus mostly on

large elections with two issues and show that a Condorcet winner is not nec-

essarily a limit outcome (that is, an outcome that is elected in equilibrium with

probability converging to 1). In our setting, the equivalence between issue sin-

cerity and the aforementioned version of perfection implies that uncertainty can

be interpreted as introduced via strategy perturbations that are independent

across issues. One consequence is that, according to Ahn and Oliveros (2012)

terminology, an outcome that is unconditionally certain is also conditionally cer-

tain. This is the reason why we have the result that a Condorcet winner is

always an issue sincere equilibrium outcome of large elections.

As mentioned above, we borrow the idea of sincerity from Alesina and Rosen-

thal (1996). In particular, they consider the simultaneous elections of the execu-

tive and the legislature and they denote with “conditional sincerity” the sincere

vote in each election conditional on the result in the other one.2 Analogously,

issue sincerity prescribes the sincere vote on each issue conditional on the res-

olution of the remaining ones. Conditional sincerity and independent trembles

are employed also in De Sinopoli et al. (2015) for the same type of simultane-

ous elections of the President and the Congress. Differently from our context,

in their setting outcomes are represented over a unidimensional policy space

and voters have single-peaked preferences so a Condorcet winner always exists,

however it is not necessarily a conditionally sincere outcome.

The paper proceeds as follows. Section 2 describes the combinatorial game

of voting on multiple issues. In Section 3 we characterize undominated strate-

gies and analyze the concept of issue sincerity, showing the equivalence of local

Condorcet winners and issue sincere outcomes. Section 4 presents the game-

theoretical foundation of issue sincerity through a refinement of perfection, and

Section 5 shows the stability of such a solution concept against iterated determi-

nacy of issues. In Section 6 we characterize issue sincere equilibrium outcomes

of large elections and we prove their robustness against iterated dominance.

In Section 7 we provide a comparison between combinatorial rule and plurality

rule.

2Such a concept has been employed also in Ingberman and Rosenthal (1997).
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2. PRELIMINARIES

We begin by defining the class of combinatorial voting games. Let N = {1, . . ., n}

be the finite set of players, where n ≥ 3 is an odd number, and let K be the finite

set of binary issues. We denote with Ω the power set of K , that is, the set of

possible outcomes. Under combinatorial voting the strategy set S i of player i

can be described as the collection of #K -dimensional vectors with entries sk
i
∈

{0,1} for every k ∈ K , where sk
i
= 1 means that player i approves issue k while

sk
i
= 0 means that she does not. The set of strategy profiles is S :=

∏

i∈N S i.

Let θ : S →Ω be the outcome function. According to the combinatorial rule, the

outcome induced by the strategy profile s ∈ S is

θ(s) :=

{

k ∈ K : #{i ∈ N : sk
i = 1}≥

n+1

2

}

,

meaning that all the issues approved by more than half of the players pass.3

Each player i has preferences %i defined over the set of possible outcomes. For

the sake of simplicity, we will always assume strict preference orders. A player’s

preferences can be separable in some (possibly every) issue. Separability in a

given issue means that the player’s preference for that issue to pass does not

depend on the resolution of any other issue. With slight abuse of notation, we

denote with K ′ the outcome where all and only the issues in K ′
⊆ K pass (∅

denoting the outcome such that no issue passes).

Definition 1. Preferences %i are positively separable in k if K ′∪ {k} ≻i K ′ for

every K ′ ⊆ K \ {k}, while they are negatively separable in k if K ′ ≻i K ′∪ {k} for

every K ′ ⊆ K \{k}.

As usual, for player i strategy si is a best response to s−i if θ(si, s−i)%i θ(s̃i, s−i)

for all s̃i ∈ S i.
4 The finite set of these strategies is written PBRi(s−i).

Definition 2. The strategy profile s is a Nash equilibrium if si ∈ PBRi(s−i) for

every i.

It is well known that the definition of Nash equilibrium allows the use of dom-

inated strategies. Furthermore, as mentioned in the Introduction, when n ≥ 3

every outcome can be supported by a Nash equilibrium. There is therefore need

3Oddness of the number of players is assumed just to guarantee that a pure strategy profile

induces a pure outcome. In this case preference orders over outcomes are sufficient to study

the main concepts that we introduce. We could replace this assumption with any deterministic

tie-breaking rule.
4A player’s best response depends only on the aggregate behavior of the opponents, i.e., on

the sum of the positive votes that each issue gets from the others. Henceforth, we will often use

a vector to summarize this information, and we will refer to it as “pivotal event” if the player is

decisive for some issue.
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for equilibrium refinement also in combinatorial voting games. In the single-

issue setting, undominance is guaranteed by sincerity. In fact, in that case the

strategy combination in which every player votes sincerely is the unique un-

dominated profile. Following the idea of conditional sincerity of Alesina and

Rosenthal (1996), we define a concept of sincerity that seems appropriate in the

context of multiple issues.

3. ISSUE SINCERITY

We want first to characterize the set of undominated strategies, being ad-

missibility a fundamental principle (Luce and Raiffa, 1957; Arrow, 1951). The

definition of (weak) dominance is standard.

Definition 3. Strategy si weakly dominates strategy s̃i for player i if

θ(si, s−i)%i θ(s̃i, s−i) for all s−i ∈ S \ S i,

θ(si, s−i)≻i θ(s̃i, s−i) for at least one s−i ∈ S \ S i.

Strategy si is weakly dominant for player i if it weakly dominates every other

strategy s̃i ∈ S i. A strategy is weakly dominated for player i if there exists an-

other strategy that dominates it. Strictly dominated strategies do not typically

appear in combinatorial voting games, and henceforth we will refer to weak

dominance simply as dominance.

We can show that there exists the following relationship between dominance

and separability.5

Proposition 1. For player i strategy si is dominated by strategy s̃i if and only

if, for all k such that sk
i
, s̃k

i
, preferences %i are separable in k and s̃k

i
= 1 if and

only if they are positively separable.

Proof. If preferences of player i are not separable in issue k, then there exist by

definition two outcomes K ′,K ′′ ⊆ K\{k} such that K ′∪{k}≻i K ′ and K ′′ ≻i K ′′∪{k}.

Let sk
i
= 0 and s̃k

i
= 1. Consider the strategy profile of the opponents in which

half of them approve all and only the issues in K ′ while the other half approve

all and only the issues in K ′
∪ {k}. Clearly, player i strictly prefers strategy s̃i

to strategy si. Analogously, we can construct a strategy profile of the opponents

such that player i strictly prefers si to s̃i. Therefore, neither si can be dominated

by s̃i nor viceversa, and hence whenever si is dominated by s̃i preferences must

be separable in all the issues in which the two strategies differ.

5Lacy and Niou (2000) and Ahn and Oliveros (2012) observe that if preferences are separable

in every issue then voting accordingly to the most preferred outcome is a dominant strategy for

a player. This is an immediate corollary of the characterization in Proposition 1.
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The if part is obvious, since either si and s̃i are outcome equivalent or the

outcome induced by s̃i is preferred by player i to the outcome induced by si. �

To get rid of equilibria in dominated strategies, one may simply focus on un-

dominated Nash equilibria. However, the following example shows that such a

solution concept may select every player’s worst outcome.

Example 1. Consider a combinatorial voting game with three players and two

issues, A and B. By the combinatorial voting rule, all the issues that receive

at least two positive votes pass. Players have the same preference order over

the set of outcomes Ω = {A,B, AB,∅}, precisely ∅ ≻ AB ≻ A ≻ B. Note that

these preferences are not separable either in A or in B, so there is no dom-

inated strategy by Proposition 1. It is easy to see that the strategy profile

s∗ = ((0,1), (0,1), (0,1)), which prescribes every player to approve just issue B,

is an undominated Nash equilibrium that induces the worst alternative for ev-

erybody.

Notice that s∗ is an equilibrium because nobody is pivotal. When a player has

to decide how to vote, she believes that she is not going to be decisive on either

issue, because A takes no votes from the other players and B already takes the

majority. Of course, a vote on a given issue does never affect the outcome of any

other issue. Thus, when deciding how to express her preferences for issue A,

for example, a player can conceivably take as given the outcome of issue B. A

fortiori in this case, where she is not decisive on such an issue. Given that B

passes, a player should vote accordingly to her preferences over AB and B, and

hence should approve issue A since she prefers AB to B. Analogously, when

deciding how to express her preferences for issue B, a player can consider as

given the outcome of issue A, so she should never approve B as she prefers ∅

to B. Therefore, a player who expects the others to approve just issue B should

reply approving just issue A. It follows that the equilibrium s∗ does not survive

this intuitive reasoning, which we formalize with the concept of issue sincerity.

Definition 4. Strategy si is issue sincere with respect to outcome K ′ ⊆ K if

i) for every k ∈ K ′, sk
i
= 1 if and only if K ′ ≻i K ′ \{k}, and

ii) for every k ∉ K ′, sk
i
= 1 if and only if K ′

∪ {k}≻i K ′.

The strategy profile s is issue sincere if si is issue sincere with respect to θ(s) for

every i.

We say that an outcome is issue sincere if there is an issue sincere strategy

profile that induces it. The strict preferences assumption implies that a player’s

issue sincere strategy with respect to a given outcome is unique. It is then

immediate to find all the issue sincere outcomes of a combinatorial voting game.
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For instance, the game in Example 1 has two issue sincere outcomes, ∅ and

AB. In fact, si = (0,0) is every player’s issue sincere strategy with respect to

∅ and si = (1,1) the one with respect to AB. We have seen that si = (1,0) is

every player’s issue sincere strategy with respect to outcome B, which therefore

is not issue sincere as the corresponding issue sincere strategy profile induces

outcome A. Similarly, A is not an issue sincere outcome because every player’s

corresponding issue sincere strategy approves just issue B.

It readily follows from the characterization of dominated strategies in Propo-

sition 1 that every issue sincere strategy is undominated. Unfortunately, an

issue sincere strategy profile does not always exist, as the following example

shows.

Example 2. Consider a three-player game with two issues, A and B, where

players’ preferences are

∅≻1 B ≻1 AB ≻1 A,

A ≻2 ∅≻2 B ≻2 AB,

AB ≻3 A ≻3 B ≻3 ∅.

It is easy to check that given any outcome the corresponding issue sincere strat-

egy profile does not induce it. (Take for example outcome A. The corresponding

issue sincere strategy profile is s= ((0,1), (1,0), (1,1)) and hence induces outcome

AB.)

Note that this game does not have a Condorcet winner, whose existence turns

out to be a sufficient condition for the existence of an issue sincere outcome.

However, in a combinatorial voting game it seems more appropriate to compare

a given alternative with its “closest” ones, that is, those that differ in only one

issue. Following Ahn and Oliveros (2012), we thus introduce the definition of

local Condorcet winner.

Definition 5. Outcome K ′ ⊆ K is a local Condorcet winner if

#{i ∈ N : K ′
≻i K ′ \{k}}> #{i ∈ N : K ′ \{k}≻i K ′} ∀k ∈ K ′,

#{i ∈ N : K ′
≻i K ′

∪ {k}}> #{i ∈ N : K ′
∪ {k}≻i K ′} ∀k ∉ K ′.

We can now prove the following.

Proposition 2. An outcome is issue sincere if and only if it is a local Condorcet

winner.

Proof. Let K ′ be a local Condorcet winner and let s be the corresponding issue

sincere strategy profile. Consider an issue k. By definition, for every player i, if

k ∈ K ′ then sk
i
= 1 if and only if K ′

≻i K ′ \ {k}, while if k ∉ K ′ then sk
i
= 1 if and
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only if K ′
∪{k}≻i K ′. Since K ′ is a local Condorcet winner, it follows that if k ∈ K ′

then k ∈ θ(s) while if k ∉ K ′ then k ∉ θ(s). Viceversa, let K ′ be an issue sincere

outcome. For at least n+1
2

players, if k ∈ K ′ then K ′
≻ K ′ \{k} while if k ∉ K ′ then

K ′ ≻ K ′∪ {k}, so K ′ is a local Condorcet winner. �

The above proposition directly implies that whenever each player has separa-

ble preferences a local Condorcet winner exists. As a matter of fact, a player’s

dominant strategy is issue sincere with respect to every outcome, so the out-

come induced by the dominant strategy profile is a local Condorcet winner.6 The

same is true when outcomes can be represented over a unidimensional space

and preferences are single-peaked.

The presence of a Condorcet winner is not sufficient to guarantee the existence

of an issue sincere Nash equilibrium, as the following example shows.

Example 3. Consider a combinatorial voting game with two issues, where the

three players’ preferences are

∅≻1 AB ≻1 A ≻1 B,

B ≻2 AB ≻2 A ≻2 ∅,

A ≻3 AB ≻3 B ≻3 ∅.

The game has a Condorcet winner, AB, but the unique issue sincere strategy

profile s= ((1,1), (0,1), (1,0)), which induces it, is not a Nash equilibrium. Indeed,

player 1 is pivotal for both issues and, therefore, her unique best reply against

the opponents’ aggregate behavior (1,1) is s1 = (0,0).

The reason why in this example the issue sincere strategy profile s is not a

Nash equilibrium is that player 1 is “double pivotal”. In fact, when no player is

pivotal for more than one issue then an issue sincere strategy profile is a Nash

equilibrium. Obviously, if a player is not pivotal for any issue then any of her

strategies is a best reply to the other players’ aggregate behavior. On the other

hand, if a player is pivotal just for one issue then her issue sincere strategy is a

best reply, like every other strategy that behaves in the same way in that issue.

6Separable preferences do not imply the existence of a Condorcet winner. Take for example

three players with the following separable preferences:

A ≻1 ∅≻1 AB ≻1 B,

B ≻2 ∅≻2 AB ≻2 A,

AB ≻3 A ≻3 B ≻3 ∅.

The dominant strategy profile s = ((1,0),(0,1),(1,1)) induces the local Condorcet winner AB,

which however is not a Condorcet winner as the majority of the players prefers outcome ∅ to it.
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When a player is pivotal for more than one issue, instead, she can simultane-

ously alter the outcomes of those issues she is decisive for. Issue sincerity does

not take into account such a possibility, since it prescribes to express preferences

issue by issue, keeping fixed the outcome of the others. Therefore, in this case

an issue sincere strategy may not be a best reply to the opponents’ aggregate

behavior, as in the previous example.

It follows that a sufficient condition for the existence of an issue sincere Nash

equilibrium is the presence of a local Condorcet winner and the absence of play-

ers that are pivotal for more than one issue in the corresponding issue sincere

strategy profile. The absence of such pivotality seems a very reasonable assump-

tion in real-life referenda with a mass electorate, where even the probability of

being pivotal for just one issue is practically negligible. In Section 6 we will see

that if we interpret a large economy in the spirit of Debreu and Scarf (1963) as

the result of replicas of a smaller original one, then pivotality for more than one

issue disappears for large electorates. Thus, in large elections, when a Condorcet

winner exists there is always an issue sincere Nash equilibrium that induces its

election.

4. A REFINEMENT OF PERFECTION

In this section we show that the solution concept of issue sincerity has a game-

theoretical foundation in a refinement of perfection, that we call “b-perfect equi-

librium”.

First, recall that the bad equilibrium s∗ of Example 1, which prescribes every

player to approve just issue B, is undominated. It is well known that a refine-

ment of the undominated Nash equilibrium concept is perfection.

Definition 6. The strategy profile s is a perfect equilibrium if there exists a

sequence of completely-mixed strategy profiles converging to s such that s is a

best response to every element of such a sequence.

We can see that the strategy profile s∗ is not a perfect equilibrium. Take any

sequence of completely-mixed strategy profiles that converges to it. Sufficiently

close to s∗, every player faces the pivotal event (2,1) induced by her opponents

with a probability that is of smaller order than the probabilities of the pivotal

events (1,2) and (1,1). In fact, the first event is the result of two deviations

from s∗, because one opponent has to play strategy (1,1) and the other has to

play strategy (1,0). On the contrary, the other two pivotal events are the result

of just one of these deviations. Hence, close enough to s∗ every player strictly

prefers strategy (1,0) to strategy (0,1), so s∗ is not perfect.
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Even if in this case perfection eliminates an equilibrium that is not issue

sincere, this does not hold in general, as the following example demonstrates.

Example 4. Consider a combinatorial voting game with three players and two

issues, A and B. Let preferences be

∅≻i B ≻i AB ≻i A, i = 1,2,

AB ≻3 A ≻3 B ≻3 ∅.

The first two players’ preferences are negatively separable in A, while player

3’s preferences are positively separable both in A and in B. Hence, strategy

s3 = (1,1) is dominant for the third player.

Now, take the strategy profile s′ = ((0,1), (0,1), (1,1)), which is a Nash equilib-

rium that induces outcome B. Note that the strategies of the first two players

are not issue sincere.7 We can show that s′ is a perfect equilibrium. To this end,

consider the sequence of completely-mixed strategy profiles {sε}ε→0 converging

to s′ such that

sεi = (1−ε−ε2)(0,1)+ε(1,0)+ε2σ◦, i = 1,2,

sε3 = (1−ε2)(1,1)+ε2σ◦,

where σ◦ is an arbitrary completely-mixed strategy. For vanishing ǫ, players

1 and 2 face the pivotal event (2,1) with a probability that is infinitely greater

than the probability of any other possible event different from (1,2). It follows

that si = (0,1) is a best response to sε
−i

for i = 1,2. Thus, since s3 = (1,1) is

dominant for player 3, s′ is a perfect equilibrium.

To justify the perfection of s′, the converging sequence of completely-mixed

strategy profiles needs to be such that the deviations of the first two players

from strategy (0,1) to strategy (1,0) are much more probable than any other

possible deviation.8 If we interpret deviations as due to mistakes that players

make when they vote, this seems unreasonable. As a matter of fact, the material

procedure of voting requires each voter to cast two votes, one on issue A and

7The issue sincere strategy profile with respect to outcome B is s = ((0,0),(0,0),(1,1)), so B is

not an issue sincere outcome.
8If every player plays according to s′, strategies (0,0) and (0,1) are equivalent for the first two

players and they are strictly better than strategies (1,0) and (1,1), which would induce outcome

AB. Hence, close-by s′, the first two strategies are the only best replies for them. Clearly, these

strategies induce a different outcome only when the first two players are pivotal for issue B,

that is, B takes one vote from the opponents. In this case, if issue A takes two votes then they

strictly prefer strategy (0,1), otherwise they strictly prefer strategy (0,0). For s′ to be perfect,

then, the probability of the pivotal event (2,1) has to be sufficiently greater than the probability

of the events (0,1) and (1,1).



12 FRANCESCO DE SINOPOLI AND CLAUDIA MERONI

one on issue B, so the probability of making mistakes on both issues should be

smaller than the probability of making a mistake on a single one. To capture

this idea, we propose a refinement of perfection which puts further restrictions

on the converging sequence of strategies.

Before giving the definition of such a solution concept, we need to introduce

b-strategies. A b-strategy b i of player i is a #K -dimensional vector with entries

bk
i
∈ [0,1] for every k ∈ K , where bk

i
represents the probability that player i

approves issue k. A b-strategy profile is a vector b = (b1, . . . , bn). Let b(s) be the

b-strategy profile corresponding to the strategy profile s.

Definition 7. The strategy profile s is a b-perfect equilibrium if there exists a

sequence of completely-mixed b-strategy profiles converging to b(s) such that s

is a best response to every element of such a sequence.

Every completely-mixed b-strategy profile has a corresponding completely-

mixed strategy profile.9 Thus, every b-perfect equilibrium is perfect. The con-

verse is not true. In fact, we now prove that the issue sincere equilibrium con-

cept coincides with b-perfection in pure strategies.

Proposition 3. A pure strategy profile is a b-perfect equilibrium if and only if it

is an issue sincere Nash equilibrium.

Proof. Let s be a b-perfect equilibrium. Clearly, every best response of player

i to s−i behaves issue sincerely in all the issues k for which player i is pivotal.

So consider an issue k′ player i is not decisive for. In any completely-mixed b-

strategy profile close to b(s), the probability of being pivotal for k′, the outcome

of all the other issues being the same, is infinitely greater than the probability

of being pivotal for k′ with a different resolution of the other issues. Thus, every

best reply of player i must necessarily behave issue sincerely also in k′ for s to

be b-perfect. It follows that s is an issue sincere Nash equilibrium.

To prove the converse, note that the above reasoning implies that, given an

issue sincere Nash equilibrium, a player’s issue sincere best reply is the only

best reply to a close-by completely-mixed b-strategy profile. �

From Proposition 3 it follows that a sufficient condition for the existence of

a b-perfect equilibrium in pure strategies is the presence of a local Condorcet

winner and the absence of players that are pivotal for more than one issue in the

corresponding issue sincere strategy profile. In the Appendix, it is shown that

a b-perfect equilibrium may not exist even if we extend its definition to mixed

9In particular, to the b-strategy (x, y) with x, y ∈ (0,1) corresponds the completely-mixed strat-

egy xy(1,1)+ x(1− y)(1,0)+ y(1− x)(0,1)+ (1− x)(1− y)(0,0).
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b-strategies. In particular, the reason is that the best reply correspondence is

not convex-valued in the b-strategy space.

5. ITERATED DOMINANCE

Iterated dominance has a longstanding tradition in voting theory, where it

has been introduced by Farquharson (1969) through the concept of sophisticated

voting. Likewise, it has been advocated by prominent game theorists as a basic

principle that a solution concept should satisfy (Kohlberg and Mertens, 1986).

Before analyzing the relationship between iterated dominance and issue sin-

cerity, we present an example to better highlight some features of iterated dom-

inance in our setting.

Example 5. Consider the combinatorial voting game with issues A and B,

where three players have preferences given by

AB ≻i B ≻i ∅≻i A, i = 1,2,

∅≻3 AB ≻3 A ≻3 B.

By Proposition 1, player 3 does not have any dominated strategy, while players

1 and 2 have two dominated strategies, (1,0) and (0,0), as their preferences

are positively separable in B. In the reduced game obtained by eliminating

these two strategies for both players, issue B passes for sure. Therefore, up to

duplications of strategies, this reduced game is equivalent to a single-issue game

on A, where every player approves A in every undominated strategy profile

since every player prefers outcome AB to outcome B. It follows that iterated

dominance isolates outcome AB, which is the only issue sincere equilibrium

outcome of the game.10

The game in this example is solvable by iterated dominance because some

issue, viz. B, is determinate in the reduced game. This is due to the fact that

enough players (two out of three) have all positively separable preferences in

that issue. When there are too few players who have preferences separable in

the same issue and in the same direction, a construction analogous to the one

in the proof of Proposition 1 shows that there cannot be dominated strategies

in the reduced game. Given this consideration we define a weaker version of

iterated dominance, that we call “iterated determinacy of issues”.

For every issue k ∈ K , let n1
k

be the number of players with preferences pos-

itively separable in k, and n0
k

be the number of players with preferences neg-

atively separable in k. Moreover, let K1 ⊆ K be the set of issues k such that

10The only strategies that survive iterated dominance are strategy (1,1) for players 1 and 2

and strategies (1,1) and (1,0) for player 3.
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n1
k
≥

n+1
2

, and K0 ⊆ K be the set of issues k such that n0
k
≥

n+1
2

. We say that

issue k is determinate if it belongs to K1 ∪K0. In fact, the characterization of

dominated strategies in Proposition 1 implies that in this case the outcome of k

is univocally determined by the undominated behavior of the players.

Given an n-player combinatorial voting game Γ with set of issues K , whenever

K1 ∪K0
, ; we can define the reduced game Γ

′ as the n-player combinatorial

voting game with set of issues K ′ ≡ K\{K1∪K0} and preferences induced by those

in Γ over the remaining outcomes. The process of iterated determinacy of issues

consists in iteratively reducing a game as long as some issue is determinate.

Then, a game is solvable by iterated determinacy of issues if at the end of the

process every issue k ∈ K is determinate.

The next proposition readily follows from the fact that in every reduced game

the characterization of dominated strategies in Proposition 1 still holds, and

hence every issue sincere strategy is undominated.

Proposition 4. An issue sincere Nash equilibrium is robust against iterated de-

terminacy of issues. Thus, if a combinatorial voting game is solvable by iterated

determinacy of issues then the outcome that survives is the unique issue sincere

equilibrium outcome of the game.

Robustness against iterated determinacy of issues is a weaker requirement

than robustness against iterated dominance. In fact, the two processes can be-

have differently only if, at some step, the number of players who have prefer-

ences separable in the same issue and in the same direction is exactly equal to
n−1

2
. In this very specific case such an issue is not determinate, and hence the

first process cannot univocally fix it and continue. However, iterated dominance

may go on, because in the game obtained after eliminating dominated strategies

some dominated strategy may exist even if preferences are not separable. The

reason is that, in such a reduced game, opponents’ strategy combinations that

determine a given outcome of a given issue do not necessarily exist. Therefore,

iterated dominance can eliminate an outcome that survives iterated determi-

nacy of issues, as it is shown in the following example.

Example 6. Consider the three-player combinatorial voting game with issues

A and B, where preferences are

AB ≻i ∅≻i A ≻i B, i = 1,2,

∅≻3 A ≻3 B ≻3 AB.

Since the first two players do not have separable preferences, neither issue A

nor issue B is determinate and all the outcomes survive iterated determinacy of

issues.



A CONCEPT OF SINCERITY FOR COMBINATORIAL VOTING 15

Player 3 has a dominant strategy, (0,0). Therefore, after the first round of

elimination of dominated strategies, players 1 and 2 can face only four possible

events, precisely (0,0), (0,1), (1,0), and (1,1). Strategies (0,1) and (1,0) become

then dominated by strategy (0,0) for them. Indeed, the pivotal events (1,2) and

(2,1), in which they prefer approving respectively only issue A and only issue

B to not approving any issue, are not realizable in such a reduced game. After

eliminating also those strategies, players 1 and 2 can face either the event (0,0)

or the event (1,1), and hence strategy (0,0) becomes dominated by strategy (1,1)

for them. It follows that iterated dominance isolates a unique outcome, AB.

This example shows that an issue sincere equilibrium outcome may not sur-

vive iterated dominance. Indeed, it is easy to see that outcome ∅ is issue sincere,

and it is induced by the Nash equilibrium s = {(0,0), (0,0), (0,0)}.11 The reason

why it does not survive is that, after the second round of elimination of domi-

nated strategies, the first two players face only the event in which they are dou-

ble pivotal and the one in which they are not pivotal at all. Issue sincerity does

not take into account the possibility of simultaneously altering the outcomes of

two or more issues, and therefore an issue sincere strategy may become domi-

nated after the deletion of some dominated strategies.

In the next section we will see that in large elections iterated dominance and

iterated determinacy of issues are completely equivalent, so an issue sincere

Nash equilibrium is always robust against sophisticated voting.

6. LARGE ELECTIONS

Edgeworth (1881) introduced a standard procedure for enlarging an economy,

which has become popular after the renowned contribution of Debreu and Scarf

(1963). In particular, an economy is imagined to be composed of n types of

agents, with m agents of each type. For two agents to be of the same type, it

is required that they have the same characteristics (precisely, the same prefer-

ences and initial endowments). The economy consists therefore of mn agents.

A large economy is then interpreted as the result of replicas of an original one

where there are exactly n agents, which is made large by adding agents of the

same type and in the same proportion as those already in it.

This is a standard approach to enlarge the number of agents also in models

with incomplete information, as the one of Ahn and Oliveros (2012). In fact,

in their setting voters are identical ex-ante, that is, their types are realized

11In particular, outcome ∅ is a local Condorcet winner of the game, while the outcome that

survives the process, AB, is the Condorcet winner. See the example in Table 5 in Lacy and Niou

(2000) for a game in which iterated dominance eliminates the Condorcet winner and selects a

local Condorcet winner.
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independently from the same distribution. Enlarging the number of players can

therefore be seen as making replicas of the same “prototype” player.

In the same spirit, we say that an electorate is large if it can be obtained

through replicas of an original smaller one. For each voter of a given electorate,

in the m-replica electorate there will be m voters with the same preferences,

where m is odd and at least equal to 3 to preserve the oddness assumption.

With large electorates, the difficulties that emerge in the analysis of multi-issue

referenda disappear and further positive results hold.

In Section 3, we saw that the presence of a local Condorcet winner may not be

sufficient to guarantee the existence of an issue sincere Nash equilibrium. When

some player is pivotal for more than one issue, indeed, her issue sincere strategy

may not be optimal, as strategy (1,1) of player 1 in Example 3. Now, take again

that example and consider a replica of the voters, that is, assume that there are

three voters who have the same preferences as player i, for i = 1,2,3. It is clear

that AB is still the Condorcet winner, but now the issue sincere strategy profile

inducing it is such that no player is pivotal, and hence it is a Nash equilibrium.

The disappearance of pivotality with replicas is a general phenomenon. In

fact, the first replica of any group of voters is enough for no player to be pivotal

in any strategy profile in which all the players with the same preferences choose

the same strategy. In view of Proposition 2, we can therefore state the following.

Proposition 5. In large elections, an outcome is an issue sincere equilibrium

outcome if and only if it is a local Condorcet winner.

From Proposition 3 it directly follows that in large elections a local Condorcet

winner is a b-perfect equilibrium outcome. In the context of incomplete informa-

tion as modeled in Ahn and Oliveros (2012), a Condorcet winner may not be a

limit outcome, that is, an outcome that is elected in equilibrium with probability

converging to 1 as the number of players tends to infinity. The reason why we

have this positive result is that, when uncertainty is introduced through pertur-

bations of b-strategies, using their terminology unconditional certainty implies

conditional certainty.12

In Section 5, we saw that an issue sincere equilibrium outcome may not sur-

vive iterated dominance, because an issue sincere strategy can become domi-

nated in the game obtained after eliminating some dominated strategy. Recall

that the only case in which this can happen is when exactly n−1
2

voters have pref-

erences separable in the same issue and in the same direction. This is the case of

12The same relation would hold if uncertainty were introduced in the vote counting. As a

matter of fact, under our assumption of strict preferences an equivalent definition of b-perfection

could be stated based on a vanishing probability of misrecording votes, in a way similar to Laslier

and Van der Straeten (2016).
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Example 6, where one player out of three has preferences negatively separable

both in issue A and in issue B. Now, consider a replica of the game in that exam-

ple, in which there are nine players. The number of voters who have preferences

negatively separable in both issues becomes three, which is now smaller than

the new threshold 4, and therefore iterated dominance does no more eliminate

any outcome.

We can easily show that iterated determinacy of issues and iterated domi-

nance are equivalent for any replica of the electorate. To this end, take a group

of n voters for which issue k is determinate. Clearly, in any m-replica electorate

such an issue is determinate as well, since n
j

k
≥

n+1
2

implies mn
j

k
>

mn+1
2

for

j = 0,1. On the other hand, if an issue is not determinate for the original group

of voters then it is not determinate for any m-replica either, since n
j

k
≤

n−1
2

im-

plies mn
j

k
<

mn−1
2

for j = 0,1. Thus, even if in the original electorate there are

exactly n−1
2

voters with preferences separable in the same issue and in the same

direction, in the m-replica electorate the number of those voters does not reach

the new threshold. It follows that iterated determinacy of issues and iterated

dominance coincide in large elections. Given Proposition 4, we can conclude the

following.

Proposition 6. In large elections, an issue sincere Nash equilibrium is robust

against iterated dominance. Thus, if a combinatorial voting game is dominance

solvable then the outcome that survives is the unique issue sincere equilibrium

outcome of the game.

7. COMBINATORIAL RULE VS PLURALITY RULE

Plurality rule is a potential alternative to combinatorial voting (Brams et al.,

1997, 1998; Ahn and Oliveros, 2012), therefore in this section we provide a com-

parison of the two different aggregation schemes. In particular, we focus on the

implementation of the Condorcet winner when one exists, being this a standard

objective of those mechanisms.

In voting games under plurality rule, appropriate solution concepts like so-

phisticated voting or strategic stability may not select the Condorcet winner

when it exists (De Sinopoli, 2000). The following example reveals that combi-

natorial voting can outperform plurality rule in inducing the outcome that the

majority of the voters prefer.

Example 7. Consider three voters who have the following preferences over four

possible alternatives:

A ≻1 AB ≻1 B ≻1 ∅,

B ≻2 AB ≻2 A ≻2 ∅,
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AB ≻3 B ≻3 A ≻3 ∅.

Outcome AB is the unique (local) Condorcet winner. Under combinatorial vot-

ing, we know that it is the unique issue sincere outcome by Proposition 2, and

we can see that the Nash equilibrium s= ((1,0), (0,1), (1,1)) is the corresponding

issue sincere strategy profile.13

To analyze strategic voting under plurality rule, we need first to assign values

to players’ utilities, as ties can emerge even with an odd number of players.

Therefore, let

u1(A)= 1, u1(B)= 0, u1(AB)=α, u1(∅)=−2,

u2(A)= 0, u2(B)= 1, u2(AB)=β, u2(∅)=−2,

u3(A)= 0, u3(B)= γ, u3(AB)= 1, u3(∅)=−2,

where 0 < α,β,γ< 1/2. As before, each voter has to vote for a given alternative,

but now the outcome that obtains the most votes is implemented, and ties are

broken randomly. (For simplicity we do not consider abstention, which never-

theless would be a dominated strategy.)

To vote for ∅ is the only dominated strategy for every player.14 In the reduced

game obtained after eliminating that strategy for everybody, each player has

a dominant strategy, that is, to vote for her most preferred outcome. Take for

instance player 1. Independently of the exact utility values, to vote for A is a

best reply against every event induced by the opponents except that in which one

votes for B and the other votes for AB. In this case, voting for A she would get a

payoff equal to 1+α
3

, while voting for AB she would get a payoff equal to α. Hence,

to vote for A is a strict best reply given the assumption on α and, therefore, it is

a dominant strategy for player 1 in the reduced game. An analogous argument

holds for players 2 and 3. It follows that the game is dominance solvable, and

sophisticated voting selects the strategy profile in which every player votes for

her most preferred alternative, inducing the outcome 1
3

A +
1
3
B +

1
3

AB. Since

such an equilibrium is strict, it is also the only Mertens stable set of the game

(Mertens, 1989).

13Note that player 1 has two undominated strategies, (1,0) and (1,1), player 2 has two un-

dominated strategies as well, (0,1) and (1,1), while player 3 has a dominant strategy, (1,1).

Hence, all the undominated strategy profiles are Nash equilibria that induce outcome AB.
14Consider for instance player 1. If one of the opponents votes for AB and the other votes

for ∅, then voting for A she gets a payoff equal to α−1
3

while voting for AB she gets α, so this

latter strategy is undominated. Moreover, if one of the opponents votes for B and the other votes

for ∅, then voting for A she gets −
1
3

while voting for B she gets 0, hence also to vote for B is

undominated. Similarly, to vote for A, to vote for B, and to vote for AB are all undominated

strategies for players 2 and 3.
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Thus, under plurality rule both sophisticated voting and strategic stability fail

to implement the Condorcet winner, while under combinatorial rule the issue

sincere Nash equilibrium induces it.

Note that the same result holds for every replica of the game presented in the

example. Furthermore, recall that in large elections a local Condorcet winner is

always an issue sincere equilibrium outcome. We can therefore conclude that, for

large elections, combinatorial voting outperforms plurality rule in implementing

the Condorcet winner when it exists.

APPENDIX A. NON-EXISTENCE OF B-PERFECT EQUILIBRIA

In this Appendix it is shown that, even if we allow players to use mixed b-

strategies, a b-perfect equilibrium may not exist.

Consider the following extension of the b-perfect equilibrium concept to mixed

b-strategies.

Definition 8. The b-strategy profile b is a b-perfect equilibrium if there exists a

sequence of completely-mixed b-strategy profiles converging to b such that b is

a best response to every element of such a sequence.

Similarly to perfection, an analogous definition of b-perfection can be stated

in terms of perturbed games (Selten, 1975), generated by perturbing an original

game in which every player’s strategy set coincides with the set of b-strategies.

Given that such a set is compact, a standard proof for the existence of a b-perfect

equilibrium would require every perturbed game to have a Nash equilibrium

in b-strategies. However, this is not always the case, because the best reply

correspondence is not convex-valued in the b-strategy space. To see this, take a

player with preferences AB ≻∅≻ A ≻ B and utility values u(AB)= 10, u(∅)= 9,

u(A)= 3, u(B)= 0. Consider her best response against the strategy combination

of two opponents in which one plays the pure strategy (0,0) and the other plays

the mixed strategy 9
10

(1,1)+ 1
10

(0,1). Strategies (1,1) and (0,0) are both best

replies for that player, and they are strictly preferred to strategies (1,0) and

(0,1). Nevertheless, every strictly convex combination between the two pure

best replies in the space of b-strategies, i.e. every b-strategy (x, x) with 0< x < 1,

is strictly worse for the player and, hence, it is not a best reply.15

We now present an example in which a b-perfect equilibrium does not ex-

ist, neither in pure nor in mixed b-strategies. Recall that a b-perfect equilib-

rium is also perfect and hence undominated, since to every completely-mixed

15Note that to the b-strategy (x,x) corresponds the mixed strategy x2(1,1)+x(1−x)(1,0)+x(1−

x)(0,1)+ (1− x)2(0,0), which gives positive weight also to the pure strategies that are not best

replies.
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b-strategy corresponds a completely-mixed strategy. Therefore, for the sake of

completeness, we describe also the sets of undominated and perfect equilibria of

the game.

Example 8. Consider the combinatorial voting game with two issues A and B

and three players, whose utility values are

u1(A)= 10, u1(B)= 6, u1(∅)= 1, u1(AB)= 0,

u2(A)= 3, u2(B)= 0, u2(∅)= 9, u2(AB)= 10,

u3(A)= 5, u3(B)= 2, u3(∅)= 10, u3(AB)= 0.

As usual, let Σi be player i’s set of mixed strategies and let Σ :=
∏

i∈N Σi. To

simplify notation, let also

σ1((1,0))= x, σ1((0,1))= y, σ1((0,0))= z, σ1((1,1))= 1− x− y− z,

σ2((1,0))= p, σ2((0,1))= q, σ2((0,0))= r, σ2((1,1))= 1− p− q− r.

It can be easily seen that strategy s3 = (0,0) is dominant for player 3 and,

therefore, it will be played with probability 1 in every undominated (and perfect)

equilibrium. Let

Σ̂= {σ ∈Σ : 1−7x−10y− z ≤ 0, r = 1,σ3((0,0))= 1},

Σ̂
p
= {σ ∈ Σ̂ : z = 0}.

Note that all the elements of both these sets induce outcome ∅. We can now

show the following.

Proposition 7. Σ̂ and Σ̂
p are respectively the set of undominated Nash equilibria

and the set of perfect equilibria of the game. The game does not have any b-perfect

equilibrium.

Proof. First, note that all the elements of Σ̂ are equilibrium points, since player

1 is indifferent among all the four pure strategies and the condition 1−7x−10y−

z ≤ 0 guarantees that strategy (0,0) is a best reply for player 2.16 To see that no

other undominated Nash equilibrium exists, we have to consider four possible

cases.

a) Both player 1 and player 2 play a pure strategy. If s2 = (0,0), the only undom-

inated equilibria in pure strategies are the points in Σ̂ corresponding to x = 1,

y = 1, and z = 1. If s2 = (0,1) then player 1 has two pure best replies, (1,1)

and (0,1). However, player 2 has a unique best reply against (1,1), strategy

16If player 3 plays (0,0), player 2 weakly prefers strategy (0,0) to both strategies (1,0) and

(0,1). The condition on player 1’s strategy assures that player 2 prefers strategy (0,0) also to

strategy (1,1) (i.e., 9≥ 3x+9z+10(1− x− y− z)).
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(1,1), while her pure best replies against (0,1) are strategies (0,0) and (1,0).

Similarly, if s2 = (1,0) then player 1 has two pure best replies, (1,1) and (1,0),

but player 2’s pure best replies against (1,0) are strategies (0,0) and (0,1).

If s2 = (1,1), player 1’s unique best reply is (1,0), so again player 2 would

rather prefer either strategy (0,0) or strategy (0,1). It follows that all the

undominated Nash equilibria in pure strategies belong to the set Σ̂.

b) Player 1 plays a pure strategy and player 2 plays a mixed strategy. If s1 =

(1,0), the pure best replies of player 2 are (0,0) and (0,1) but then, since she

is completely mixing between these strategies, player 1 will strictly prefer

strategy (0,1) to strategy (1,0). Likewise, if s1 = (0,1) then the pure best

replies of player 2 are (0,0) and (1,0), so player 1 will strictly prefer strategy

(1,0) to strategy (0,1). If s1 = (0,0), player 2 is indifferent among all the

four pure strategies and, since r , 1, player 1 will then prefer to play either

strategy (1,0) or strategy (0,1). Finally, if s1 = (1,1) then player 2 has a unique

best reply, (1,1). Thus, no undominated Nash equilibrium of this kind exists.

c) Player 1 plays a mixed strategy and player 2 plays a pure strategy different

from (0,0). If s2 = (1,0), player 1 should completely mix between her pure best

replies (1,0) and (1,1), but in this case player 2 would strictly prefer strategy

(1,1) to strategy (1,0). Analogously, if s2 = (0,1) then player 1’s best replies

are (0,1) and (1,1), so player 2 will strictly prefer strategy (1,1) to strategy

(0,1). Lastly, if player 2 plays s2 = (1,1) then player 1 has a unique best reply,

strategy (1,0). It follows that there does not exist any undominated Nash

equilibrium of this kind either.

d) Both player 1 and player 2 play a mixed strategy. We can consider three cases:

i) Player 1 mixes between two pure strategies. When x+ y = 1 or x = y =

0 player 2 has a unique best reply, (0,0) and (1,1) respectively. If x+

z = 1, player 2’s pure best replies are (0,0) and (0,1), but then player 1

strictly prefers strategy (0,1) to both strategies (1,0) and (0,0) against

any mixed strategy of the opponent. Similarly, if y+ z = 1 then player

2 should completely mix between strategies (0,0) and (1,0), but player

1 then would strictly prefer to play strategy (1,0). When y = z = 0 or

x= z = 0 strategies (1,0) and (0,1) are never best replies for player 2, who

thus will mix only between strategies (0,0) and (1,1). But in this case

player 1 has a strict best reply, strategy (1,0).

ii) Player 1 mixes between three pure strategies. When player 1 does not play

strategy (1,1) player 2 has a unique best reply, strategy (0,0). In all the

other cases, strategies (1,0) and (0,1) are never best replies for player 2.
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Again, if she mixes between strategies (0,0) and (1,1) then player 1 has a

strict best reply, strategy (1,0).

iii) Player 1 plays a completely-mixed strategy. Also in this case strategies

(1,0) and (0,1) are never best replies for player 2 and then strategy (1,0)

is the unique best reply for player 1.

Thus, Σ̂ is the set of all the undominated Nash equilibria of the game and, hence,

it contains the set of perfect equilibria. We can show that such a set is Σ̂
p.

First, note that for any sequence of mixed strategies of players 2 and 3 con-

verging to (0,0), player 1 strictly prefers both strategies (1,0) and (0,1) to strat-

egy (0,0).17 In fact, strategy (0,0) is strictly preferred to strategy (1,0) (resp.

(0,1)) only against the pivotal event (1,2) (resp. (2,1)), whose probability con-

verges to 0 much faster than the probability of the pivotal event (1,1), in which

player 1 strictly prefers strategy (1,0) (resp. (0,1)) to strategy (0,0). Therefore,

in every perfect equilibrium z = 0.

To see that every element of Σ̂
p is perfect, fix σ̂p ∈ Σ̂

p and consider the se-

quence {σǫ}ǫ→0 of completely-mixed strategy profiles such that

σǫ
1 = (1−ǫ1/3)σ̂

p

1
+ǫ1/3((1−3ǫ1/3)(0,1)+ǫ1/3(0,0)+ǫ1/3(1,0)+ǫ1/3(1,1)),

σǫ
2 = (1−α(ǫ)−β(ǫ)−ǫ)(0,0)+α(ǫ)(1,0)+β(ǫ)(0,1)+ǫ(1,1),

σǫ
3 = (1−3ǫ)(0,0)+ǫ(1,0)+ǫ(0,1)+ǫ(1,1),

where

α(ǫ)=
ǫ+8ǫ2 −13ǫ3

3(1−8ǫ+11ǫ2)
,

β(ǫ)=
3ǫ−16ǫ2

+17ǫ3

1−8ǫ+11ǫ2
.

The values of α(ǫ) and β(ǫ) assure that, for ǫ close to 0, player 1 is indifferent

among strategies (0,0), (1,0), and (0,1), and strictly prefers them to strategy

(1,1).18 The perturbations of player 1 and player 3’s strategies, instead, guar-

antee that (0,0) is the unique best reply for player 2. Indeed, the probabilities

of the pivotal events (2,1) and (1,2) are of smaller order than the probabilities

of the pivotal events (0,1) and (1,0), so player 2 strictly prefers strategy (0,0)

to both strategies (0,1) and (1,0). Moreover, the probability of the pivotal event

(1,1) is not enough to make strategy (1,1) preferred to strategy (0,0) for her.

17Among the equivalent definitions of perfect equilibrium proposed in the literature, we will

use the extension of Definition 6 to mixed strategies (obtained just substituting in that definition

s with σ).
18In particular, the utility of the first three strategies is 112ǫ−992ǫ2+2352ǫ3−1664ǫ4

3(1−8ǫ+11ǫ2)
, while the

utility of strategy (1,1) is 22ǫ−92ǫ2−78ǫ3+316ǫ4

3(1−8ǫ+11ǫ2)
.
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Since the above sequence converges to σ̂p as ǫ goes to 0, we have that σ̂p is a

perfect equilibrium.

From Definition 8, however, it readily follows that no point in Σ̂
p can be b-

perfect. As a matter of fact, for any sequence of completely-mixed b-strategies

of players 2 and 3 converging to (0,0), player 1 faces the pivotal events (0,1)

and (1,0) with a probability that is infinitely larger than the probability of any

other event different from (0,0). Her only best reply to every element of such a

sequence is then strategy (1,1). Therefore, we can conclude that there does not

exist any b-perfect equilibrium in the game. �
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