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Abstract

We present a new methodological framework to capture the implicationsof spatial
proximity on income inequality. We propose to measure inequality within and be-
tween individual neighborhoods through Gini-type spatial inequality indices. We
investigate the statistical properties of these indices and we establish connections
with geostatistics. We demonstrate that the basic income-ßat tax scheme is the
unique redistributive scheme capable of reducing income inequality without increas-
ing spatial inequality, regardless of the spatial distribution of incomes. We use a
rich income database taken from the census to establish new stylizedfacts about
spatial inequality in major U.S. cities during the last 35 years. We also show that
the geography of income inequality can be related to the impact of neighborhoods
on income and health prospects of Americans.
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1 Introduction

The uprising economic debate on the spatial component of income inequality in the U.S.

has made clear that not all cities are made equal (Chetty, Hendren, Kline and Saez 2014).

Income inequality in some cities has skyrocketed in the last decades, while it has remained

relatively low in others. For instance, the Gini index of disposable equivalent household

income in New York City in 2014 is larger than 0.5, while the Þgure is much closer to,

and even below 0.4 in other large cities such as Washington (DC). Income inequality

heterogeneity across major U.S. cities can be explained by di!erences in skills and human

capital composition of these cities (Glaeser, Resseger and Tobio 2009, Moretti 2013), and

it bears important consequences for local intervention, for targeting program participation

and for designing federal to local redistribution of resources (Sampson 2008, Reardon and

Bischo! 2011).

What this picture misses is that not all neighborhoods of the same city are made

equally unequal. Works at the frontier of economics, sociology and urban geography

have recognized that inequality at the local scale, i.e., measured among close neighbors,

is generally not representative of citywide inequality in U.S. cities. This occurs because

individuals sort in space in such a way that spatial association in their incomes arises.The

implications of spatial association on income inequality are captured by spatial inequality

measures.

Spatial inequality is generally conceptualized and measured as the share of citywide

inequality that is due to di!erences in incomes across neighborhoods, identiÞed by the

administrative partition of the urban space (Shorrocks and Wan 2005, Dawkins 2007,

Wheeler and La Jeunesse 2008, Kim and Jargowsky 2009). Evaluations based on this

approach, however, have been criticized for putting the administrative neighborhood and

not the individual, who is responsible for localization decisions, at the center. We argue,

instead, that the geography of incomes (as represented on a map) can be correctly taken

2



R P R
City Z City A City B

P M M RM M P M M

Figure 1: Spatial distribution of incomes (vertical spikes) among the poorP, the middle
class (two people)M and the rich R in three linear cities.

into account by focusing on the notion of individual neighborhood1, corresponding to the

set of neighbors living within a certain distance range (which can be controlled for) from

any given individual.

In this paper, we integrate the notion of individual neighborhood in inequality mea-

surement.2 We place individuals at the center and measure spatial inequality using income

information on neighbors included in each individual neighborhood. We distinguish be-

tween inequalitywithin the individual neighborhood, which arises when the income of the

individual is compared to the income of the neighbors, from inequalitybetweenindivid-

ual neighborhoods, which arises when average incomes in individual neighborhoods are

compared across individuals. We argue that both dimensions should be considered when

assessing spatial inequality.

As an example, consider the three stylized citiesCity Z, City A and City B in Figure

1Galster (2001) and Clark, Anderson, ¬Osth and Malmberg (2015) develop this notion in geographic
analysis.

2On the one hand, individual neighborhoods capture the relevant spacewhere factors such as the
housing market, amenities, preferences and social interactions combine to shape sorting of high income
and low income people across the city. We suggest to capture their gross contribution by using information
on the incomes of oneÕs neighbors. On the other hand, the individual neighborhood is a meaningful
representation of the space in which neighbors income may produce external e!ects on individual incomes,
for instance because individuals care about the income composition of theneighborhood (generating
sorting patterns à la Schelling 1969), or via neighborhood e!ects (see Durlauf 2004). Social experiments
such as Moving to Opportunity leverage on peer e!ects in the hope of improving the situation of the
poor (Sampson 2008, Ludwig, Duncan, Gennetian, Katz, Kessler, Kling and Sanbonmatsu 2013) and of
his o!spring (Chetty, Hendren and Katz 2016).
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1. There are four people living in each city, the poor (P), the middle class people (M )

and the rich R. The three cities display the same overall income inequality, but di!er

in the way people are located in the urban space, for which no administrative partition

is made available. In City Z all people live nearby each-others in a ÒPenn ParadeÓ-like

spatial arrangement of incomes, and it serves as a benchmark case. Consider nowdrawing

a circle of rayd around each individual (whered can be large or small at pleasure) in City

Z to identify his individual neighborhood of sized. When d is not too small, the inequality

measured within individual neighborhoods of City ZÕs inhabitants virtually coincides with

citywide inequality. Conversely, the same individual neighborhoods display very little

di!erences on average incomes, implying little between neighborhoods inequality. This

happens because the middle class people, located at the center of the income distribution,

are also central in the spatial arrangement of incomes.

Compare now the income geography of City Z, the benchmark, with the other two

cities: in City A the poor has moved far away form the rest, while in City B the rich did so.

This change in the geography of incomes bears no consequences on citywide inequality, but

strongly a!ects the spatial income heterogeneity. Its implications can be captured using

individual neighborhoods. Whend is not too large, both City A and City B intuitively

display less inequality within, and more inequality between, individual neighborhoods

than City Z. This happens because people at the extreme of the income distribution,P

and R, also also placed far apart in space compared to the rest of the population. City A

and City B, however, display substantially di!erent patterns of spatial inequality. Figure 1

reveals that there is more inequality within individual neighborhoods in City A compared

to City B, irrespectively of the choice ofd. This happens because the individuals with

more unequal incomes turn out to be close neighbors in City A, while the poor individual,

whose income is close to that of the middle class, is isolated. Conversely, there is more

inequality between individual neighborhoods in City B compared to City A, because in
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the former city the individuals with similar incomes (P and M ) turn out to be close

neighbors.

The example motivates that the individual neighborhood concept allows to keep track

on the implications of geography of incomes on inequality. When the geography of incomes

is of little relevance, as in City Z, one can arguably focus on citywide inequality. In

other cases, small changes in the spatial conÞguration of incomes, as in Cities A and

B, might lead to diverging patterns in the within and between dimensions of spatial

inequality. Our contribution develops these arguments in three interconnected directions.

Our Þrst concern has to do with how spatial inequality should be modeled and measured in

situations that are less trivial than those reported in Figure 1. To measure the two di!erent

aspects of spatial inequality sketched above, we develop newGini Individual Neighborhood

Inequality (GINI) indices inspired by the probabilistic interpretation of the Gini coe"cient

(see Pyatt 1976). In Section 2 we formalize the GINI indices and we highlight the role of

spatial distance in inequality measurement.3 In Section 4 we also provide the statistical

foundations of the GINI indices by showing relations with geostatistics and thevariogram

function. A methodological appendix develops innovative asymptotic results based on

stationarity assumptions that are common in geostatistics.

Our second concern is for income redistribution. Moving poor and rich people in

space has implications for spatial inequality that are captured by GINI indices. However,

the direction of these implications is not obvious. For instance, the spatial distribution

of incomes in Cities A obtains from that of City B (the distribution in one city simply

mirroring the other) by a simple permutation of P and R individuals. Allegedly, the

permutation should not alter citywide inequality. Nevertheless, it has non-trivial implica-

3If negative externalities arise from deprivation feeling and envy (Luttmer 2005), then the distance
between rich and poor people could mitigate part of these externalities, making City B the preferred one.
However, the proximity among people from di!erent social status might rise ambitions and opportunities
of the poor and also beneÞt the rich (Ellen, Mertens Horn and OÕ Regan 2013).In this case, cities A and
C might be preferred to B
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tions for spatial inequality. On a similar vein, changes in overall inequality that are due

to rich-to-poor income transfers might not necessarily distribute evenly acrossthe urban

space. In Section 3 we study the features of the redistributive scheme that, when applied

to gross incomes of all individuals in the city, always produce post-Þsc incomes that dis-

play less citywide and less spatial inequality, irrespectively of the spatial distribution of

individuals.

Our third and last concern is empirical. In Section 5, we make use of a rich income

database constructed from the census data for 50 largest U.S. cities and spanning over

four decades, to assess the pattern of spatial inequality in American urban areas. Overall,

we Þnd very strong resemblances in patterns of spatial inequality among the 50 cities.

We show that spatial inequality is poorly correlated with features of the citywide income

distribution, captured by average income and by the Gini index. In Section 5.4, instead, we

motivate that factors determining the geography of incomes within American cities are also

associated to heterogeneity in income prospects (Chetty and Hendren 2016) and health

outcomes (Chetty, Stepner, Abraham, Lin, Scuderi, Turner, Bergeron and Cutler 2016)

for people growing up and living in these cities.

Section 6 concludes drawing lines of future research on spatial inequality.

2 Spatial inequality measurement

2.1 The GINI indices

We consider a population ofn " 3 individuals, indexed byi = 1, ..., n. Let yi # R+ be the

income of individual i and y = ( y1, y2, ..., yn ) the income vector with averageµ > 0. A

popular measure of inequality iny is the Gini index, deÞned asG(y) = 1
2n2µ

!
i

!
j |yj $ yi |.

We focus on inequality within the city, and we assume that information on the income

distribution comes with information about the location of each income recipient in the
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urban space. We simply use income distribution to refer to the income-location distribu-

tion of individuals on the city map. We put each individual at the center and we identify

her own set of neighbors by considering the Euclidean distance between pairs of individ-

uals.4 The individual neighborhood is the set including all the neighbors placed within a

distance rayd from individual i and is denoteddi , such that j # di if the distance between

individuals i and j is less than, or equal tod. We also denotenid the cardinality of di ,

that is the number of people living within a ranged from i (including i ). The average

income of individual iÕs neighborhood of lengthd, capturing the neighborhoodÕs a#uence,

is then measured byµid =
!

j ! di
yj

n id
.

To assess the implications of spatial distance among individuals (or households, de-

pending on the context) on measured inequality, we propose a GINI within index. This

index measures inequality within individual neighborhoods. We derive it taking inspira-

tion from the work of Pyatt (1976), who provides a probabilistic interpretation to the Gini

inequality index. Following Pyatt, the Gini index can be interpreted as the expectedgain

or loss an individual i would expect if her income was replaced with the income of any

other individual in the population, randomly draw from the population with probability

1/n . To construct the GINI within index, we Þrst consider a measure of expected income

gap between each individualiÕs income and the income of her neighbors, which captures

the extent of gains and losses thati would expect if her income was replaced with that

of a neighbor, randomly draw fromdi . This quantity can be computed as follows:

$ i (y , d) =
1

µid

"

j ! di

|yi " yj |
nid

.

Notice that, given the relevant notion of individual neighborhood parametrized byd,

there are 1/n id chances of drawing a neighbor fromi #s neighborhood with whomi can

4For a discussion about the use of multidimensional notions of distance, see Conley and Topa (2002).
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exchange his income. Despite uniform weighting, this probability changes across individ-

uals, reßecting individual density in space. Furthermore, the quantity $i is obtained by

normalizing for the neighborhood average income, implying its variability is bounced on

the unit interval. We deÞne the GINI within index as the average of $i (i.e., of expected

gains and losses within the neighborhood) across the whole population:

GINI W (y , d) =
n"

i =1

1
n

$ i (y , d).

The GINI W index hence captures the overall degree of inequality that would be ob-

served if income comparisons were limited only to neighbors located at a distance smaller

than d. The index is bounded, withGINI W (y , d) # [0, 1] for any y and d. Moreover,

GINI W (y , d) = 0 if and only if all incomes within individual neighborhoods of lengthd

are equal. Notice that this cannot exclude inequalities among people located at a distance

larger than d. Additionally, GINI W (y , d) can take on values that are either higher or

smaller than G(y). When d reaches the size of the city, then spatial inequality ends up

coinciding with overall inequality, that is GINI W (y , %) = G(y).

The GINI within index is a relative measure of inequality. The fact that spatial

inequality in relatively small neighborhoods might be close to citywide inequality as mea-

sured by the Gini index, does not necessarily imply that the distribution of incomes in

the average neighborhood resemble that in the city. In fact, the distribution ofaverage

individual neighborhood incomes might substantially di!er across individuals, implying a

form of between (individual neighborhoods) inequality. To assess this form of inequality,

we compute the Gini index for the vector (µ1d, . . . , µnd). The elements of this vector

depend upon individualsÕ location and proximity. For instance, if a high-income person

lives nearby many low-income people, her income contributes in rising the mean income

in all their neighborhoods, while if she lives isolated, her income does not generate any
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positive e!ect on other peopleÕs neighborhoods, provided that the notion of individual

neighborhood is su"ciently exclusive. This implies that the average value of the vec-

tor (µ1d, .., µnd), denoted µd, generally di!ers from µ. The between dimension of spatial

inequality is captured by the Gini Individual Neighborhood Inequality between index,

GINI B , deÞned as:

GINI B (y ,d) =
1

2n2µd

"

i

"

j

|µid $ µjd |.

As expected,GINI B (y , d) # [0, 1] for any y and d. The index is equal toG(y) at a zero-

distance and whenever all incomes within each individual neighborhood of lengthd are

equal. GINI B converges to zero whend approaches the size of the city. The in-between

pattern depends on the association between incomes and locations.

We stress that the GINI between index is not capturing di!erences across neigh-

borhoods deÞned by an underlying partition, but rather a form of inequality between

individuals but expressed in terms of their neighborhood a#uence, rather than their own

incomes.

2.2 The spatial inequality curves

A simple and insightful picture of spatial inequality patterns emerges by computingGINI

indices for di!erent values ofd and plotting their values on a graph againstd (on the

horizontal axis). The curve interpolating all these points is called the spatial inequality

curve generated by either the GINI within or the GINI between index. More precisely, the

curve originated byGINI B takes the value of the overall Gini index when each individual

is considered as isolated (that is, whend = 0) and approaches 0 when each individual

neighborhood includes the whole city. The curve originated byGINI W can exhibit a less

regular shape. First, it can locally decrease or increase ind accordingly to the spatial
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dependency of incomes. Second, when each individual neighborhood coincides with the

whole city, GINI W (y , d) approachesG(y). Third, the graph of GINI W (y , d) can be

ßat for any d, meaning that incomes are randomized across locations and the spatial

component of inequality is irrelevant. Fourth, if the curve is increasing withd, then

individuals with similar incomes tend to sort themselves in the city, generating income

segregation. The shape of the spatial inequality curves are also informative onthe degree

at which citywide income inequality can be correctly inferred from randomly sampling

individuals from the city.5

For a given size of the individual neighborhood, spatial inequality comparisons can be

carried over by looking at the level of the GINI within or between index corresponding to

the selected distance parameter. Each of these evaluations generates a complete ranking

of the income distributions, although rankings might not necessarily coincide across the

whole distance spectrum. To achieve spatial inequality evaluations that are robustvis-à-

vis the size of the neighborhood (generally unknown), we study GINI between and within

partial orders that are based on comparisons of spatial inequality curves.

DeÞnition 1 Given the income distributionsy and y#, we say that:

a) y# dominatesy in terms of between individual neighborhood inequality, and we write

y# &GB y, if and only if GINI B (y#, d) ' GINI B (y , d) for any distanced " 0.

b) y# dominatesy in terms of within individual neighborhood inequality, and we write

y# &GW y, if and only if GINI W (y#, d) ' GINI W (y , d) for any distanced " 0.

Both within and between dimensions of spatial inequality dominance always imply

dominance in terms of citywide inequality, as captured by the Gini coe"cient. The two

dominance criteria can be hence seen as tests for assessing the degree at which changes

5When the role played by space is negligible, i.e., the spatial inequality curves are rather ßat, we
expect that any random sample of individuals taken from a given point in the space is representative of
overall inequality. When space is relevant and people locations are stratiÞed according to income, then a
sample of neighbors randomly drawn could underestimate the level of citywide inequality.
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in citywide distributions are robust to the spatial component of inequality. We acknowl-

edge that spatial inequality dominance might reßect both e!ects of changes in the income

distribution, as well as the implications of changes in the sorting dynamic of rich and

poor people within the same city. While redistribution policies have to do with income

recipients budgets and can be motivated on welfaristic or equity concerns, sorting dynam-

ics are also guided by preferences and opportunities, hence complicating the normative

judgement about changes in spatial inequality.

In the following session, we highlight novelties and advantages of the proposed method

with respect to the existing literature.

2.3 Discussion

The literature largely agrees that any income inequality measure should satisfy at least

four normatively relevant properties (see Cowell 2000): (i) invariance with respect to

population replication; (ii) invariance to the measurement scale; (iii) anonymity, that is,

invariance to any permutation of the incomes recipients names; (iv) the Pigou-Dalton

principle, implying that every rich-to-poor income transfer should not increase inequality.

While properties (i) and (ii) have desirable implications also for the measurement of spatial

inequality, and are satisÞed by the GINI indices6, anonymity strongly conßicts with the

idea that individualÕs location matters in inequality evaluations. A conÞguration where

a rich person lives nearby rich people should not necessarily yield the same degree of

spatial inequality as a conÞguration where poor and rich people are neighbors,despite one

distribution can be obtained from the other by permuting incomes across locations.Based

on these arguments, it is not clear whether all permutations of incomes across individuals,

whose location on the urban space is given, are sources of indi!erence for inequality

6Direct implications of these properties are that populations of di!erent sizes and a"uence can be
made comparable. GINI indices do so by standardizing individual neighborhood and aggregate indicators
by the neighborhood-speciÞc population counts and average incomes.
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assessments. Hence, anonymity should be relaxed in spatial inequality assessments. The

existing literature does so in a very peculiar way.

The spatial dimension of inequality is usually associated with the magnitude of the

inequality between neighborhoods, deÞned on the ground of a partition of the city into

administrative areas, such as urban blocks, census tracts, etc., and comprising allpeople

living therein (see Shorrocks and Wan 2005). Additionally, the administrative unit also

delimits the size of the relevant neighborhood for all residents in the unit. Dawkins

(2007) and Kim and Jargowsky (2009) propose to decompose overall inequality in the

components associated to within and between neighborhoods variability in incomes, and to

assess spatial inequality by the contribution of the between component relative to citywide

inequality. Reardon and Bischo! (2011) build on this approach, but focus instead on the

degree of disproportionality of rich and poor individuals across neighborhoods. Their

approach captures a particular aspect of spatial inequality, called income segregation

(as the measurement apparatus bears from the racial segregation literature), which is

insensitive to the overall income distribution in the city (rich and poor groups are deÞned

on the basis of the ranks of individuals in the overall population).

The aforementioned approaches retain anonymity at two levels: Þrst, among individu-

als living in same neighborhood; second, when aggregating summary measures associated

to the representative individuals of di!erent neighborhoods (as the average income or

income dispersion in the neighborhood). Measures that retain anonymity at both levels

are not robust to the underlying partition of the urban space (the so-called ModiÞable

Areal Units Problem, MAUP, see Openshaw 1983, Wong 2009) and, additionally, are sen-

sitive to the scale and to the shape of the initial partition (respectively, the scaling and

the zoning components of the MAUP). To overcome this issues, propositions have been

made in the literature that involve assessing inequality between neighborhood at di!erent

scales of aggregation of the initial partition (Hardman and Ioannides 2004, Shorrocks and
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Wan 2005, Wheeler and La Jeunesse 2008). The suggested procedure, however, implies

strengthening the implications of anonymity within the neighborhood, as the partition of

the urban space gets courser. This is undesirable.

Our approach to spatial inequality measurement, based on the GINI indices, builds

instead on the notion of individual neighborhoods and retains information on the shape

of the income distribution therein as the primary object of spatial inequality evalua-

tions. We do not assume representative individuals within administrative areas of the

city. Rather, the logic of construction of individual neighborhoods allows for overlapping

neighborhoods: the fact that individualk is in the individual neighborhood of individual

i and of individual j does not imply that i and j are also neighbors. This logic discards

anonymity within the neighborhood (permuting the incomes of any two neighbors might

have substantial implications for other individual neighborhoods), which is retained only

to assess inequality in the summary measures (means or dispersion) associated toeach

individual neighborhood. On these grounds, we claim that our approach is robust to

space partitioning, while the scale of analysis can be controlled for by constructing more

or less inclusive individual neighborhoods.

Besides anonymity, every inequality measure should satisfy the Pigou-Dalton princi-

ple. Whether this principle is desirable or not in a context where anonymity is (partially

or completely) dropped, is an issue. For instance, an income transfer from a high income

person living in a poor neighborhood to a low income person living in a rich neighborhood

arguably reduces citywide inequality among individuals, but increases inequality between

neighborhoods. Conversely, transferring income from a middle class person in apoor

neighborhood to a slightly richer middle class person in a rich neighborhood decreases

inequality between neighborhoods at the cost of increasing citywide inequality. Inline

with this objection, it has already been shown in the literature that most spatial inequal-

ity indices are consistent with demanding notions of rich-to-poor income transfers also
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involving information about the position (i.e., the neighborhood), where the poor and

rich live.7 Our approach is even more robust to the implications of anonymity than the

traditional approach. Hence, the implications of rich-to-poor transfers on GINI within

and between indices are even more ambiguous.8

An alternative way to a!ect spatial income inequality is to relocate poor and rich

people across the city (without a!ecting citywide inequality). Examples of policies tar-

geting the poor might involve housing projects development and voucher programs that

provide economic incentives for the poor household to move into a#uent neighborhoods.

These moves can originate unpredictable implications for spatial inequality, that largely

depend on the relative density of poor and rich households in a#uent neighborhoods,

on their spatial proximity, on the local income inequality and on the sorting behavior of

high income households. The example based on City A and City B in the Introduction,

for instance, shows that the simple operation of swapping rich and poor people might

produce diverging patterns of within and between spatial inequality across cities.9

7For instance, Pigou-Dalton transfers do not increase the spatial inequality when they take place
within the neighborhood, while Pigou-Dalton transfers takeing place between neighborhoods decrease
spatial inequality only when income is transferred from a rich personliving in a rich neighborhood to a
poor person living in a a poor neighborhood.

8Think, for instance, to the implications of transferring money from an individual who can be qualiÞed
as a rich neighbor in a rich individual neighborhood but also as a poor neighbor in another relatively
richer individual neighborhood.

9It is not straightforward to support the normative appeal of relocation pol icies, either. Relocating
low income people towards a"uent neighborhoods could make localized amenities more valuable for
the poor. The concentration of high income people in a given locality reveals the presence of valuable
amenities, and integrating low income individuals in rich neighborhoods might foster accessibility. One
alternative motivation to move poor people to a"uent neighborhood is to improve their performances
on the labor market, hence their income, via mechanisms that leverage onspatial proximity to job
opportunities. The goal of the Moving to Opportunity experiment, for instance, was to transmit earnings,
employment and health opportunities to poor households who received a voucher treatment to move to
a"uent neighborhoods in selected U.S. cities. In this respect, the program had very limited success (see
Ludwig et al. 2013). The implications for spatial inequality of other massive relocation schemes (see
Kneebone 2016) are also debatable and might induce undesirable urban spatialequilibrium e!ects.
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3 Spatial inequality reducing income redistribution

To overcome the ambiguous implications of rich-to-poor transfers and relocationpolicies

on spatial inequality, we focus on redistributive schemes involving the whole population

(Moyes 1994).

DeÞnition 2 A redistributive scheme is a functionf : R+ ( R+ mapping anyy into a

post-redistribution incomef (y)

Notice that the post-redistribution incomef (y) only depends on the initial incomey,

while other characteristics, such as the location of the income holder, are neglected. The

function f , for instance, can be understood as a tax-beneÞt rule policy that applies to

all income recipients in the city. There are many of such policiesf that reduce citywide

income inequality. We characterize those policies that do so coherently with reducingthe

spatial inequality curves originated by the GINI within or by the GINI between orboth.

In this way, we can make sure that the implications of redistribution are shared evenly

among all individuals and that inequality is reduced everywhere and for any possible

spatial arrangement of the population.

We focus on rank-preserving distributive schemes, implying that the domain restricts

to cases wheref is non-decreasing overR+ and the ranking of individuals in the post-

redistribution income distribution is the same as in the pre-redistribution income distri-

bution. This requirement is justiÞed by the need of keeping incentives from relocations

of individual across the city, related to di!erential in utilities, as constant (provided all

other features of the city remain constant). By further requiring that the redistributive

scheme has to be e!ective irrespectively of the geography of incomes, we are left with

just one option: the basic income-ßat tax scheme, according to which tax revenues are

collected through a ßat tax and redistributed equally among all individuals. The result,
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formalized in Theorem 1, is demonstrated in the appendix.10

Theorem 1 There is less citywide inequality and less spatial inequality in post-redistribution

incomes compared to pre-redistribution incomes, i.e.f (y1), . . . , f (yn ) &GB (&GW )y for

any initial distribution y # Rn
+ and for any location of then individuals, if and only if f

is a basic income-ßat tax (BIFT) scheme.

The theorem states that, regardless of the location of income recipients in the city, the

policymaker can reduce citywide inequality (as measured, for instance, byG(y)) through

taxation while being robust to patterns of both within and between inequality across the

urban space, only by implementing a BIFT scheme.11

The Theorem also bears important consequences for national Þscal policies, that apply

indistinctly to cities that di!er in income inequality and in the spatial distribution of

incomes. Our result says, for instance, that the only federal tax schedule for the U.S.

(i.e., a federal tax scheme does not depend upon the speciÞcities of a single city and the

distribution of individual therein) granting a reduction in citywide and spatial inequality

both in New York City and in Los Angeles (two cities that di!er in geography, in residential

patterns and in skills distributions), is the BIFT scheme. Other redistribution schemes

might reduce inequality in one city, at the cost of rising spatial inequality in another city.

10The proof builds on intermediate results (in the appendix) that clarify the relation between spatial
inequality and redistribution schemes satisfying desirable properties, such as beingprogressive or star-
spaped from above(i.e., f (y)/y is decreasing iny).

11Notice that this form of progressive redistribution unambiguously reduces inequality in the space,
pushing down both the within and between GINI curves. However, its implications for the a"uence at
the level of individual neighborhood are ambiguous. To understand this point, imagine for instance a
rich individual who lives near to several poor individuals, who arelocated far from each other. In this
case we can expectµd > µ and a BIFT scheme takes away a proportion of the rich income dividing it
among several poor individuals. Apart from this direct redistributi ve e!ect, there is also another e!ect
in the opposite direction, consisting in the reduction of the (potential) positive externality generated by
the presence of rich people in the neighborhood of poor income recipients.
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4 Empirical analysis of spatial inequality

4.1 Relations with geostatistics

The GINI indices are rather peculiar measures of inequality that capture the association

between the degree of inequality in incomes and the distribution of these incomes in a

geographic space. We are able to identify strong analogies between the GINI indices and

the way in which spatial association is treated ingeostatisticsliterature (Cressie 1991).

In this section, we investigate these connections more in detail.

Consider a general model of the spatial income distribution, given by the data gener-

ating process{ Ys : s # S} , which is a collection of random variablesYs located over the

random ÞeldS, a model of the relevant urban space. The process is distributed asFS,

which represents the degree of spatial dependence onS. Through geolocalization, it is

possible to compute the distance Ò||.||Ó between locationss, v # S. We generally write

||s $ v|| ' d to indicate that the distance between the two locations is smaller thand,

or equivalently v # ds. The cardinality of the set of locationsds is nds , while n is the

total number of locations. The observed income distributiony is a particular realization

of such process, where one observationi is observed in one locations.

Consider Þrst the GINI within index of the spatial processFS. It can be written in

terms of Þrst order moments of the random variablesYs as follows:12

GINI W (FS, d) =
"

s

"

v! ds

1
2n nds

E[|Ys $ Yv|]
E[Yv]

.

The degree of spatial dependence represented byFS enters in theGINI W formula through

the expectation terms, that are conditional onS. Consider Þrst the case with no spatial

dependence, that is, the random variablesYs and Yv are i.i.d. for any s, v # S. The

12Biondi and Qeadan (2008) use a related estimator to assess dependency acrosstime in paleorecords
observed on a given point in space.
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distribution FS does not display spatial dependence. In this case, it can be shown that

GINI W (FS, d) = E[|Ys " Yv |]
E[Yv ] with Ys and Yv i.i.d., which coincides with the deÞnition of the

standard Gini inequality coe"cient in Muliere and Scarsini (1989).

If, instead, spatial dependence is at stake, then the expectationE[|Ys $ Yv|] varies

across locations and cannot be identiÞed and estimated from the observation ofjust one

data point in each location. It is standard in geostatistics to rely on assumptions about the

stationarity of FS (Cressie and Hawkins 1980, Cressie 1991). The Þrst assumption is that

the random variablesYs have stationary expectations over the random Þeld, i.e.,E[Yv] = µ

for any v. The second assumption is that the spatial dependence in incomes between two

locations s and v only depends on the distance between the two locations,||s $ v||, and

not on their position on the random Þeld. Here, we consider radial distance measures for

simplicity, so that ||s$ v|| = d. This allows to write E[(Ys $ Yv)2] = 2! (||s$ v||) = 2 ! (d),

where the function 2! is the variogram of the distribution FS (Matheron 1963).

The variogram captures the implications of the spatial autocorrelation on the variabil-

ity of the data. Thus, the function 2! (d) is informative of the correlation between two

random variables that are exactlyd distance units away one from the other. The shape of

the function illustrate the extent at which spatial association a!ects the joint variability

of the elements of the process. Generally, 2! (d) ( 0 asd approaches 0, indicating that

random variables that are very close in space tend to be strongly spatially correlated and

variability in incomes at the very local scale is small. Conversely, 2! (d) ( 2" 2 when d is

su"ciently large, indicating spatial independence between two random variablesYs and

Yv far apart on the random Þeld. Variability in incomes that are very far apart in space

tend to resemble to citywide variability.

Together, the two assumptions listed above depict a form ofintrinsic stationarity of

the data generating process (Cressie and Hawkins 1980, Cressie 1991, Chil`es and DelÞner

2012). If, additionally, Ys is assumed gaussian with meanµ and variance" 2, ) s # S, it is
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possible to show that the GINI within index is a function of the variogram:

GINI W (FS, d) =
"

s

"

v! ds

1
n nds

#
! (||s $ v||)/#

µ
.

With some additional algebra, we also establish that the GINI between index is a function

of the variogram under stationarity and gaussian assumptions. Both GINI within and

between indices can hence be described as averages, taken over the spaceof locations, of

distance-sensitive coe"cients of variation. All results are formally derived in theonline

appendix.

These results are suggestive of two important facts. The Þrst fact is thatthe GINI

indices measure spatial inequality as a direct expression of the spatial dependence in the

data generating process, represented under stationarity assumptions by the variogram,

without imposing external normative hypotheses about the interactions between incomes,

income inequality and space. The second fact is that the empirical counterpart of the

variogram can be used to produce asymptotically valid estimators of the GINI indices

standard errors, which can be used to test hypothesis on the extent and dynamics of

spatial inequality. In the online appendix, we derive distribution free, non-parametric

estimators for the GINI indices in a general setting where sample information about the

processFS is available.13

4.2 Testing hypotheses about spatial inequality

The empirical estimators of the GINI spatial inequality curves (provided in the online

appendix) can be used to test hypothesis about the shape and dynamics of spatial in-

equality. (i) By contrasting the level of spatial inequality measured by the GINI curves

13The GINI between index estimator can be computed as a plug-in estimatoras in as in Binder
and Kovacevic (1995) and Bhattacharya (2007), provided individual neighborhood averages are properly
estimated. The GINI within estimator involves instead comparing individual income realizations.
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at a given distanced with the overall level of inequality captured by the Gini index, it is

possible to assess if, and to what extent, average income inequality experienced within a

neighborhood of sized is di!erent from the level of inequality in the city. (ii) Moreover,

by contrasting the level of the GINI curves atd and at d# > d , it is possible to state if, by

how much, and at which speed, local inequality converges to the citywide inequality.(iii)

Lastly, by comparing the levels of the GINI curves at distanced registered in di!erent

periods within the same city, it is possible to conclude about the dynamics of spatial

inequality. Furthermore, if one is conÞdent that spatial distance is comparable across

cities, one can use GINI spatial inequality curves to rank these cities in terms of urban

inequality.14

In the online appendix, we maintain the intrinsic stationarity and the gaussian as-

sumptions to derive standard errors for the GINI within and between estimators.We

show that standard errors can be written as averages of variogram functions of the pro-

cess and that the GINI indices estimators sampling distribution converges to asymptotic

normality.15 The result allows to test hypothesis about spatial inequality via standard

t-statistics.

In the empirical investigation of spatial inequality across U.S. cities, based on decennial

census data and repeated surveys, we employ standard error estimators to account for

issues related to data reporting (which come in forms of summary tables for eachelement

of a very Þne spatial partition of U.S. urban territories).16

14One is compelled to conclude in favor of spatial inequality only if there is strong evidence against the
null hypothesis that the level of the GINI curve at d is the same as the Gini inequality index, and that
the level of spatial inequality captured by the GINI curves does not change with d. When comparing two
GINI (either between or within) curves, one cannot reject that a strong increase or reduction in spatial
inequality if there is strong evidence against the null hypothesisthat the two curves coincide at every d.

15Standard errors for GINI indices are derived using results on ratio-measures estimators (see
Hoe!ding 1948, Goodman and Hartley 1958, Tin 1965, Xu 2007, Davidson 2009) under intrinsic sta-
tionarity and normality (Cressie and Hawkins 1980, Cressie 1985). The latter assumption does not
immediately translate into normality of the GINI estimators, which are highly non-linear functions of the
underlying stochastic process. Rather under these assumptionswe can show that the GINI estimators
are linear in the variogram, implying asymptotic normality.

16A Stata routine implementing the GINI between and within indices and curves, along with their
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5 Spatial inequality in U.S. cities: 1980-2014

In this section we recover and study the patters of spatial inequality in U.S. cities along

four decades. Our aim is to provide stylized facts about the shape of spatial income

inequality in U.S. cities. We focus Þrst on the city of Chicago (IL) as a case study of

the spatial dimension of inequality in a large U.S. metropolitan area. Then, we provide

stylized facts about patterns of spatial inequality across the 50 largest U.S.cities.

5.1 Data

We follow the dynamics of incomes within U.S. cities over four decades. We make use

of the public use Census data tables from the U.S. Census Bureau for 1980, 1990 and

2000. For these years, we use the Summary Tape File 3A to extract information about

population counts, income levels and family composition at a very Þne spatial grid.17 Due

to anonymization issues, the STF 3A data are reported in the form of statistical tables

representative at the block group level, the Þnest available statistical partition of the

urban space. After 2000, the Census STF 3A Þles have been replaced with survey-based

evidence from the American Community Survey (ACS), running yearly on representative

samples of U.S. resident population. For our analysis, we consider the 2010-2014 5-years

Estimates module of ACS.18 Sampling rates in ACS vary independently at the census

block level according to 2010 census population counts, covering on average 2% of U.S.

population over the 2010/14 period. The survey runs over a Þve years period to guarantee

representativeness of the income and demographic estimates at the block-group level. To

our knowledge, ACS 2010/14 wave has not yet been used in empirical inequality analysis.

standard error estimators, is available on the authors web-pages.
17Available information is a snapshot of overall inequality in the Census year with a universal statistical

coverage. The Census STF 3A provides data for States and their subareasin hierarchical sequence down
to the block group level, which is the Þnest geographical information available in the Census.

18The ACS reports estimates of incomes, population counts and household size measures at the level
of the census block from data collected over the Þve years span. Hence, estimated counts do not have an
annual validity, but rather should be interpreted as average measuresacross the 2010-2014 time span.
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We consider households made of one or more income recipients as the units of analysis.

We focus on gross household income information. Income data are reported in the form

of tables that are representative at the block group level. There are two available sources

of information that can be used to model the income distribution at the block-group level.

The Þrst set of tables reports total (i.e. aggregate) income at the block group level. A

second set of tables report households counts per income interval at the block group level.

There are 17 income intervals in 1980, 25 in 1990 and 16 in 2000 and in the ACS survey.

Each income interval is delimited by the bottom and top incomes. The highest income

interval is not topped-up. Using methodology similar to Nielsen and Alderson (1997),

based on Pareto distribution Þtting (for an alternative method based on the log-normality

assumption, which yields comparable results, see Wheeler and La Jeunesse 2008), tables

about the distribution of household counts across income intervals are transformed into

a vector of representative incomes for each income interval, along with theassociated

vector of households frequencies corresponding to these incomes.19 Estimates of incomes

and household frequencies vary across block groups, implying strong heterogeneity within

the city in block-group speciÞc household gross income distributions.

The Census and the ACS also provide tables of households counts by household size

(scoring from 1 to 7 or more individuals) for each block group, so that equivalence scales

representative at the block group level can be constructed. The use of demographic equiv-

alence scales is necessary to draw conclusions about the distribution of inequality across

households that are otherwise not comparable. We can hence convert the income data into

the corresponding equivalized incomes by scaling the estimated reference income values

by the block group-speciÞc equivalence scale, so that households are made comparable

within and across block groups.20

19Estimation is constrained in a way that average income inferred from this distribution of incomes
and frequencies matches the average income in the Census or ACS within the block group, obtained by
dividing total income in the block by the number of households thereresiding.

20In most of the cases, it turns out that the reference income category associated to a bin is simply
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City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Table 1: The household equivalent gross income distribution in Chicago (IL)

We estimate income reference levels, frequencies at these incomes in the populationand

equivalence scales for each block group in a given city (for instance Chicago, IL) for each

year. We then iterate the procedure across selected cities for all yearsfor which Census

and ACS data are available. The resulting income database consists of strings of incomes

and frequency weights at the block group level for each cities-year pair considered. Thus,

weighted variants of the GINI indices estimators can be used to evaluate facts about the

distribution of incomes within the block group and across block groups at various distance

scales.

Census and ACS identiÞers are deÞned at the block group level. Each block group

is geocoded, and measures of distance between the bock groups centroids can be hence

constructed. All income observations within the same block group are hence assumed to

occur on the block groupÕs centroid. To identify the extent of the relevant urban space,

we resort on the Census deÞnition of a Metropolitan Statistical Area, based on the 1980

Census deÞnition.21
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5.2 Spatial inequality in Chicago (IL)

We use the 1980 deÞnition of the Chicago Primary MSA area provided by the Cen-

sus, which comprises Cook County, Du Page County and McHenry County surface. By

sticking to this deÞnition of the Chicago metro area we can construct measures ofin-

come inequality in a well deÞned, yet large, urban space.22 Table 1 reports summary

information of household population and the respective income distribution in Chicago.23

Average equivalent household income has increased fourfold over 1980-2014 in nominal

terms, corresponding to 73% increase in real terms. Table 1 shows that the top10% to

bottom 10% income ratio has sharply increased from 11.533 in 2000 to almost13.5 in

2010/2014 period, indicating increased dispersion at the tails of the distribution despite

the relative gap between the low income (bottom 20%) and high income households (top

20%) has remained substantially stable over the same period. The citywide Gini index

has contextually raised from 0.43 to 0.48 over 35 years.

We compute GINI within and between indices for 1980, 1990, 2000 and 2010/2014 Cen-

sus waves using the estimators proposed in section 4 to assess the evolution of equivalent

household income across individual neighborhoods. At distance zero up to approximately

300 meters, the GINI within index captures the average inequality in estimated income

levels within block groups. Data conÞrm a substantial heterogeneity of within income

the income binÕs midpoint. For the top income bin, the reference value is adjusted so that the average
estimated income coincides with data provided by the Census.

21Details about the U.S. counties deÞning the Chicago (as well as the othercities) metropolitan area can
be found at this link: http://www.census.gov/population/metro/Þles/lists/histor ical/80mÞps.txt. Making
use of the 1980 Census deÞnition of MSA, guarantee comparability of estimatesacross urban areas that
are expanding or shrinking over the 35 years considered in this study.

22Note that for some of the block groups of 1980 Census it is not possible to establish geocoded
references. Hence, these units cannot be included in the index computation and might have an impact on
estimation of the GINI patterns. Other works, such as (Reardon and Bischo! 2011), have demonstrated,
however, that the impact of this kind of missing information is negligible on overall trends of inequality
within the 100 largest U.S. Commuting Zones.

23Throughout the four decades considered in this study, the block grouppartition of Chicago has
become Þner, with the number of block groups increasing of 1000 units. This change keeps track of the
demographic boom in Chicago, implying a roughly stable demographic composition in each block group
(around 1100 households on average).
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Figure 2: Spatial GINI indices of income inequality for Chicago (IL), 1980, 1990, 2000
and 2010/14

(a) GINI within (b) GINI between

Note: Authors elaborations on U.S. Census data.

inequality across block groups: the Gini index at the level of the block groups varies, in

fact, between 0.2 to above 0.6 in 2000.24 Inequality remains above 0.4 even averaging

across block groups. This explains the relatively high starting point of the GINI within

curves shown in Figure 2.(a). Estimates for small size individual neighborhoods arelikely

biased by the approximations used to estimate block-group level income distributions. In-

equality slightly decreases as the neighborhood size reaches 2km and then quickly raises

to reach its city-wide level when the size of the neighborhood is larger than 25kilome-

ters. Comparing the GINI within curves of the di!erent decades, within neighborhood

inequality appears increasing over time, for any size of the neighborhood.

In Figure 2.(b) we plot GINI between curves from 1980 to 2010/14. When neighbor-

hoods are narrow (basically, we compare average income across block groups),we Þnd

lower inequality values compared to the within case (the GINI between index values are

generally smaller than 0.3). As expected, between inequality decreases with thesize of

24For this year block group level estimates of inequality are reported inthe Census.
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the neighborhood, but in a very smooth manner. For neighborhoods of size 2 kilometers,

the GINI between is generally larger than 0.25. It decreases to 0.1 only for neighborhoods

at least of 20 kilometers range. Overall, this pattern is robust across Census years. Con-

trasting the GINI between curves over the last three decades, we remark that between

inequality is on the rise up to the 1990, and then remains stable.

Are these patterns statistically signiÞcant? To answer this question, we Þrst compute

empirical estimators of the variograms based on geolocalized income data, and then we

derive standard errors and conÞdence intervals of the GINI within and between indices at

pre-selected abscissae. ConÞdence bounds are drawn for each spatial inequalitycurve, and

dominance across curves is tested making use of t-statistics at selected distance ranges.25

All together, we Þnd evidence of the following patterns of spatial inequality in Chicago

over the time span considered: i) the GINI within index is quite high and weakly increases

with the size of the neighborhood; ii) the GINI between index is smaller than the GINI

within index (and than overall inequality as measured by the Gini index) when the neigh-

borhood size is small and decreases smoothly with the neighborhood size, implying spatial

persistence of inequality; iii) the GINI within index levels do did not increase signiÞcantly

over time; iv) the GINI between index has been on the rise during 1980-2000, while ithas

stabilized between 2000 and 2014.

Evidence on the spatial inequality patters described above, along with evidence that

both citywide Gini and average (real) incomes have been on the rise over the 35years,

are suggestive that largest increases in absolute income gaps occurred in individual neigh-

borhoods experiencing growth in average income. This is consistent with little variations

25To do so, we compute all pairwise di!erences in GINI within or between spatial inequality curves
across all the decades under analysis. We then plot these di!erencesmeasured at pre-determined distance
abscissae (along with the associated conÞdence bounds) on a graph. If thehorizontal line passing from
the origin of the graph (indicating the null hypothesis of no di!erences in spatial inequality at every
distance threshold) falls within these bounds, we conclude that the gap in the spatial inequality curves
under scrutiny are not signiÞcant at standard conÞdence levels. For a detailed description of results, see
online appendix B.
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over time in spatial inequality within individual neighborhood. This might happen if, on

average, high income households get richer in those neighborhoods where high income

households are over-represented and where poor householdsÕ income has remainedstable

over time. Alternatively, evidence is also consistent with a situation in which low income

households get poorer in neighborhoods where low income households are over-represented

and where rich householdsÕ income has remained stable over the period. Finally, the em-

pirical patterns are also consistent with a situation in which the income of poor andrich

households grow at the same pace, but the distance between rich and poor households

increases. However, data show that inequality at the tails of the distribution increased

substantially over 1980-2014 (Table 1), a!ecting as well the citywide inequality, on the

rise. These results suggest that changes in spatial inequality are likely due to changes in

the income distribution, rather than to changes in sorting patterns. In what follows, we

extend the analysis beyond the Chicago case-study, to establish new stylized facts about

spatial inequality across major U.S. cities.

5.3 Stylized facts about spatial inequality in the U.S.

We extend spatial inequality analysis to the 50 most populated U.S. cities in 2014.26 We

use the 1980 Census deÞnition of metropolitan statistical areas for each of these cities to

delimit the reference urban space. In this way, within-city patterns of spatial inequality

can be meaningfully compared across decades.

We compute within and between GINI indices for each of these cities in each year.

Figure 3 reports spatial inequality curves for the years 1980 and 2010/2014. There are

50 curves in each plot, one for each city considered in the study. These curves are sug-

gestive of three basic facts. First, that spatial within and between inequality islarger in

26Data on urban demographic size are from the Census Bureau and can be downloaded from:
http://factÞnder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk. The list of cities,
ordered by their size, can be found in table 4 in the online appendix C.
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Figure 3: GINI within and between for 50 largest U.S. cities

(a) GINI within, Census 1980 (b) GINI within, ACS 2010/2014

(c) GINI between, Census 1980 (d) GINI between, ACS 2010/2014

Note: Authors elaboration on U.S. Census data. A full description of the cities used in this study can be

found in the online appendix, Table 4.

2010/2014 than it was in 1980, at every distance abscissa. Second, the patterns of spatial

inequality displayed by the between and within curves of the 50 largest U.S. cities are

substantially similar to that registered for Chicago. The GINI within index is very high

even for small distances and rapidly converges to the citywide level of inequality.The

GINI between index ßuctuates around 0.3 and smoothly converges to zero for substan-

tially large (more than 20km rays) individual neighborhoods. The bold dark curves in the
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Þgure represent a Þfth degree polynomial Þt of the relation between the valuesof GINI

within and between indices and the neighborhood size. The shape of this curve is remark-

ably consistent with spatial inequality curves identiÞed for each city. The third and Þnal

fact is that there is substantial heterogeneity in the levels of spatial inequality across the

50 cities. This heterogeneity, however, has only an ÒinterceptÓ dimension, meaning that

the degree of heterogeneity around the common trend is substantially uniform across the

distance domain over which GINI indices are calculated, while the distance gradient on

spatial inequality is substantially similar across cities when individual neighborhood are

not too small. The intercept dimension of heterogeneity may be explained by di!erences

in fundamentals across cities, such as the distribution of skills across local labormarkets

(Moretti 2013), rather than by city-speciÞc characteristics that mighthave relevant impli-

cations for the sorting patterns of low an high income households. We tend to associate

shrinking heterogeneity of city-speciÞc spatial inequality patterns around the common

trend to convergence in fundamentals across the cities.

Our results support the preliminary Þndings of Wheeler and La Jeunesse (2008), while

resting on a completely di!erent methodology. Wheeler and La Jeunesse (2008) considered

two di!erent exogenous spatial partitions of US metropolitan areas and reported high

levels of spatial inequality within block groups, also stable over time. They also pointed

out that the major changes over 1980-2000 were driven by the between component of

inequality. This is well reßected by the pattern of the GINI between index.

The GINI within and between indices capture dimensions of inequality that are not

necessarily interconnected. Although both indices should converge to precise values when

the neighborhood size is very small or very large, the in-between patterns capture di!erent

aspects of the joint distribution of incomes and locations. In panel (a) an (b) of Figure

4 we display the joint pattern of the two indices computed for the spatial distributions

of incomes in the 50 largest U.S. cities. In this way, we capture substantial heterogeneity
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Figure 4: Spatial inequality, income inequality and average incomes across U.S. cities.

(a) Within and between GINI, 1980 (b) Within and between GINI, 2010/14

(c) Spatial and citywide inequality (d) Spatial inequality and citywide income

Note: Authors elaboration on U.S. Census and ACS data for 50 largest U.S. cities in 2014. Spatial

inequality computed at distance range 1km. Citywide income inequality and average incomes are based

on block-group level household equivalent gross income estimates. Average income is normalized to have

zero average and unit standard deviation over the weighted selected sample of 50 cities. Gray lines

correspond to sample weighted averages of within and between GINI indices. Vertical spikes identify the

95% conÞdence bounds of regression predictions.
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both in the geography and the inequality of urban income distributions. We compute

both indices for individual neighborhoods of size 1km using 1980 Census data and 2010/14

ACS data. As the Þgure shows, the two dimensions of spatial inequality seem slightly

positively correlated in 1980, although there is little statistical support for this claim.

The 2010/14 ACS data do not reveal signiÞcance correlations of within and between

GINI indices. Lack of correlation of within and between components of spatialinequality

can be attributed to the fact that GINI within and the GINI between indices do not

result from decomposing the citywide Gini index (or another additively separable index,

for which negative correlation should arise), but rather they aggregate di!erent aspects

of the distribution of incomes within and across individual neighborhoods.

Figure 4.(c) displays the empirical relation between citywide inequality (measured by

the Gini index) and spatial inequality. The degree of association is visualized by the

slopes of the regression lines. We examine both within and between spatial inequality

for the Census year 1980 and for ACS 2010/14 data, for an individual neighborhood of

size 1Km. As expected, the citywide Gini index and the GINI indices are positively cor-

related. Heterogeneity of GINI between indices around the regression lines is, however,

substantially larger than heterogeneity in GINI within, thus indicating less reliability in

these latter correlations. In both cases, the degree of association between spatial and

citywide inequality is slightly decreasing over time. Figure 4.(d) shows the association

among GINI indices and city a#uence (measured by the normalized average equivalent

income in each city). Results are less clear-cut and we do not detect a remarkable as-

sociation between city a#uence and GINI spatial inequality, both in the within and the

between form. This is somehow expected, as the GINI indices capture relative notions of

inequality (thus improving comparability across cities that di!er in a#uence).
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5.4 Spatial inequality and the Òadded valueÓ of American neigh-

borhoods

American cities do not di!er exclusively for the features of the urban income distributions,

as captured by citywide average income and the Gini index, but also in terms of other

relevant dimensions that deÞne the Òadded valueÓ of their neighborhoods. The added

value is conceptualized as the causal e!ect (either positive or negative) on income and

health prospects of growing up and living in a speciÞc city and neighborhood therein,

compared to the nationwide average trend.

For instance, Chetty et al. (2014) have documented substantial heterogeneity in income

mobility prospects across American commuting zones (corresponding to the geographical

extent of the urban labor market). Chetty and Hendren (2016) argue that this geographic

variation can be associated to the characteristics of the neighborhood to which people have

be exposed to in young age. Exploiting quasi-experimental approximations, they identify

and estimate the causal e!ect of growing up in a neighborhood of a speciÞc commuting

zone on income prospects in adulthood.27 There are many competing explanations for

these causal neighborhood e!ects. One possible explanation has to do with the intergen-

erational implications of exposure to the neighborhood amenities. These amenities likely

drive parental sorting decisions (exogenous to the children), and contribute explainingthe

stratiÞcation of parental incomes across the city. When the amenities that arevaluable to

the parents and have implications on children development are clustered within the city,

it is likely that high income parents outbid low income parents in the housing market

and locate in proximity of these amenities. In this case, the GINI index would capture

relatively little within individual neighborhood spatial inequality in parents incomes. The

27The author disentangle the causal e!ect from implications related to sorting of people with di!erent
income prospects by comparing adult outcomes of the children moving to a given commuting zone in
young age (the movement in and out of a community zone being exogenous to them) via-à-vis the
average outcome of the children of permanent resident in the same zone.
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implications of this mechanism are dampened in cities characterized by a more egalitar-

ian distribution of amenities across the urban space, where low income movers face less

competition on the housing market and more opportunities to settle evenly in space. The

average children of the household moving into the city is then more likely to face children

of both high income and low income parents that are permanent residents. Hence, the

average income of the permanent resident children is less informative about the income

prospect of children who moved into the city, resulting in milder causal neighborhood

e!ects. These facts suggest a negative relationship between inequality of parent family

incomes within individual neighborhoods and measures of causal neighborhood e!ects on

childrenÕs outcomes.

In Figure 5, panels (a) and (b), we display empirical correlations between causal neigh-

borhood e!ects estimated in Chetty and Hendren (2016) and GINI within and between

indices for the sample of cities considered in this study. We focus on estimated causal

e!ects for children of poor families to capture implications of sorting for disadvantaged

children. We use GINI indices for the period 2000 to approximate spatial inequality in

the cities of destination at the moment of the parents move.28 The GINI indices measure

how high and low income parent families are distributed in the city at the moment in

which the neighborhood have long-term implications on the children outcomes. We Þnd

signiÞcant evidence of negative association of causal neighborhood e!ects on children and

within spatial inequality in parental incomes.

Interestingly, causal neighborhood e!ects on children of poor families arealso nega-

tively associated with the degree of spatial inequality between parental individual neigh-

borhoods. This correlation might capture the implications of negative externalities of

28Causal neighborhood e!ects are estimated by the percentage gain (or loss)in income at age 26
attributed to spending one more additional year during childhood on a given commuting zone. These
estimate refer to children born 1980-88 whose parents moved to another commuting zone during 1996-
2012, i.e., when the children was nine or older. We focus on spatial incomeinequality in 2000 to represent
the average composition of a neighborhood at the moment of the move.
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Figure 5: Spatial inequality, neighborhood e!ects and life expectancy across U.S. cities.

(a) Causal neighborhood e!ects (b) Causal neighborhood e!ects

(c) Life expectancy of the poor (d) Life expectancy of the poor

Note: Authors elaboration on U.S. Census and ACS data for 50 largest U.S. cities in 2014. Spatial

inequality computed at distance range 1km. Data on causal neighborhood e!ects (percentage gain or loss

in income at age 26 from spending one more year of childhood in each commuting zone in the U.S. for

people whose parents where in the bottom quartile of the national income distribution) are from Chetty

and Hendren (2016). Data on life expectancy estimates (point estimates inyears calculated at age 40 for

men at the bottom quartile of household income distribution) are from Chetty, Stepner, Abraham, Lin,

Scuderi, Turner, Bergeron and Cutler (2016). All data are made available on the web by the corresponding

authors. Causal neighborhood e!ects and life expectancy estimates areat the Commuting Zone (CZ)

scale (generally larger than MSA concepts of cities used here). CZ estimates for Norfolk (VA) are not

available. Gray lines correspond to sample weighted averages of causal neighborhood e!ects and life

expectancy estimates. Vertical spikes identify the 95% conÞdencebounds of regression predictions.
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neighborsÕ income on children performances. Poor parents that move in cities with high

GINI between index are more likely to locate in deprived areas of the city where they face

less competition on the housing market. Their children are hence exposed to negative

external e!ects that can be attributed to the economic status of the local community.

The implications of the externalities grow stronger as the average income in the local

neighborhood falls behind the citywide average income (as captured by the GINI between

index), explaining the negative association.

The implications of the neighborhood of residence extend also to individual health out-

comes, such as life expectancy. Chetty, Stepner, Abraham, Lin, Scuderi, Turner, Bergeron

and Cutler (2016) use administrative data on incomes and mortality rates that are rep-

resentative for the U.S. population for the period 2001-2014, to recovered patterns of life

expectancy of high and low income people across U.S. commuting zones. They describe

sharp di!erences in life expectancy between low and high income households, indepen-

dently of their gender. While life expectancy does not signiÞcantly vary across commuting

zones for the high income individuals, geography is a strong predictor of longevity for the

poor. The authors establish associations between heterogeneity of life expectancy and

di!erences in healthy lifestyle, education and a#uence across U.S. commuting zones. We

argue that the implications of these factors might be even stronger if low income people

can beneÞt from the presence of more educated and a#uent neighbors, who might serve

as role models for healthy lifestyle and consumption. This channel hints of a positive

relation between life expectancy of low income people and spatial inequality within the

individual neighborhood, reßecting information on the local social mix. In panels (c) and

(d) of Figure 5 we represent the joint distribution of GINI within and between indicesfor

2010/14 and longevity estimates for low income males (from Chetty, Stepner, Abraham,

Lin, Scuderi, Turner, Bergeron and Cutler 2016) in the sample of cities used in this paper.

We Þnd evidence of a positive, though weak, association of spatial inequality (captured by
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the GINI within index) and longevity of the poor. Conversely, we do not Þnd connections

of life expectancy estimates with inequality between individual neighborhoods.

Chetty and Hendren (2016) Þnd no association between neighborhood e!ectsand in-

equality across U.S. census zones. Similarly, Chetty, Stepner, Abraham, Lin, Scuderi,

Turner, Bergeron and Cutler (2016) cannot establish correlations betweenlongevity and

inequality or income segregation at the commuting zone level. Based on a restricted sam-

ple of cities, and using census data rather than administrative data, we are able to detect

statistical association of the geography of causal neighborhood e!ects and life expectancy

with variability of GINI within index. Results hint that inequality within the individ-

ual neighborhood might matter more than citywide inequality as a policy target, when

the objective is to improve income prospects of young people or life expectancy of poor

residents. The correlations depicted in Figure 5 are spurious, but nonetheless suggestive

of relations between individuals income prospects, health and parental resources that are

mediated by the spatial stratiÞcation of incomes in the urban space.

6 Concluding remarks

We study spatial inequality at the urban level from the perspective of the individual.

From the methodological side, we use information about the income distribution in the

neighborhood surrounding each individual to derive several measures connected to the

Gini inequality index. We prove that only basic income-ßat tax redistributive schemes

guarantee spatial inequality reduction. We then investigate spatial inequality patterns

in the 50 largest U.S. cities from 1980 to 2014 and we establish Þve stylized facts about

spatial inequality: i) Inequality within individual neighborhoods of any size is relatively

high in all the periods considered. ii) Inequality between individual neighborhoods is

smaller than within inequality also when the neighborhood concepts is restricted toclose
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neighbors and decreases smoothly with the size of the individual neighborhood in all the

periods considered. iii) Spatial inequality has been on the rise over time, especially in

the between component. iv) Spatial inequality is only modestly associated with citywide

income inequality and does not depend on city a#uence. v) Spatial inequality within

individual neighborhoods matters for intergenerational mobility prospects of youngpeople

and for life expectancy of poor residents in AmericaÕs cities. The pattern of localization

of incomes in a city seems not associated with the di!erences in the organization of the

urban space of the cities or with di!erences in citywide income distributions, but rather

with the preferences of inhabitants for the relative composition of their neighborhood

and with costs and beneÞt related to location choice. From the policy perspective, we

bring arguments in favor of income redistribution over policies a!ecting sorting decisions

(such as the Moving to Opportunity experiment). We demonstrate that only the basic

income-ßat tax redistribution scheme allows to reduce citywide income inequality without

increasing spatial inequality, irrespectively of the location patterns of income holders

within the city.

Our results pave the way for further research on spatial inequality. From the method-

ological perspective, the GINI indices could be adapted to study income segregation or

ethnic segregation. We also conjecture that the result of Theorem 1, focusedon reducing

inequality within and between individual neighborhoods of any size, could also apply to

situations where neighborhoods are deÞned by an underlying partition of the urban space

(the most common space in the literature) and the GINI indices are replaced by the more

general class of Schur-convex relative inequality indices. Such an extension couldbe very

useful in tax-design problems involving, for instance, Þscal federalism.

From the empirical perspective, we Þnd robust evidence that income inequality within

individual neighborhood is high in American cities, and generally very close to citywide

inequality, even for small-scale individual neighborhoods. This does not imply, however,

37



that the income composition in each individual neighborhood resembles to the citywide

income distribution. The within spatial inequality is, in fact, relative to the mean in-

come in the individual neighborhood. Mean incomes are highly unequal across individual

neighborhoods of small and medium size in American cities, as documented by the GINI

between index. Arguably, the spatial distribution of incomes on a city map that is co-

herent with the patterns identiÞed by the GINI indices is one in which incomes tend to

be ÒlinearlyÓ arranged in space, i.e., the distribution of incomes on the city map tend

to resemble to the incomesÕ PenÕs Parade, with high income and low income people in-

creasingly separated within the same city. This phenomenon, hinted by the GINI indices,

deserves further investigations.
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Appendix: Proof of Theorem 1

The proof of the theorem compounds two intermediate results, characterizing the shape

of the redistribution scheme consistent with reducing spatial inequality respectivelyin the

within and in the between dimensions. DenoteF $ the set of rank-preserving redistributive

schemes deÞned onR++ that admit left and right derivatives over the entire domain.

Lemma 1 Given f # F $, the following claims are equivalent:

i) f (y1), . . . , f (yn ) &GW y for any y # Rn
+ and for any location of then individuals.

ii) f is star-shaped from above (ssa), that isf (y)
y is decreasing for any positivey.

Proof. i) * ii) . This is due to Proposition 2.1.a and Remark 2.4. p.279 in Moyes (1994),

which proves that a ssa redistribution scheme applied to the whole population reduces

inequality in the relative Lorenz sense within any possible group of individuals of the initial

population (and even when groups are overlapping). The Gini index then decreases as well

within any possible group (notice that we do not refer to groups generating a partition of

the whole population).

ii) * i) . Consider a neighborhood containing only the two poorest individuals, endowed

with incomesy and y + h. To reduce the Gini coe"cient after applying the redistributive

schemef we needf (y+ h)" f (y)
f (y+ h)+ f (y) < h

2y+ h . By taking the limit for h ( 0, we get f #(y) < f (y)
y .

Lemma 2 Given f # F $, the following claims are equivalent:
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i) f (y1), . . . , f (yn ) &GB y for any y # Rn
+ and for any location of then individuals.

ii) f is an a"ne function f (y) = $y + %, with !
" " 0.

Proof. ii) * i) . This is immediate, sinceGINI B (y ,d) = 1
n2µd

!

i

!
j |µid $ µjd |, whilst for

y# it holds that GINI B ($y + %,d) = 1
n2(µd + !

" )
!

i

!
j |µid $ µjd | and %/$ " 0.

i) * ii) . First, observe that the same proof of the within case can be applied to show the

necessity of progressive redistributive schemes. Consider a city with a single individual

with income øy living in a neighborhood of rayd and two individuals with income y1

and y2, such that øy = y1+ y2
2 who live in a similar neighborhood but separated from the

Þrst one. TheGINI b is then equal to zero. Requiring the same value after redistribution

implies: f ( y1+ y2
2 ) = f (y1 )+ f (y2 )

2 . This is the JensenÕs functional equation, that is well-known

to admit only a"ne solutions (see Theorem 1, p.43 in Aczel 1966).

We can Þnally provide a complete proof of Theorem 1. The result follows from Lemma

1 and 2 by imposing the government budget constraint
!

i f (yi ) =
!

i yi . By setting

$ = 1 $ t and %= tµ, the redistribution scheme discussed in Lemma 2 identiÞes a BIFT

scheme, with tax ratet.
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Online Appendix

A Standard errors and conÞdence bounds for spatial

inequality measures

A.1 Setting

Let S denote a random Þeld. The spatial process{ Ys : s = 1, . . . , n} with s # S is deÞned

on the random Þeld and is jointly distributed asFS. Suppose data come equally spaced

on a grid, so that for any two pointss, v # S such that ||v $ s|| = h we write v = s + h.

The process distributed asFS is said to display intrinsic (second-order) stationarity if

E [Ys] = µ, V ar[Ys] = " 2 and Cov[Ys, Yv] = c(h) when the covariance function is isotropic

and v = s+ h. Under these circumstances, we denoteV ar[Ys+ h $ Ys] = E[(Ys+ h $ Ys)2] =

2" 2 $ 2c(h) = 2 ! (h), the variogram of the process at distance lagh.

Noticing that E[Ys+ h áYs] = " 2 $ ! (h) + µ2, we can derive a simple formulation of the

covariance between di!erences in random variables, notablyCov[(Ys+ h1 $ Ys), (Yv+ h2 $

Yv)] = ! (s $ v + h1) + ! (s $ v $ h2) $ ! (s $ v) $ ! (s $ v + h1 $ h2) as in Cressie

and Hawkins (1980). This assumption holds, in particular, if the spatial data occur on

a transect. Denotes $ v = h where h indicates that the random variables are located

within a distance lag ofh units. We can hence writeCov[(Ys+ h1 $ Ys), (Yv+ h2 $ Yv)] =

! (|h + min { h1, h2}| ) + ! (|h $ max{ h1, h2}| ) $ ! (|h|) $ ! (|h $ | h1 $ h2||), which yields

the formula above whenh1 > h 2. We adopt the convention that ! ($ h) = ! (h) in what

follows.

We now introduce one additional distributional assumption. Assume thatYs is gaus-

sian with meanµ and variance" 2. The random variable (Ys+ h $ Ys) is also gaussian with

variance 2! (h), which implies |Ys+ h $ Ys| is folded-normaldistributed (Leone, Nelson and
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Nottingham 1961), with expectationE[|Ys+ h $ Ys|] =
#

2/#V ar [Ys+ h $ Ys] = 2
#

! (h)/#

and varianceV ar[|Ys+ h $ Ys|] = (1 $ 2/# )2! (h).

A.2 GINI indices and the variogram

Under the assumptions listed above, we now show that the GINI indices of spatial inequal-

ity in the population can be written as explicit functions of the variogram. We maintain

the assumption that the spatial random process is deÞned on a transect, and occurs at

equally spaced lags. For givend, we can thus partition the distance spectrum [0, d] into

Bd intervals of Þxed sized/B d. Each interval is denoted by the indexbwith b= 1, . . . , Bd.

Abusing notation, we denote withdbi the set of locations at intervalb (and thus distant

bád/B d) within the range d from location si . The cardinality of this set isndbi ' ndi ' n.

Under these assumptions, the GINI within index rewrites

GINI W (FS, d) =
"

i

"

j ! di

1
2n ndi

E[|Ysj $ Ysi |]
µ

=
"

i

"

j ! di

1
2n ndi

#
4! (||sj $ si ||)/#

µ

=
"

i

1
n

B d"

b=1

ndbi

ndi

"

j ! dbi

1
2nddi

#
4! (si + b$ si )/#

µ

=
1
2

B d"

b=1

$
"

i

ndbi

n ndi

% #
4! (b)/#

µ
. (1)

The GINI within index is an average of a concave transformation of the (semi)variogram

function, weighted by the average density of locations at given distance lagb on the

transect. This average is then normalized by the average income, to produce a scale-

invariant measure of inequality. The index can be also conceptualized as a coe"cient

of variation, where the standard deviation is replaced by a measure of dispersionthat

accounts for the spatial dependence of the underlying process.
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Similarly, the spatial GINI between index can also be written as a function of the

variogram. The result holds under the assumption that the processYs is gaussian, as

above, which implies thatµsi d = 1
ndi +1

&
Ysi +

!
j ! di

Ysj

'
is also gaussian under the in-

trinsic stationarity assumption, with expectation E[µsi d] = µ for any i . From this, it

follows that the di!erence in random variables|µsi d $ µs#d| occurring in two locationssi

and s# is a folded-normal distributed random variable with expectationE[|µsi d $ µs#d|] =
#

2/# V ar [µsi d $ µs#d]. The variance term can be decomposed as follows:

V ar[µsi d $ µs#d] = V ar[µsi d] + V ar[µs#d] $ 2Cov[µsi d; µs#d]. (2)

Developing the variance and covariance terms we obtain:

V ar[µsi d] = V ar

(
1

ndi + 1

$

Ysi +
"

j ! di

Ysj

%)

=
1

(ndi + 1) 2

"

j ! di %{i }

"

k! di %{i }

E[Ysj Ysk ] $ µ2

=
1

(ndi + 1) 2

"

j ! di %{i }

"

k! di %{i }

c(||sj $ sk ||) (3)

=
B d"

b=1

"

j ! dbi

1
ndi + 1

B d"

b"=1

"

k! db"i

1
ndi + 1

c(|si + b$ (si + b#)|) (4)

= " 2 $
B d"

b=1

B d"

b"=1

ndbi ndb"i

(ndi + 1) 2
! (b$ b#), (5)

where (3) follows from the deÞnition of the covariogram, (4) is a consequence ofthe

assumption that the process can be represented on a transect and, for simplicity, it is

assumed that the set of location atb = 1 is d1i + { i } with cardinality ndbi + 1, as it

includes locationsi , while (5) follows from the deÞnition of the variogram. Similarly, the
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covariance term in (2) can be manipulated to obtain the following:

Cov[µsi d; µs#d] =
"

j ! di

"

k! d#

1
(ndi + 1)( nd# + 1)

E[Yj Yk ] $ µ2

= " 2 $
B d"

b=1

B d"

b"=1

ndbi ndb"#

(ndi + 1)( nd# + 1)
! (si $ s# + |b$ b#|), (6)

where the assumption that the process can be represented on a transect allows to write

the variogram as a function ofsi $ s#. Plugging (5) and (6) into (2), and by denoting

i $ &= m to recall that the gap betweensi and sj is m, with m positive integer such that

m ' B with B being the maximal distance between any two locations on the transect,

we obtain

V ar[µsi d $ µs#d] =
B d"

b=1

B d"

b"=1

2
ndbi ndb"#

(ndi + 1)( nd# + 1)
! (si $ s# + |b$ b#|) $

$
B d"

b=1

B d"

b"=1

$
ndbi ndb"i

n2
di

+
ndb#ndb"#

n2
d#

%

! (b$ b#)

=
B d"

b=1

B d"

b"=1

2
ndbi ndb" i + m

(ndi + 1)( ndi + m + 1)
! (m + |b$ b#|) $

$
B d"

b=1

B d"

b"=1

$
ndbi ndb"i

n2
di

+
ndb i + m ndb" i + m

n2
di + m

%

! (b$ b#)

= V(!, i, m ). (7)

Variogram models usually adopted in the empirical literature guarantee thatV(!, i, m ) >
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0. Using the notation (7), we derive an alternative formulation of the GINI between index:

GINI B (FS, d) =
1
2

"

i

"

#&= i

1
n(n $ 1)

E[|µsi d $ µs#d|]
µ

=
1
2

"

i

1
n

B"

m=1

"

#! nbi

1
(n $ 1)

E[|µsi d $ µs#d|]
µ

=
1
2

B"

m=1

&!
i

1
n

nbi
(n" 1)

#
2V(!, i, m )/#

'

µ
. (8)

Under stationarity assumptions about the spatial process, we can show that the GINIbe-

tween index of spatial inequality can be written as an average of coe"cientsof variations,

each discounted by a weight controlling for the spatial dependency of the process.

Formulations of the GINI within and between indices in (1) and (8) clarify the role of

spatial dependence on the measurement of spatial inequality. Spatial dependence can be

modeled via the variogram. Standard errors and conÞdence intervals of the GINI indices

can be calculated accordingly.

A.3 Standard errors for the spatial GINI within index

In this section, we derive conÞdence interval bounds for the GINI within index under

three key assumptions: that the underling spatial process is stationary, that the spatial

process occurs on a transect at equally spaced points, and the gaussian assumption. This

allows to build conÞdence intervals for the empirical GINI within index estimator of the

form öGINI W (y , d) ± z" SEW d, where z" is the standardized normal critical value for

conÞdence level$ and SEW d is the standard error of the GINI within estimator. For a

given empirical income distribution, the conÞdence interval changes as a function of the

distance parameter selected. Hence, we can use the conÞdence interval estimatorto trace

conÞdence bounds for the GINI within curve. Null hypothesis of dominance or equality
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for the GINI within curves can be formulated by using conÞdence bounds as the rejection

region and by deÞning null hypothesis at each distance point separately (alike tostatistical

tests for strong forms of stochastic dominance relations, as in Bishop, Chakraborti and

Thistle 1989, Dardanoni and Forcina 1999).

Asymptotic standard errors (SE in brief) are derived for the weighted GINI within

index. We assume that the random ÞeldS is limited to n locations. We index these loca-

tions for simplicity by i such that i = 1, . . . , n. The spatial process is then a collection of

n random variables{ Yi : i = 1, . . . , n} that are spatially correlated. The joint distribution

of the process isF . Each location is associated with a weightwi " 0 with w =
!

i wi ,

which might reßect the underling population density at a given location. These weights

are assumed to be non-stochastic. We also assume intrinsic stationarity as before. The

Þrst implication is that, asymptotically, the random variableµid =
!

j ! di %{i }
wj!

j ! di #{ i } wj
Yj

is equivalent in expectation to ÷µ =
!

i
wi!
i wi

Yi , i.e., E [÷µ] = µ. The second implication

is that the spatial correlation exhibited by F is stationary in the distanced and can be

represented through the variogram ofF , denoted 2! (d).

An asymptotically equivalent version of the weighted GINI within index of the process

distributed as F where individual neighborhood have sized is

GINI W (F, d) =
1

2µ

n"

i =1

"

j ! di

wi wj

2w
!

j ! di
wj

|Yi $ Yj | =
1

2µ
$ W d. (9)

The GINI within index can thus be expressed as a ratio of two random variables. Asymp-

totic SE for ratios of random variables have been developed in Goodman and Hartley

(1958) and Tin (1965). Related results have also been derived from the theory of U-

statistics pioneered in Hoe!ding (1948) and adopted to derive asymptotic SE for theGini

coe"cient of inequality under simple and complex random sampling by Xu (2007) and

Davidson (2009). Based on these results, we derive the asymptotic variance of the GINI
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within index in (9):

V ar [GINI W (F, d)] =
1

4nµ2
V ar[$ W d] +

(GINI W (F, d))2

nµ2
V ar[÷µ] $

GINI W (F, d)
nµ2

Cov[$ W d, ÷µ] + O(n" 2), (10)

where the asymptotic SE isSEW d =
#

V ar [GINI W (F, d)] at any d.

The variance and covariance terms in (10) are shown to be relate to the variogram. To

obtain this result, we have to introduce two additional assumptions. The Þrst assumption

is that the process distributed asF occurs on a transect, as explained before. We use

scalarsm, b,# and so on to identify equally spaced points on the transect. Second, we

assume thatYi is gaussian with expectationµ and variance" 2, ) i . These assumptions

are taken from Cressie and Hawkins (1980). Under these assumptions, the variance of ÷µ

writes

V ar[÷µ] =
"

i

wi

w

"

j

wj

w
E[Yi Yj ] $ µ2

=
"

i

wi

w

B"

m=1

!
j ! dmi

wj

w

"

j ! dmi

wj!
j ! dmi

wj
c(||si $ sj ||) (11)

=
B"

m=1

$
"

i

wi

w

!
j ! dmi

wj

w
c(|m|)

%

(12)

= " 2 $
B"

m=1

' (m)! (m), (13)

where (13) is obtained from (12) by renaming the weight score, which satisÞes
! B

m=1 ' (m) =

1, and by using the deÞnition of the variogram.
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The second variance component of (10) can be written as follows:

V ar[$ W d] =
n"

i =1

"

j ! di

wi wj

w
!

j ! di
wj

n"

#=1

"

k! d#

w#wk

w
!

k! d#
wk

E[|Yi $ Yj ||Y# $ Yk |]

$

$
"

i

wi

w

"

j ! di

wj!
j ! di

wj
E[|Yj $ Yi |]

%2

.

The Þrst component ofV ar[$ W d] cannot be further simpliÞed, as the absolute value op-

erator enters the expectation term in multiplicative way. Under the gaussian assumption,

the expectation can be nevertheless simulated. This can be done acknowledging that the

random vector (Yj , Yi , Yk , Y#) is normally distributed with expectations (µ, µ, µ, µ) and

variance-covariance matrixCov[(Yj , Yi , Yk , Y#)] given by:

Cov[(Yj , Yi , Yk , Y#)] =

*

+
+
+
+
+
+
+
,

" 2 c(||sj $ si ||) c(||sj $ sk ||) c(||sj $ s#||)

" 2 c(||si $ sk ||) c(||si $ s#||)

" 2 c(||sk $ s#||)

" 2

-

.

.

.

.

.

.

.
/

.

Data occur on a transect at equally spaced points, wheresj = si + b and sk = s# + b#

for the positive integersb ' Bd and b# ' Bd. We take the convention that b# > b and

we further assume that there is a positive gapm, with m ' B between pointssi and s#.

Using this notation, we can express the variance-covariance matrix as a function of the

variogram

Cov[(Yj , Yi , Yk , Y#)] =

*

+
+
+
+
+
+
+
,

" 2 " 2 $ ! (b) " 2 $ ! (m $ | b#$ b|) " 2 $ ! (m + min { b#, b} )

" 2 " 2 $ ! (m $ max{ b#, b} ) " 2 $ ! (m)

" 2 " 2 $ ! (b#)

" 2

-

.

.

.

.

.

.

.
/

.
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The expectation E[|Yi $ Yj ||Y# $ Yk |] can be simulated from a large numberS (say,

S = 10, 000) of independent draws (y1s, y2s, y3s, y4s), with s = 1, . . . , S, from the random

vector (Yj , Yi , Yk , Y#). The simulated expectation is a function of the variogram parameters

m, b, b# and d and of " 2. It is denoted ( W (m, b, b#, d, " 2) and estimated as follows:

( W (m, b, b#, d, " 2) =
1
S

S"

s=1

|y2s $ y1s| á |y4s $ y3s|.

With some algebra, and using the fact thatE[|Y# $ Yi |] = 2
#

! (m)/# for locations&and

i at distancem ' B one from each other, it is then possible to write the termV ar[$ W d]

as follows:

V ar[$ W d] =
B"

m=1

B d"

b=1

B d"

b"=1

' (m, b, b#, d)( W (m, b, b#, d, " 2)

$ 4

$
B d"

m

' (m, d)
#

! (m)/#

%2

. (14)

In the formula, ' (m, b, b#, d) =
!

i
wi
w

!
j ! dbi

wj!
j ! di

wj

!
#! dmi

w#
w

!
k! db"#

wk!
k ! d#

wk
while ' (m, d) =

!
i

wi
w

!
j ! dmi

wj!
j ! di

wj
are calculated as before.

The third component of (10) is the covariance term. It also depends on the variogram.

The result relies on the following equivalence, when the process is deÞne on the transect

and i and j are separated byb units of spacing whilei and &are separated bym unit of

spacing:

E[|Yj $ Yi |Y#] = E[|Yj Y# $ Yi Y#|] = E[Yj Y#] $ E[Yi Y#] $ 2E[min{ Yj Y# $ Yi Y#, 0} ]

= c(||sj $ s#||) + µ2 $ c(||si $ s#||) $ µ2 $ 2E[min{ Yj Y# $ Yi Y#, 0} ]

= ! (m) $ ! (m $ b) $ 2E[min{ Yj Y# $ Yi Y#, 0} ]. (15)

The expectationE[min{ Yj Y# $ Yi Y#, 0} ] is non-liner in the underlying random variables.
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Under the gaussian hypothesis it can be nevertheless simulated from a large number

S (say, S = 10, 000) of independent draws (y1s, y2s, y3s), with s = 1, . . . , S, from the

random vector (Yj , Yi , Y#) which is normally distributed with expectations (µ, µ, µ) and

variance-covariance matrixCov[(Yj , Yi , Y#)]. As the process occurs on the transect, the

variance-covariance matrix writes

Cov[(Yj , Yi , Y#)] =

*

+
+
+
+
,

" 2 " 2 $ ! (b) " 2 $ ! (m)

" 2 " 2 $ ! (m $ b)

" 2

-

.

.

.

.
/

for given m, b and d. The resulting simulated expectation is denoted) W (m, b, d, "2) and

computed as follows:

) W (m, b, d, "2) =
1
S

S"

s=1

min{ y2sy3s $ y1sy3s, 0} .

Based on this result, we develop the covariance term in (10) as follows:

Cov[$ W d, ÷µ] =
"

i

wi

w

"

j ! di

wj!
j ! di

wj

"

#

w#

w
E[|Yj $ Yi |Y#]

$ µ
"

i

wi

w

"

j ! di

wj!
j ! di

wj
E[|Yj $ Yi |]

=
B"

m=1

B d"

b=1

' (m, b, d)
0
! (m) $ ! (m $ b) $ 2) W (m, b, d, "2)

1

$ 2µ
B d"

m=1

' (m, d)
#

! (m)/#. (16)

The weights in (16) coincide respectively with' (m, b, d) =
!

i
wi
w

!
#! dmi

w#
w

!
j ! dbi

wj!
j ! di

wj

and ' (m, d) =
!

i
wi
w

!
j ! dmi

wj!
j ! di

wj
. The variogram appears in the second term of (16)

is it was the case in (14).

A consistent estimator for the SE, denoted öSEW d, can be obtained by plugging into
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(10) the empirical counterparts of the variogram and the lag-dependent weights, using

the formulas in (13), (14) and (16). These estimators are discussed in section A.5.

A.4 Standard errors for the spatial GINI between index

Estimation of conÞdence interval bounds öGINI B (y , d) ± z" SEB d for the GINI between

index are obtained under the same assumptions outlined in the previous section. As

before, we assume that the spatial process{ Ys : s # S} is limited to n locations. We

index these locations for simplicity byi such that i = 1, . . . , n. The spatial process is then

a collection ofn random variables{ Yi : i = 1, . . . , n} that are spatially correlated. The

joint distribution of the process isF . Each location is associated with a weightwi " 0

with w =
!

i wi . These weights are assumed to be non-stochastic.

Under stationary assumptions, the neighborhood averagesµid =
!

j ! di %{i }
wj!

j ! di #{ i } wj
Yj

and µd =
!

i
wi
w µid are equivalent in distribution to ÷µ, and hence ÷µ can be used to assess

V ar[µd], asV ar[µd] = V ar[÷µ]. Similar conclusions cannot be drawn for measures of linear

association involvingµd.

An asymptotically equivalent version of the weighted GINI within index of the process

distributed as F where individual neighborhood have sized is

GINI W (F, d) =
1

2µ

n"

i =1

n"

j =1

wi wj

w2
|µid $ µjd | =

1
2µ

$ B d . (17)

We use results on variance estimators for ratios to derive the SE of (17):

V ar [GINI B (F, d)] =
1

4nµ2
V ar[$ B d ] +

(GINI B (F, d))2

nµ2
V ar[÷µ] $

$
GINI B (F, d)

nµ2
Cov[$ B d , µd] + O(n" 2), (18)

where the asymptotic SE isSEB d =
#

V ar [GINI B (F, d)] at any d.
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The variance and covariance terms in (18) are shown to be related to the variogram. To

obtain this result, we have to introduce two additional assumptions. The Þrst assumption

is that the process distributed asF occurs on a transect, as explained before. We use

scalarsm, b, b# and so on to identify equally spaced points on the transect. Second, we

assume thatYi is gaussian with expectationµ and variance" 2, ) i .

The varianceV ar[÷µ], which represents the population estimator forµ, is given as in

(12).

The second variance component in (18) can be written as follows:

V ar[$ B d ] =
"

i

"

j

wi wj

w2

"

#

"

k

w#wk

w2
E[|µid $ µjd ||µ#d $ µkd|]

$

$
"

i

wi

w

"

j

wj

w
E[|µjd $ µid |]

%2

. (19)

The Þrst component ofV ar[$ B d ] cannot be further simpliÞed as the absolute value oper-

ator enters the expectation term in multiplicative way. Under the gaussian assumption,

the expectation can be nevertheless simulated. This can be done acknowledging that the

random vector (µjd , µid , µkd, µ#d) is normally distributed with expectations (µ, µ, µ, µ) and

variance-covariance matrixC of size 4, 4. The cells in the matrixC are indexed accord-

ingly to vector (µjd , µid , µkd, µ#d), so that elementC12 is used, for instance, to indicate the

covariance between the random variablesµjd and µid . The sample occurs on a transect.

We use scalarsband b# to denote a well deÞned distance gap between any location indexed

by { j, i, k, &} and any other location that isb or b# units away from it, within a distance

range d. We use scalarsm to indicate the gap betweeni and &, so that &= i + m; we

usem# to indicate the gap betweeni and j , so that j = i + m# and we usem##to indicate

the gap betweenk and &, so that &= k + m##. Based on this notation, we can construct

a weighted analog of (6) to explicitly write the elements ofC as transformations of the
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variogram. This gives:

C11 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 1(b#, d)! (b$ b#),

C22 = " 2 $
B d"

b=1

B d"

b"=1

' 2(b, d)' 2(b#, d)! (b$ b#),

C33 = " 2 $
B d"

b=1

B d"

b"=1

' 3(b, d)' 3(b#, d)! (b$ b#),

C44 = " 2 $
B d"

b=1

B d"

b"=1

' 4(b, d)' 4(b#, d)! (b$ b#),

C12 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 2(b#, d)! (m#+ |b$ b#|),

C13 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 3(b#, d)! (m + |b$ b#|),

C14 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 4(b#, d)! (m + |b$ b#|),

C23 = " 2 $
B d"

b=1

B d"

b"=1

' 2(b, d)' 3(b#, d)! (m + |b$ b#|),

C24 = " 2 $
B d"

b=1

B d"

b"=1

' 2(b, d)' 4(b#, d)! (m + |b$ b#|),

C34 = " 2 $
B d"

b=1

B d"

b"=1

' 3(b, d)' 4(b#, d)! (m##+ |b$ b#|),

where we denote, for instance,' 1(b, d) =
!

j
wj

w

!
j "! db j

wj "
!

j " ! dj
wj "

and similarly for the

other elements.

The expectationE[|µjd $ µid ||µkd $ µ#d|] can be simulated from a large numberS (say,

S = 10, 000) of independent draws (øy1s, øy2s, øy3s, øy4s), with s = 1, . . . , S, of the random

vector (µjd , µid , µkd, µ#d). The simulated expectation will be a function of the variogram

parametersm, m#, m##and d and of " 2. It is denoted ( B (m, m#, m##, d, " 2) and estimated
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as follows:

( B (m, m#, m##, d, " 2) =
1
S

S"

s=1

|øy2s $ øy1s| á |øy4s $ øy3s|.

The summations inV ar[$ B d ] run over four indicesi, j, k, &. These can be equivalently

represented through summations at given distance lagsm, m#, m##. For instance, we write
!

i
wi
w

!
j

wj

w =
! B

m "=1

!
i

wi
w

!
j ! dm "i

wj

w to indicate that i and j are separated by a lag

of m# units on the transect. Repeating this for each of the three pairs of indicesi, j and

&, kand i, & we end up with three summations overm#, m##and m respectively, where the

aggregate weight is denoted

' (m, m#, m##, d) =
"

i

wi

w

"

j ! dm "i

wj

w
á
"

#

w#

w

"

k! dm ""#

wk

w
á
"

i

wi

w

"

#! dmi

w#

w
.

Hence, the Þrst term of theV ar[$ B d ],
!

i

!
j

wi wj

w2

!
#

!
k

w#wk
w2 E[|µid $ µjd ||µ#d $ µkd|],

can be written as follows:

B"

m=1

B"

m "=1

B"

m ""=1

' (m, m#, m##, d)( B (m, m#, m##, d, " 2). (20)

As of the second term ofV ar[$ B d ], we make use of the gaussian assumption and the

variogram properties to express the square of the expectation as a weighted analog of (8),
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that is

V ar[$ B d ] = E

(
"

i

"

j

wi wj

w2
|µid $ µjd |

) 2

=

$
"

i

"

j

wi wj

w2
E[|µid $ µjd |]

%2

=

$
"

i

"

j

wi wj

w2

2
V ar[|µid $ µjd |]

3
2
#

%2

=
2
#

$
"

i

wi

w

B"

m "=1

!
j ! dmi

wj

w

"

j ! dmi

wj!
j ! dmi

wj

2
V ar[|µid $ µjd |]

%2

=
2
#

$
B"

m "=1

"

i

"

j ! dmi

' ij (m, d)
2

V ar[|µid $ µjd |]

%2

(21)

where

V ar[|µid $ µjd |] =
B d"

b=1

B d"

b"=1

2' ij (b, b#, d)! (m $ | b$ b#|) $ (' i (b, b#, d) + ' j (b, b#, d)) ! (b$ b#).

Both weighting schemes in (20) and in (21) cannot be easily estimated in reasonable

computation time: they involve multiple loops across the observed locations, so thatthe

length of estimation increases exponentially with the density of the spatial structure. In

section A.5 we discuss estimators of the weights' ij (m, m#, m##, d), ' ij (m, d), ' ij (b, b#, d),

' i (b, b#, d) and ' j (b, b#, d) that are feasible, and provide the empirical estimator of the

varianceV ar[$ B d ].

The third component of (18) is the covariance termCov[$ B d , µd]. The indicesi, j, &

identify three locations and the average income in the respective neighborhoods, repre-

sented by the vector (µid , µjd , µ#d). Under normality and stationarity assumptions, we can
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write the covariance term as follows

Cov[$ B d , µd] = Cov[
"

i

"

j

wi wj

w2
|µid $ µjd |,

"

#

w#

w
µ#d]

=
"

#

w#

w
Cov[

"

i

"

j

wi wj

w2
|µid $ µjd |, µ#d]

=
"

#

w#

w

"

i

"

j

wi wj

w2
E[|µid $ µjd |µ#d] $

$
"

#

w#

w
E[µ#d]

"

i

"

j

wi wj

w2
E[|µid $ µjd |]

=
"

#

w#

w

"

i

"

j

wi wj

w2
E[|µid $ µjd |µ#d] $

$

3
2
#

µ
"

i

"

j

wi wj

w2

2
V ar[µid $ µjd ]. (22)

The Þrst term of (22) is the expectation of a non-linear function of convex combinations of

normally distributed random variables. Under the gaussian hypothesis, the expectation

E[|µid $ µjd |µ#d] can be nevertheless simulated from a large numberS (say, S = 10, 000) of

independent draws (øy1s, øy2s, øy3s) with s = 1, . . . , S from the random vector (µid , µjd , µ#d)

which is normally distributed with expectations (µ, µ, µ) and variance-covariance matrix

C of size 3, 3. Let use scalarsb and b# to denote a well deÞned distance gap between any

observation indexed by{ i, j, &} and any other observation that isb or b# units away from

it, within a distance boundary d. We use scalarsm# to indicate the gap betweeni and j ,

so that j = i + m#; we usem##to indicate the gap betweeni and &, so that &= i + m##.

Based on this notation, we obtain a convenient formulation for the covariances of mean
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neighborhood incomes that are weighted analog of (6), thus giving:

C11 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 1(b#, d)! (b$ b#),

C22 = " 2 $
B d"

b=1

B d"

b"=1

' 2(b, d)' 2(b#, d)! (b$ b#),

C33 = " 2 $
B d"

b=1

B d"

b"=1

' 3(b, d)' 3(b#, d)! (b$ b#),

C12 = " 2 $
B d"

b=1

B d"

b"=1

' 1(m#+ b, d)' 2(b#, d)! (m#+ |b$ b#|),

C13 = " 2 $
B d"

b=1

B d"

b"=1

' 1(b, d)' 3(m##+ b#, d)! (m##+ |b$ b#|),

C23 = " 2 $
B d"

b=1

B d"

b"=1

' 2(m#+ b, d)' 3(m##+ b#, d)! (|m#$ m##| + |b$ b#|),

where we denote, for instance,' 1(b, d) =
!

i
wi
w

!
i "! db i

wi "!
i " ! di

wi "
and similarly for the other

elements. See previous notation for further details. The expectationE[|µjd $ µid |µ#d] is

simulated from a number S of independent draws (øy1s, øy2s, øy3s) with s = 1, . . . , S of

the random vector (µjd , µid , µ#d). The simulated expectation will be a function of the

variogram parametersm#, m##and d and of " 2. It is denoted ( B (m, m#, m##, d, " 2) and

estimated as follows:

) B (m#, m##, d, " 2) =
1
S

S"

s=1

|øy2s $ øy1s|øy3s.

This element is constant overm# and m##. Hence, we use) B (m#, m##, d, " 2) as a simulated

analog forE[|µid $ µjd |µ#d], so that the covariance term
!

#
w#
w

!
i

!
j

wi wj

w2 E[|µid $ µjd |µ#d]
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writes
!

#
w#
w

!
i

!
j

wi wj

w2 ) B (m#, m##, d, " 2), or equivalently

"

i

wi

w

B"

m "=1

!
j ! dm "i

wj

w

B"

m ""=1

!
#! dm "" i

w#

w
) B (m#, m##, d, " 2),

which is denoted
! B

m "=1

! B
m ""=1 ' (m#, m##, d)) B (m#, m##, d, " 2).

The second term of (22) is calculated as in (21). Overall, we are now allowed to write

the covariance term as follows:

Cov[$ B d , µd] =
B"

m "=1

B"

m ""=1

' (m#, m##, d)) B (m#, m##, d, " 2)

$

3
2
#

µ
B"

m "=1

"

i

"

j ! dmi

' ij (m, d)
2

V ar[|µid $ µjd |], (23)

where

V ar[|µid $ µjd |] =
B d"

b=1

B d"

b"=1

2' ij (b, b#, d)! (m $ | b$ b#|) $ (' i (b, b#, d) + ' j (b, b#, d)) ! (b$ b#)

The weights have been already deÞned in (21). Plugging (13), (20), (21) and (23) into

(18) we derive an estimator for the GINI within index SE. The last section discuss feasible

estimators.

A.5 Implementation

Consider a sample of sizen of income realizationsyi with i = 1, . . . , n. The income

vector y = ( y1, . . . , yn ) is a draw from the spatial random process{ Ys : s # S} , while for

each locations # S we assume to observe, at most, one income realization. Information

about location of an observationi in the geographic spaceS under analysis is denoted

by si # S, so that a location s identiÞes a precise point on a map. Information about

latitude and longitude coordinates ofsi are given. In this way, distance measures between
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locations can be easily constructed. In applications involving geographic representations,

the latitude and longitude coordinates of any pair of incomeyi , yj can be combined to

obtain the geodesic distance among the locations ofi and of j . Furthermore, observed

incomes are associated with weightswi " 0 and are indexed according to the sample units,

with w =
!

i wi . It is often the case that the sample weights give the inverse probability

of selection of an observation from the population.

The mean income in an individual neighborhood of ranged, µid , is estimated by

4µid =
! n

j =1 öwj yj where

öwj :=
wj á1(||si $ sj || ' d)

!
j wj á1(||si $ sj || ' d)

so that
!

j öwj = 1, and 1(.) is the indicator function. The estimator of the average

neighborhood mean income is instead öµd =
! n

i =1
wi
w 4µid . The estimator of the GINI

between index of spatial inequality, denoted öGINI B (y , d), is the Gini inequality index

of the vector of estimated average incomes (öµ1d, . . . , öµnd), indexed by the sized of the

individual neighborhood. It can be computed by mean of the plug-in estimators as in

Binder and Kovacevic (1995) and Bhattacharya (2007). The estimator of theGINI within

index of spatial inequality, denoted öGINI W (y , d), is the sample weighted average of the

mean absolute deviation of the income of an individual located ins from the income of

other individuals located ins#, with ||s $ s#|| ' d. Formally

öGINI W (y , d) =
n"

i =1

wi

w
1

2öµid

n"

j =1

öwj |yi $ yj |,

where öwj is deÞned as above.

The estimation of the GINI indices is conditional ond, which is a parameter under

control of the researcher. The distanced is conventionally reported in meters and is meant

to capture a continuous measure of individual neighborhood. In practice, however, one

cannot produce estimates of spatial inequality for a continuum of neighborhoods, and so
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in applications the neighborhood size is parametrized by the product of the number and

size of lags between observations. The GINI indices are estimated for a Þnite number of

lags and for a given size of the lags. The maximum number of lags indicates the point at

which distance between observations is large enough that the spatial GINI indices converge

to their respective asymptotic values. For a given neighborhood of sized, we can then

partition the distance interval [0, d], deÞning the size of a neighborhood, intoK intervals

d0, d1, . . . , dK of equal size, withd0 = 0. The distance between any pair of observations

i and j located at distancedk" 1 < ||si $ sj || ' dk one from the other is assumed to be

dk . The pairs (dk , öGINI B (y , dk)) and (dk , öGINI W (y , dk)) for any k = 1, . . . , K can be

hence plotted on a graph. The curves resulting by linearly interpolating these pointsare

the empirical equivalent of the GINI spatial inequality curves.

A plug-in estimator for the asymptotic standard error of the GINI indices can be

derived under the assumptions listed in the previous sections. The SE estimator crucially

depend on four components: (i) the consistent estimator for the average ÷µ, denoted öµ,

which coincides with the sample average; (ii) the consistent estimator for variance " 2,

denoted ö" 2, which is given by the sample variance; (iii) the consistent estimator for the

variogram; (iv) the estimator of the weighting schemes.

Empirical estimators öµ and ö" 2 are standard. The robust non-parametric estimator

of the variogram proposed by Cressie and Hawkins (1980) can be used to assess the

pattern of spatial dependency from spatial data on income realizations. The empirical

variogram is deÞned for given spatial lags, meaning that it produces a measure of spatial

dependence among observations that are located at a given distance lag one from the

others. Under the assumption that data occur on the transect at equally spaced points,

we useb = 1, . . . , B to partition the empirical spectrum of distances between observed

locations into equally spaced lags, and we estimate the variogram on each of these lags.

This means that 2! (b) refers to the correlation between incomes placed at distance lags of
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exactly b distance units. It is understood that the size of the sample is large compared to

B, in the sense that the sampling rate per unit area remains constant when the partition

into lags becomes Þner. This assumption allows to estimate a non-parametric version

of the variogram at every distance lag. Following Cressie (1985), we use weighted least

squares to Þt a theoretical variogram model to the empirical variogram estimates. The

theoretical model consists in a continuous parametric function mapping distance into the

corresponding variogram level. In the application, we choose the spherical variogram

model for ! (see Cressie 1985). We also assume that! (0) ( 0 and that ! (a) = " 2, where

a is the so-called range level: beyond distancea, the random variablesYs+ h and Ys with

h > a are spatially uncorrelated. Under the assumption that data occur on a transect,

we set the max number of lagsB so that 2B = a. The parameters of the variogram

model are estimated via weighted least squares, where the non-parametric variogram

coordinates are regressed on distance lags. The estimated parameters arethen used to

draw parametric predictions for the estimator 2ö! of the variogram at pre-determined

abscissae (distance lags). The predictions are then plugged into the GINI indices SE

estimators. Cressie (1985) has shown that this methodology leads to consistent estimates

of the true variogram function under the stationarity assumptions mentioned above.

Finally, SE estimation requires to produce reliable estimators of the weights' . These

can be non-parametrically identiÞed from the formulas provided above. In some cases,

however, computation of the exact weights requires looping more than once across ob-

servations. The overall computation time thus increases exponentially in the number of

observations and the procedure becomes quickly unfeasible. We propose alternative, fea-

sible estimator for these weights, denoted ö' , that are expressed as linear averages. The

computational time is, nevertheless, quadratic in the number of observations as it requires

at least one loop across all observations.

We consider here only the weights that appear in the estimatorsöSEW d in (10) and
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öSEB d in (18) that cannot be directly inferred (i.e., are computationally unfeasible) from

observed weights. For a given observationi , deÞnew(b, i) =
!

j ! dbi
wj for any gap b =

1, . . . , Bd, . . . , B the weight associated with income realizations that are exactly located

b lags away fromi . Then, denotew(d, i) =
!

j ! di
wj =

! B d
b=1 w(b, i). We construct the

following estimators for the weights appeasing in the GINI within SE estimator:

For (14) : ö' (m, b, b#, d) =
"

i

wi

w
w(b, i)
w(d, i)

w(m, i )
w

w(m + b#, i )
w(m + d, i)

,

For (16) : ö' (m, b#, d) =
"

i

wi

w
w(m, i )

w
w(b#, i )
w(d, i)

,

To compute these weights, one has to loop over all observations twice, and assign to each

observationi the total weight w(b, i) of those observationsj -= i that are located exactly

at distance b from i . Then, ö' (m, b, b#, d) and ö' (m, b#, d) are obtained by averaging these

weights acrossiÕs. The key feature of these estimators is that second-order loops across

observations placed at distanceb# from an observation at distancem from i are estimated

by averaging across all observationsi the relative weight of observations at distancem+ b#

from ay i .

For the computation of the GINI between index, one needs to construct the relative

weights by taking as a reference the maximum distance achievable, and not the reference

abscissad for which the index is calculated. We hence assume that beyond the thresholdd,

indicating half of the the maximum distance achievable in the sample, spatial correlation

is negligible and weights can thus be set to zero. We implicitly maintain thatd ' d. We
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then propose the following estimators:

For (20) : ö' (m, m#, m##, d) =
"

i

wi

w
w(m#, i )

w(d, i)

w(m, i )

w(d, i)

w(m + m##, i )

w(m + d, i)

For (21) : ö' ij (b, b#, d) =
w(b, i)
w(d, i)

w(m + b#, i )
w(m + d, i)

For (21) : ö' i (b, b#, d) =
w(b, i)
w(d, i)

w(b#, i )
w(d, i)

For (21) : ö' j (b, b#, d) =
w(m + b, i)
w(m + d, i)

w(m + b#, i )
w(m + d, i)

For (21) :
"

i

"

j ! dmi

ö' ij (m, d) =
"

i

wi

w
w(m, i )

w

By plugging these estimators into (19) we obtain the implementable estimator of the

variance componentV ar[$ B d ], deÞned as follows:

5V ar[$ B d ] =
B"

m=1

B"

m "

B"

m ""=1

ö' (m, m#, m##, d)( B (m, m#, m##, d, ö" 2) $

2
#

$
B"

m "=1

"

i

wi

w
w(m, i )

w

2
5V ar[|µid $ µjd |]

%2

(24)

where

5V ar[|µid $ µjd |] =
B d"

b=1

B d"

b"=1

2ö' ij (b, b#, d)ö! (m $ | b$ b#|) $ (ö' i (b, b#, d) + ö' j (b, b#, d))ö! (b$ b#).

An equivalent procedure, based on analogous weighting scheme, has to be replicated

to determine the empirical estimator for (23).
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B Additional tables of results

Figure 6 show that, in general, the gap in GINI within indices is small and never sig-

niÞcant, not even at 10% conÞdence level. Essentially, there is no statistical support to

conclude that the GINI curves for within spatial inequality have changed across time, a

result which holds irrespectively of the extent of individual neighborhood. We draw a

di!erent conclusion for what concerns changes associated to the GINI between inequality

curves. Pairwise di!erences across these curves, along with their conÞdence intervals, are

reported in Figure 7. The di!erences in inequality curves compared to the spatial inequal-

ity curve of the year 1980 (panels (a), (b) and (c) of the Þgure) are generallypositive and

signiÞcant at 5% conÞdence level. This indicates that spatial inequality between indi-

vidual neighborhood has increased compared to the initial period, roughly homogenously

with respect to the individual neighborhood spatial extension. After that period,data

display very little statistical support to changes in inequality across the 1990Õ and 2000Õ.

Spatial between inequality has slightly increased after 1990 (panels (d) and (e)), while it

has remained stable after 2000 (panel (f)). In the latter case, the conÞdencebounds of

the di!erence in spatial inequality curves of years 2010/2014 and 2000 ßuctuates around

the horizontal axis.

We use estimates of the GINI standard errors to study the pattern of the spatial in-

equality curves. More speciÞcally, we compute di!erences in the GINI withinGINI W (d)

or betweenGINI B (d) indices at various abscissaed, then we compute the standard errors

of these di!erences, and Þnally we test if these di!erences are signiÞcantly di!erent than

zero. If they are, we study how spatial inequality evolves with the size of the neigh-

borhood. In particular, the sign of these di!erences predicts the direction of the change

in spatia inequality. We refer to Þve distance thresholds deÞning neighborhoods that

are very small (100 meters, 300 meters), relatively large (1km, 5km), and very inclusive

neighborhoods (10km, 25km), which include most of the urban space under analysis. The
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Index Year Di!erences across distances
300m vs 1km vs 5km vs 25km vs 10km vs 25km vs 25km vs

100m 100m 100m 100m 2km 2km 10km
GINI W 1980 -0.004 -0.012 -0.006 0.015 0.013 0.025 0.012

(0.019) (0.020) (0.020) (0.021) (0.021) (0.023) (0.023)
1990 -0.006 -0.019 0.003 0.037* 0.036 0.051** 0.015

(0.022) (0.022) (0.021) (0.021) (0.022) (0.023) (0.021)
2000 -0.004 -0.016 -0.002 0.035* 0.034 0.050** 0.016

(0.017) (0.017) (0.020) (0.021) (0.021) (0.022) (0.024)
2010 -0.000 -0.004 0.001 0.033 0.019 0.036 0.017

(0.017) (0.018) (0.019) (0.021) (0.021) (0.023) (0.024)
GINI B 1980 -0.020** -0.087** -0.151** -0.239** -0.061** -0.120** -0.059**

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.003)
1990 -0.012** -0.084** -0.171** -0.280** -0.097** -0.160** -0.064**

(0.004) (0.003) (0.004) (0.004) (0.003) (0.003) (0.004)
2000 -0.009** -0.060** -0.130** -0.237** -0.095** -0.152** -0.057**

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
2010 -0.019** -0.083** -0.160** -0.261** -0.084** -0.141** -0.058**

(0.002) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

Table 2: Patterns of GINI indices across distance levels
Note: Authors elaboration on U.S. Census data. Each column report di!erences in GINI indices at
various distance thresholds. SE of the distance estimate are reportedin brackets. SigniÞcance levels:
! = 10% and !! = 5%.

resulting di!erences are reported in Table 2. We note that the dip in the spatial inequality

curve associated with the GINI within is not statistically signiÞcant, since most of the

changes in spatial inequality in very large neighborhoods is substantially equivalent to

the spatial inequality observed for very small neighborhoods (between 100 to300 meters

of size). For 1990 and 2000, we Þnd a statistically signiÞcant increase in inequality when

average size neighborhoods (1km of radius) are compared with very large concepts of

neighborhoods. Overall, the GINI within pattern is substantially ßat when the distance

increases beyond 5km. The pattern registered for the GINI between index is much more

clear-cut: generally, the spatial inequality curve constructed from the index is decreasing

in distance (di!erences in GINI between are always negative), and the patterns of changes

are also signiÞcant at 5%, indicating strong reliability on the pattern of heterogeneity in

average income distribution across neighborhoods.
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Figure 6: Di!erences in spatial GINI within indices over four decades, Chicago (IL)

(a) GINI W 1990 -GINI W 1980 (b) GINI W 2000 -GINI W 1980

(c) GINI W 2014 -GINI W 1980 (d) GINI W 2000 -GINI W 1990

(e) GINI W 2014 -GINI W 1990 (f) GINI W 2014 -GINI W 2000

Note: Authors elaboration on U.S. decennial Census data and 2010/14 CS data. The income concept

is equivalent gross annual household income. ConÞdence bounds at 95% are based on standard error

estimators discussed in the appendix A.
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Figure 7: Di!erences in spatial GINI between indices over four decades, Chicago (IL)

(a) GINI B 1990 -GINI B 1980 (b) GINI B 2000 -GINI B 1980

(c) GINI B 2014 -GINI B 1980 (d) GINI B 2000 -GINI B 1990

(e) GINI B 2014 -GINI B 1990 (f) GINI B 2014 -GINI B 2000

Note: Authors elaboration on U.S. decennial Census data and 2010/14 CS data. The income concept

is equivalent gross annual household income. ConÞdence bounds at 95% are based on standard error

estimators discussed in the appendix A.
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C Statistics for selected U.S. cities

City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

New York (NY) 1980 6319 1318 1.572 12289 4601 19034 0.474 11.247
1990 6774 1664 2.058 22763 7799 35924 0.507 13.013
2000 6618 1537 1.604 41061 12196 66542 0.549 25.913

2010/14 7182 1140 1.566 56558 19749 92656 0.502 17.323

Los Angeles (CA) 1980 5059 1052 1.615 14697 6167 22248 0.441 10.735
1990 5905 1585 2.012 26434 10509 41048 0.475 12.391
2000 6103 1158 1.690 38844 13720 59767 0.509 19.256

2010/14 6385 1107 1.649 55224 19056 90324 0.505 13.628

Chicago (IL) 1980 3756 1122 1.630 13794 5798 20602 0.434 11.351
1990 4444 1217 2.029 21859 9132 32316 0.461 11.903
2000 4691 1173 1.625 41193 16076 61667 0.473 11.533

2010/14 4763 1060 1.575 55710 20022 89856 0.486 13.452

Houston (TX) 1980 1238 1253 1.624 15419 6900 22718 0.428 10.233
1990 2531 1291 1.994 22827 10203 33287 0.462 11.771
2000 2318 1418 1.667 39231 16619 57539 0.472 10.736

2010/14 2781 2148 1.644 55841 22156 88033 0.484 12.394

Philadelphia (PA) 1980 3978 855 1.650 12651 5589 18557 0.410 10.245
1990 3300 1384 2.001 21816 9601 31606 0.442 11.788
2000 4212 982 1.602 38995 15788 57841 0.454 10.972

2010/14 3819 1124 1.566 56205 21567 89602 0.465 13.174

Phoenix (AZ) 1980 697 1155 1.609 12854 5920 18741 0.401 8.972
1990 1857 961 1.970 21233 9831 30732 0.439 9.803
2000 1984 1222 1.622 37860 17098 54998 0.437 8.541

2010/14 2494 1110 1.590 48194 20218 73509 0.456 10.906

San Antonio (TX) 1980 597 891 1.686 10501 4364 15399 0.451 10.206
1990 1101 890 1.983 17350 7569 25243 0.455 9.903
2000 1065 1189 1.651 31592 13726 45517 0.454 16.081

2010/14 1220 1307 1.623 44773 19048 68074 0.454 11.225

San Diego (CA) 1980 908 1471 1.577 12759 5628 18338 0.412 8.893
1990 1628 1473 1.961 24194 11007 35191 0.434 11.239
2000 1678 1172 1.637 39537 16698 57219 0.451 9.644

2010/14 1789 1546 1.615 55564 21947 88783 0.452 11.978

Table 4: Income and population distribution across block groups, U.S. 50 largest cities
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Continued

City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

Dallas (TX) 1980 1141 931 1.620 14614 6759 21494 0.425 9.522
1990 2310 965 1.993 24074 11287 35141 0.454 11.691
2000 2189 1251 1.633 43913 19306 65158 0.464 10.093

2010/14 2696 1251 1.625 54729 23689 84291 0.460 11.163

San Jose (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 1016 1400 1.954 32120 15598 47103 0.405 8.339
2000 965 1169 1.689 59428 24663 91637 0.433 9.465

2010/14 1071 1427 1.664 82154 30785 137435 0.455 14.295

Austin (TX) 1980 296 1084 1.517 11407 4867 17064 0.440 9.902
1990 718 1345 2.019 18968 8497 27339 0.461 10.522
2000 644 1416 1.569 38993 17418 55766 0.442 9.455

2010/14 899 1662 1.576 55093 23478 85981 0.443 11.403

Jacksonville (FL) 1980 434 1000 1.622 10868 4602 15546 0.428 9.415
1990 628 1509 1.973 19217 8365 27219 0.435 9.512
2000 505 2358 1.590 34398 14528 49341 0.434 8.629

2010/14 688 1757 1.550 46517 18370 71941 0.450 10.883

San Francisco (CA) 1980 1083 1166 1.514 16322 6927 24339 0.424 9.864
1990 1226 1477 2.040 28783 11624 44191 0.467 13.379
2000 1105 1316 1.549 60967 20961 97430 0.494 13.179

2010/14 1210 1328 1.525 85755 28440 145763 0.482 16.858

Indianapolis (IN) 1980 730 1073 1.617 12550 5958 18183 0.388 9.032
1990 1029 1395 1.985 20996 9806 29406 0.425 9.515
2000 944 1395 1.573 37021 16392 52896 0.423 8.317

2010/14 1030 1639 1.568 47262 19870 71036 0.450 10.624

Columbus (OH) 1980 758 1105 1.593 12427 5984 17840 0.394 8.874
1990 1281 1128 1.988 19865 9262 28819 0.427 9.649
2000 1140 986 1.553 35926 16152 51815 0.431 8.848

2010/14 1269 1293 1.560 48270 21115 72778 0.439 11.633

Fort Worth (TX) 1980 640 650 1.615 12873 5870 18794 0.409 9.169
1990 1203 956 1.972 21517 10428 30620 0.424 9.835
2000 1101 1147 1.638 37074 17140 52607 0.429 8.719

2010/14 1326 1294 1.625 50540 21830 75565 0.449 10.553

Charlotte (NC) 1980 346 1169 1.614 11411 5203 16277 0.400 8.864
1990 930 1032 1.959 20366 8961 29519 0.424 9.445
2000 856 1195 1.583 39683 16640 59188 0.451 9.145

2010/14 1172 1299 1.579 47697 19231 74717 0.452 11.757

Detroit (MI) 1980 2184 764 1.638 12853 5587 19246 0.415 10.783
1990 4531 974 1.990 22673 10194 33441 0.445 12.181
2000 3954 963 1.603 40742 17362 59654 0.439 9.817

2010/14 3798 986 1.560 46492 18592 71604 0.456 11.856

El Paso (TX) 1980 218 897 1.759 8525 3572 12373 0.443 9.182
1990 425 1042 1.969 15009 6372 21601 0.456 8.963
2000 418 960 1.750 23862 9095 33972 0.476 16.668

2010/14 511 1142 1.694 33277 13049 51000 0.462 11.060
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Continued

City Year # Blocks Hh/block Eq. scale Equivalent household income
Mean 20% 80% Gini 90%/10%

Seattle (WA) 1980 1405 885 1.540 14437 6481 21204 0.398 8.514
1990 2255 1004 1.984 22563 10601 31905 0.416 10.514
2000 2473 855 1.568 42386 18650 60276 0.427 8.448

2010/14 2475 1087 1.555 59626 24442 92751 0.438 10.314

Denver (CO) 1980 1054 899 1.575 14283 6866 20352 0.396 8.081
1990 1694 983 2.005 22072 10791 31410 0.432 11.069
2000 1711 1038 1.578 43300 20142 62101 0.425 8.100

2010/14 1908 1230 1.561 58203 24081 90216 0.450 10.751

Washington (DC) 1980 1580 1608 1.619 18273 9281 26315 0.390 8.361
1990 2540 2193 1.968 32091 16818 45700 0.404 7.758
2000 2642 1409 1.603 53263 24898 78715 0.425 8.968

2010/14 3335 1360 1.600 80366 35929 124973 0.420 10.665

Memphis (TN) 1980 478 1021 1.639 11370 4852 16693 0.457 10.804
1990 920 903 1.997 17888 8072 26052 0.471 10.945
2000 783 1153 1.605 33086 13753 47853 0.471 18.640

2010/14 764 1380 1.573 42700 17702 65757 0.465 11.492

Boston (MA) 1980 3662 809 1.622 12696 5417 18790 0.406 10.048
1990 4497 1032 1.997 24633 10314 37112 0.436 12.226
2000 3963 961 1.584 43840 16776 66109 0.458 11.004

2010/14 4082 1058 1.566 64422 23196 105048 0.470 13.712

Nashville (TN) 1980 375 1043 1.605 12416 5382 18373 0.442 10.358
1990 755 1260 1.979 19811 8712 28653 0.442 9.710
2000 723 1374 1.555 36360 15118 52565 0.448 9.000

2010/14 911 1535 1.568 49714 20024 76735 0.452 10.444

Baltimore (MD) 1980 1517 900 1.641 12751 5932 18442 0.400 10.075
1990 1965 1269 1.972 23987 11302 34591 0.426 11.780
2000 1780 1204 1.588 38615 16954 55517 0.431 9.565

2010/14 1932 1182 1.567 59954 25171 93398 0.439 11.158

Oklahoma City (OK) 1980 709 720 1.573 12933 5777 18878 0.419 9.075
1990 1034 854 1.993 17551 7499 26072 0.445 9.616
2000 880 941 1.557 30578 12488 44422 0.447 15.739

2010/14 1015 1021 1.562 45377 18504 68795 0.457 10.504

Portland (OR) 1980 696 1077 1.526 12819 5411 18704 0.404 9.155
1990 1145 1131 1.991 19987 8840 28511 0.424 9.403
2000 1141 1111 1.586 37618 16409 53854 0.417 8.385

2010/14 1374 1211 1.567 49201 19927 74485 0.428 10.490

Las Vegas (NV) 1980 150 2018 1.554 12756 5568 17713 0.406 8.542
1990 318 2570 1.976 20006 8888 27960 0.431 9.310
2000 796 1396 1.620 36442 16095 51823 0.430 8.202

2010/14 1284 1215 1.592 44657 18771 66044 0.442 9.525

Louisville (KY) 1980 582 873 1.592 11451 5036 17218 0.414 9.188
1990 957 938 1.990 18323 7864 27067 0.445 9.771
2000 742 1021 1.542 32264 13213 46595 0.444 15.196

2010/14 840 1087 1.536 45220 17798 69576 0.451 10.739
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Milwaukee (WI) 1980 1125 788 1.606 13629 6277 19823 0.384 8.008
1990 1540 935 1.994 20192 9430 29189 0.420 9.621
2000 1389 883 1.575 36437 15855 52408 0.426 8.692

2010/14 1465 927 1.540 48088 19198 72556 0.452 10.903

Albuquerque (NM) 1980 278 957 1.629 11593 5209 16795 0.413 9.366
1990 430 884 1.992 18125 8120 26181 0.444 9.886
2000 404 941 1.558 33181 13980 47243 0.440 9.523

2010/14 434 1176 1.533 43410 17042 66070 0.461 11.785

Tucson (AZ) 1980 306 810 1.578 10384 4601 15056 0.400 8.130
1990 561 1029 2.000 16834 7279 24236 0.461 9.772
2000 601 1045 1.551 30864 12504 44934 0.460 15.544

2010/14 614 1423 1.534 42082 16637 64100 0.463 11.018

Fresno (CA) 1980 571 1417 1.633 16762 8441 24258 0.365 7.215
1990 532 1044 1.989 18020 7467 26327 0.463 9.649
2000 546 933 1.730 27064 10878 38272 0.471 16.750

2010/14 587 1094 1.714 37117 15473 56226 0.461 11.747

Sacramento (CA) 1980 423 1148 1.529 11659 4941 17097 0.408 9.032
1990 1031 1557 1.968 21357 9535 30607 0.421 10.800
2000 1094 1199 1.616 36344 15452 52005 0.434 9.269

2010/14 1369 1143 1.606 49000 20048 75343 0.435 11.883

Kansas City (MO-KS) 1980 1006 991 1.587 13577 6444 19645 0.393 9.056
1990 1465 1043 1.991 20820 9844 29980 0.426 9.736
2000 1352 1005 1.575 38395 17532 54896 0.426 8.529

2010/14 1468 1111 1.562 50056 21337 76139 0.439 10.496

Atlanta (GA) 1980 840 1150 1.591 11821 4837 17433 0.457 10.792
1990 1962 1650 1.959 24596 11684 35257 0.431 11.546
2000 1639 1826 1.628 43435 19191 63050 0.438 9.395

2010/14 2379 1631 1.598 51857 20271 80941 0.460 12.044

Norfolk (VA) 1980 541 1142 1.666 11265 5156 16109 0.411 9.453
1990 903 1531 1.951 19181 9208 27018 0.405 9.323
2000 892 1189 1.619 32543 15069 45638 0.412 7.757

2010/14 1089 1135 1.572 48576 21406 72037 0.420 9.538

Omaha (NE-IA) 1980 399 814 1.616 12576 5952 17858 0.388 8.192
1990 626 728 1.991 19465 9546 27285 0.424 9.462
2000 650 626 1.584 35338 16484 49614 0.417 7.904

2010/14 745 801 1.570 47979 21411 70100 0.428 9.776

Colorado Springs (CO) 1980 159 961 1.583 11320 5290 16547 0.406 8.194
1990 308 1077 1.970 19034 9441 26299 0.408 9.125
2000 303 1174 1.612 35946 18023 49660 0.391 7.238

2010/14 362 1506 1.590 47967 21394 72013 0.422 9.581

Raleigh (NC) 1980 237 1331 1.563 12403 5620 18069 0.414 9.799
1990 499 1623 1.981 21517 9825 30516 0.421 11.087
2000 430 1545 1.553 40050 16738 57936 0.445 9.987

2010/14 707 1679 1.567 54607 22647 84366 0.444 10.753
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Miami (FL) 1980 1307 2022 1.559 12962 5246 18895 0.444 9.980
1990 1549 3062 2.008 19659 7405 28802 0.477 10.503
2000 638 1987 1.556 35599 14112 51177 0.451 9.572

2010/14 936 1474 1.557 47343 18170 73153 0.457 11.349

Oakland (CA) 1980 1376 1007 1.589 14714 6930 21331 0.397 9.819
1990 1636 1673 1.972 27737 13353 40200 0.428 11.701
2000 1488 1277 1.631 47663 20554 71300 0.443 11.010

2010/14 1676 1289 1.622 68482 27490 110290 0.457 13.566

Minneapolis (MN) 1980 1704 829 1.593 14300 6794 20511 0.383 7.374
1990 2239 1096 1.986 23220 11170 33176 0.411 10.532
2000 2105 1136 1.593 43427 20413 61659 0.408 7.339

2010/14 2244 1231 1.570 57533 24116 88819 0.432 9.900

Tulsa (OK) 1980 340 823 1.546 12889 5475 19014 0.431 9.341
1990 730 779 1.990 18258 7716 26596 0.455 9.883
2000 541 980 1.566 33077 13504 48629 0.446 8.419

2010/14 599 1154 1.566 44777 17354 68006 0.457 10.355

Cleveland (OH) 1980 1654 867 1.631 12466 5551 18359 0.402 9.899
1990 2691 1052 2.005 19509 8388 28706 0.446 10.056
2000 2272 1029 1.563 35221 14392 50973 0.443 9.109

2010/14 2238 1085 1.519 44764 17146 68783 0.460 11.080

Wichita (KS) 1980 289 704 1.576 12717 5768 18455 0.388 8.499
1990 451 896 1.989 19303 8801 27625 0.428 9.526
2000 371 954 1.590 33430 15421 47101 0.414 7.812

2010/14 411 1133 1.575 43162 18600 64259 0.431 9.672

New Orleans (LA) 1980 938 960 1.623 11743 4629 17279 0.456 11.116
1990 1215 1113 2.015 15751 5944 23640 0.484 26.274
2000 974 1009 1.597 29996 10495 43919 0.490 18.694

2010/14 1053 924 1.532 44250 15342 69804 0.481 13.121

BakersÞeld (CA) 1980 169 810 1.635 11081 4431 15901 0.423 9.342
1990 374 1170 1.965 18526 8018 26588 0.433 9.347
2000 353 1171 1.723 27908 11092 39953 0.459 16.969

2010/14 450 1319 1.723 38846 16404 59346 0.447 11.251

Tampa (FL) 1980 903 1300 1.515 10663 4430 15388 0.424 8.280
1990 1547 1620 1.980 17140 7176 24448 0.440 9.216
2000 1448 1307 1.530 32815 13303 46343 0.448 8.451

2010/14 2002 1131 1.506 43788 17047 66315 0.460 10.445
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