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Abstract

This paper aims at characterizing the dynamics of R&D competi-
tion within the pharmaceutical domain, focusing on the role of patent
disclosure, the extent of uncertainty, and role of scientific advances.
Following the empirical literature in the economics of innovation, we
employ patents as a proxy for innovations and patent citations as a
measure of knowledge utilization and spillovers. Pharmaceuticals are
a unique setting in this respect, given the characteristics of the innova-
tion process, that make patents an important means for appropriating
returns from R&D. All in all, the analysis provides evidence that in
the pharmaceutical industry research advances through a process of
trial-and-error, where both successes and failures set the ground for
subsequent innovations. The disclosure of the information about new
compounds or new mechanisms of action play an important role in this
industry fostering R&D efforts and competition in identified therapeu-
tic markets in the search for new marketable products building both on
failures and successes. The outcome of this process is highly uncertain
and building on a success provides no certainty about the outcome of
the search. Indeed, discontinued patents building on previous failures
exhibit a higher citation rate. We also contribute to the debate about
the relevance of citation in measuring patent value by looking at the
relationship between patent citations and product sales.

∗University of Verona
†University of Florence and IMT, Lucca
‡University of Florence
§This paper is the result of the “R&D competition” research project carried out jointly

with Adrian Towse and Martina Garau of the Office of Health Economics, London, UK. A
preliminary draft of the paper has been presented to the DRUID Summer Conference 2006
(Copenhagen), to the 11th ISS Conference (Sophia-Antipolis), to the IHEA conference,
Sixth World Congress, and to the “Health Economics and The Pharmaceutical Industry”
Conference (IDEI, Toulouse). Comments and suggestions by Fabio Montobbio, Mark
Supekar, Cristina Tinti, Mathias Dahm and conference discussants and participants are
gratefully acknowledged.

1



1 Introduction

The pharmaceutical industry faces continued criticism over the productivity
of R&D spend and in particular over the value of “me too” innovation. There
is a lack of understanding of the nature of scientific advance in medicine
and the extent of uncertainty (in terms of project failure) of R&D work in
a therapy area.

This paper – which is part of a larger on-going research project on the
properties of R&D competition in pharmaceuticals – looks at the features of
the learning process that characterizes the actors operating within the phar-
maceutical domain. This industry represents a unique framework for study-
ing issues related to innovation and innovative activities, given its strong
roots into the realm of scientific knowledge, the important role played by
patents as a means for protecting economic returns from R&D (in exchange
of the full disclosure of the characteristics of the innovation), the high level
of competition and its distinctive industry structure, where actors with dif-
ferent ethos, especially with regard to information sharing and disclosure,
and different capabilities coexist and have created a wide network of collab-
orations1.

Strong linkages exist between drug development and the scientific ad-
vances in the “Open Science”, leading firms to dissect and analyze an increas-
ing number of techniques, trajectories and exploration strategies (Orsenigo,
Pammolli and Riccaboni 2001). Basic science constantly feed the innovation
process in pharmaceuticals, leading firms to seek within a common pool of
knowledge. Despite that, research investments across firms are weakly corre-
lated, after removing the common effect due to exogenous shocks (Henderson
and Cockburn 1994). This pattern notwithstanding, knowledge spillovers
play a significant role in pharmaceutical research and competing projects
exhibit complementary patterns, as rival research results are positively cor-
related with firm productivity (Henderson and Cockburn 1994, Henderson
and Cockburn 1996).

Against this background, we build on a comprehensive dataset about
the innovative activity of pharmaceutical and biotechnology firms, includ-
ing R&D project level data, patents, citations, and collaborations, and ex-
plore the nature of technological advances and of the underlying technolog-
ical (learning) regime, shaping the industrial patterns of innovative activity
(Nelson and Winter 1982, Winter 1994, Malerba and Orsenigo 1993, Breschi,
Malerba and Orsenigo 2000).

1See, e.g., Powell, Koput and Smith-Doerr (1996)
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The literature has analyzed the pattern of successes over time, finding
evidence of low serial correlation in the introduction of successful products
within families of chemically related compoounds at the firm level (Sut-
ton 1998). Analogously to the economic value of findings and non-findings
spanning from basic research, we claim that the learning process within the
pharmaceutical domain builds both on R&D successes and failures (David,
Mowery and Steinmueller 1992).

Given the high relevance of patent for protecting pharmaceutical innova-
tions (Cohen, Nelson and Walsh 2000, Arundel and Kabla 1998), research ef-
forts are proxied using patents, whereas knowledge utilization and spillovers
are measured by looking at the pattern of patent citations2. The key as-
sumption is that a citation made to a previous patent denotes a knowledge
transfer from the cited patent to the citing one3. Patents rule out direct
imitation of the innovative compound or process, nonetheless the informa-
tion disclosed trough patents expand the knowledge frontier and can provide
rivals useful insights into new chemical and pharmacological properties of
compounds or mechanism of action, eventually fostering research for new
patentable compounds or processes. Two competing processes can be at
work here. On the one side, patenting may guarantee the innovating firm
an advantaged position in the industry. On the other side, the disclosure of
a breaktrough innovation trough patenting may be the source of new techno-
logical opportunities for the firms operating in the same industry, providing
information the rivals can build upon. Generally, empirical results support
both types of effect, depending on the appropriability and complementary
asset regimes (McGahan and Silverman 2006).

Our analysis reveals that technological competencies are accumulated
building both on successfully developed compounds and on failures. On
the one side, it is not surprising that marketed products play an important
role in guiding subsequent research efforts of both the innovating firm and
its rivals. On the other side, also failures, i.e. compounds that do not pass
trough all the stages involved in drug development, due, for example, to lack
of effectiveness or toxicological effects, substantially spur rival innovative
efforts. Actually patents whose knowledge base also comprises failures by
rival firms have higher relevance as measured by the number of life-time

2See Jaffe and Trajtenberg (2002) and the literature referenced therein.
3We are aware that patent citation count is only a noisy proxy of the relevance of the

knowledge disclosed, since citations might be included for strategic purposes or added by
firm’s lawyers or by patent examiners (Alcacer and Gittelman 2004). However, survey
evidence shows that, even if noisy, patent citations are indicative of knowledge spillovers
and communication among inventors (Jaffe, Trajtenberg and Fogarty 2000).

3



received citations.
The distinction between leadlike and druglike compounds is useful in

interpreting our results. At the early stages of drug development, firms
identify lead structures, i.e. compounds that typically exhibit sub-optimal
target binding affinity, but with relatively simple chemical features, well-
established structure-activity relationship, good properties in terms of ab-
sorption, distribution, metabolism, and excretion, and a favorable patent
situation, making them good starting points in medicinal chemistry efforts
(Oprea, Davis, Teague and Leeson 2001). Even though they will never reach
the market, a large number of subsequent development builds on their struc-
ture.

In the pharmaceutical technological paradigm (Dosi 1988), firms need
to be able to master knowledge from many different sources when search-
ing for new molecules with optimal target binding affinity properties. First
basic scientific knowledge about the relationship between chemical struc-
tures and physical properties, then technological capabilities and previous
experience, built on the basis of both its failures and successes, and of fail-
ures and successes of rival firms. The analysis presented in the paper shows
that knowledge about failed compounds play an important role in guiding
subsequent research efforts, both within and outside the originating firm
boundaries.

The paper is organized as follows. Section 2 describes the features of the
drug development process, which is characterized by high uncertainty, low
cumulativeness, and by a large presence of knowledge spillovers. Section 3
describes the data and the methods used in this study. Section 4 presents
the empirical results, discussed in Section 5, also drawing implications in
terms of efficiency of the research efforts at the sector level.

2 The Drug Development Process

When talking about the innovation process and its dynamic properties, the
pharmaceutical industry is a peculiar one in many respects.

The pharmaceutical industry is a textbook example of a “science-based”
sector (Pavitt 1984), where innovation, both in the form of new therapeutic
products and improvements of existing products (in terms of better delivey,
reduced side effects, or improved efficacy) is jointly driven by advances in
the field of applied sciences and in the knowledge about bacterial, animal
and human processes led by the scientific community. Innovation is, in turn,
the fundamental source of firm competitiveness and profitability.
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However, the pharmaceutical R&D process involve high costs, long devel-
opment times, and it is subject to high uncertainty. The innovative process
of drug development evolves linearly through well-defined stages. When a
firm discovers a potentially active substance a patent is applied for pre-
venting firm’s rivals from copying the new compound or technology. Even
if important, the patent is only the first step in a lengthy process for the
development of new drugs, not always ending with a product that can be
commercialized on the market. First, preclinical trials are aimed at assess-
ing the safety of administering the compound to human, and then clinical
trials are carried over for assessing its safety and effectiveness in target-
ing the selected indications. Only in case all the stages are successfully
passed, the new compound can be registered and then marketed, allowing
the firm to recover the R&D costs necessary for its development. Studies
based on US trials report an average time of 6/8 years from the start of
clinical testing to submission of a new drug application or a biological li-
censing application (DiMasi, Hansen and Grabowski 2003, Abrantes-Metz,
Adams and Metz 2004). Pre-approval costs are estimated to be over 800
million US (2000) dollars (DiMasi et al. 2003, Adams and Brantner 2006).
Besides development times and out-of-pocket expenditures, cost estimates
takes into account the significant share of R&D projects is abandoned due
to the emergence of toxicological effects or to the lack of effectiveness in
treating the targeted disease. US Food and Drug Administration (FDA)
estimates that only a small percentage of the discovered compounds lead to
a marketable product: among the compounds selected for human clinical
trials, 70% passes Phase I, while the share of successful compounds is sig-
nificantly reduced in the case of Phase II and Phase III, respectively 33%
and 25-30% (Trenter 1999). Even if a product successfully reaches the mar-
ket, firms do not suspend the monitoring activity to check the emergence of
side effects or new toxicological evidence that might eventually lead to the
withdrawal of the product from the market4.

In addition, the pharmaceutical R&D process is characterized by a large
presence of R&D spillovers. Larger firms enjoy higher productivity rates not
only for economies of scale, but also for economies of scope spanning from a
high level of diversification in the R&D activity that allow firms to capture
internal and external knowledge spillovers (Henderson and Cockburn 1996).

As a result, firm competitive advantages both on the R&D and market

4On the positive side, monitoring side effects (emerging also during clinical trials)
might also produce evidence suggesting new application of a compound, the most striking
example being Viagra (Kling 1998).
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side, are quickly eroded over time. In an analysis of the patents related to
the memory-enhancing agents (MEA), a “tree-plane” model of technologi-
cal development is presented. The authors identify the central technology
plane, containing patents related to MEA, and its precursor and successor
technology planes, containing respectively the earlier, cited research, and
the patent protecting the new applications or variations of the MEA central
technology. The three planes are populated by different sets of institutions,
showing that firms other than the central MEA innovator are able to catch
the new technological opportunities (Narin, Smith jr. and Albert 1993).

On the market side, empirical evidence suggests that having a leading
product in a therapy class is not a predictor of the likelihood of having a
leading (in house originated) product in the next generation of therapies for
that disease. Sutton (1998) analyzed the top 50 selling drugs in 1960, 1973,
and 1986, focusing on the patterns of entry of new drugs. The analysis
shows few instances where firms have been able to mantain their leading
position in the submarket, pointing to a low degree of serial correlation
in success. Rather, market shares are likely eroded by rivals, introducing
the large majority of chemically related compounds that have followed the
introduction of a top-selling product.

Evidence based on the US market dynamics shows that the reduction in
the present discounted value of the innovator’s return from between-patent
competition, i.e. from new drugs introduced in the same therapeutic cat-
egory, appears to be at least as large as the reduction from within-patent
competition, induced by generic producers at patent expiration, and may
be much larger (Lichtenberg and Philipson 2002).

All in all, entry and competition in R&D is higher in pharmaceuticals
than in other sectors.

These features, coupled with ease of imitation of pharmaceutical com-
pounds, make patents an important means for protecting innovations and,
as a result, a good measure of the research effort in the pharmaceutical
domain5.

We exploit the information provided by patents and patent citations, as

5Results from the Carnegie Mellon Survey, about the nature and strength of the appro-
priability conditions in the US manufacturing sector, administered in 1994, show that the
drug industry is the one where patents received the highest score as an effective mecha-
nism for protecting property rights (Cohen et al. 2000). In addition, 100% of respondents
stated one of the reasons for patenting product innovations rely in preventing rivals from
copying the innovation. Based on a different survey about the patenting activity of the
largest European firms, Arundel and Kabla (1998) report a high propensity to patent in
pharmaceuticals: the combined rate for both product and process innovations is higher
than 50% in this industry.
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a proxy for research efforts and knowledge diffusion, in order to characterize
the dynamic nature of the innovation process in pharmaceuticals.

When using patent-based indicators for measuring technological change
is important to recognize the fact that “the quality of the underlying inno-
vation varies widely from patent to patent” (Scherer 1965), meaning that
innovations differ substantially in terms of their technological and economic
impact. The first empirical account of the heterogeneity in the private value
of patents was based on information about the renewal fees of European
patents (Pakes 1986, Schankerman and Pakes 1985, Schankerman and Pakes
1986), confirming that the distribution of patent value is highly skewed: a
large amount of patents has a very low value, while the patents that pro-
vide important advances both in the technological and economic respects
are quite few. Since then, various information regarding the patent docu-
ments have been used in the economic literature as a proxy for patent value,
including the number of claims, the family size (i.e. the number of countries
in which a patent application was filed on the innovation); the number of
backward and forward citations; whether the patent was litigated and the
years of renewal of the patent fees6.

We exploit the citation-value (both technological significance and eco-
nomic impact) relationship largely investigated by the empirical literature
on innovation and supported by survey evidence, and focus on the pattern
of citations received by a patent, as a proxy for knowledge utilization and
diffusion (Jaffe and Trajtenberg 2002, Harhoff, Narin, Scherer and Vopel
1999, Jaffe et al. 2000).

3 Data and Methods

The analysis builds on a comprehensive dataset on the innovative activity
undertaken within the pharmaceutical industry, including R&D project level
data, patents, citations, and collaborations7.

The database contains information about all pharmaceutical and biotech-
nology patents8 granted by the USPTO since 1965, including backward and
forward citations. Firm data at the level of specific R&D project worldwide
in the last 25 years are also available. The database tracks the develop-
ment history of about 16,400 R&D projects, starting from patent application

6For a review see Lanjouw, Pakes and Putnam (1998); Hall, Jaffe and Trajtenberg
(2001); Jaffe and Trajtenberg (2002).

7See www.databiotech.com.
8US patents in selected IPC and US classes are included in the database.
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to the latest stage of drug development through preclinical, clinical devel-
opment and commercialization. In case of aborted projects, the database
reports the time when the firm announces that the research around the
compound has been discontinued. By exploiting the information about the
patents protecting the compound, the project data have been matched to
patent data9, including the number of forward citations up to May 2004, the
application date, and the name of the assignee. Patent history is available
for 49 per cent of the projects included in the database. In case a compound
is marketed, the database reports the information about the trade name
across different countries, allowing us to gather information about sales in
the US market over the period January 1994-March 2005.

The matching of the different sets of data proved to be a formidable,
large-scale task, that tied up a great deal of our research efforts for a long
time, providing us a unique dataset that monitors R&D activities of phar-
maceutical and biotechnology firms from patenting to eventual commercial-
ization of the protected compound10.

We further selected the patents associated to R&D projects of candidate
drugs that were terminated either with a success, i.e. a product commer-
cialised on the market, or with a failure, i.e. the project was discontinued
due to the emergence of toxicological effects or to lack of effectiveness. The
final database encompasses information about 2,000 R&D projects and their
associated patents, entering into clinical trials from 1977 to 2002. Hence-
forth, we refer to marketed (discontinued) patents as the patent associated
to marketed (discontinued) R&D projects.

Citation patterns of our sample of patents is compared with a sam-
ple of “matched” patents, for which our database reports no information
about preclinical or clinical development. For each patent in our sample
with known outcome (marketed or discontinued), a “matched” patent has
been randomly selected11 from the set of biopharmaceutical patents with the

9For projects listing a patent granted by a patent office other than the USPTO, we
considered the US patent in the same family as the one listed in the database. In case
no US patent is identified, the project is not considered in the analysis. This choice has
been driven by the fact our sources only provide citation data for US patents. Moreover,
different patent examination procedures characterizes the the US and European patent
offices, leading to large differences in the average number of citations per patent (Breschi
and Lissoni 2004, Michel and Bettels 2001). Focusing only on US citations avoids the
emergence of spurios results driven by different institutional settings.

10Old molecules and/or natural products, which do not have any associated patent have
been omitted from the analysis.

11We have built three different “matched” samples in order to check the robustness of
our results. Estimated coefficients across the three samples do not change substantially.
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same application year, publication year, and IPC class as the focal (mar-
keted or discontinued) patent considered for selection. By comparing the
citation pattern of discontinued and marketed patents against the selected
sample of “matched” patents, we will be able to ascertain the level of knowl-
edge utilization and diffusion associated with each set and the related R&D
competition dynamics.

Since the focus is on the pharmaceutical industry, only citations from
subsequent patents in the pharmaceutical domain have been taken into con-
sideration. We distinguish self-citations from citations made by other com-
panies. Citations made by others have been proved to be a good proxy for
knowledge spillovers (Jaffe et al. 2000), whereas self-citations are considered
to be indicators of the cumulative nature of the technology and a measure
of the extent to which innovators are able to reap the benefits of their own
research (Hall et al. 2001).

First, we will employ the double-exponential function to model the ci-
tation lag distribution for marketed and discontinued patents, against the
average biopharmaceutical patents (i.e. the sample of “matched” patents).
The model provides a flexible framework for studying the process under-
lying the generation of citations, where an exponential process by which
knowledge diffuses is combined with a second exponential process by which
knowledge become obsolete (Jaffe and Trajtenberg 1996, Caballero and Jaffe
1993). Following Jaffe and Trajtenberg (1996), we model the likelihood that
a patent granted in year T will cite a patent granted in year t as:

p(t, T ) = α exp[−β1(T − t)](1 − exp[−β2(T − t)])

where α is linked to the overall likelihood of receiving a citation, whereas β1

and β2 are indicators of, respectively, the rate of obsolescence of knowledge
(i.e., the rate at which new knowledge replace the existing one) and the
rate of diffusion of the knowledge related to the invention protected by the
patent. It is not possible to separately identify the three parameters in the
model. We allow the parameters describing the average citation intensity (α)
and the rate of obsolescence (β1) to vary as a function of attributes of both
the cited and the citing patent (particularly, we distinguish marketed and
discontinued patents from the sample of matched patents with no informa-
tion about preclinical or clinical development), whereas the rate of diffusion
(β2) is considered constant across the patents with different outcome (mar-
keted/discontinued/“matched”). By doing so, we implicitly assume that the
three sets of patents we consider can differ in terms of average citation inten-
sity and obsolescence rate, whereas the rate of diffusion of the information
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disclosed trough the patent is not affected by the outcome of subsequent
development.

The analysis allows us to ascertain knowledge utilization and diffusion
that is associated with marketed and discontinued patents with respect to
the other patents issued within the biopharmaceutical domain.

Next, we run a regression where the dependent variable is the number of
citations received by our sample of patents adjusted on the basis of the es-
timated citation lag distribution, in order to reflect life-time citations. The
estimation aims at identifying the factors that affect the importance of the
patent and of the associated innovation. We include among the regressors
a set of dummy variables identifying cases where the patent is building on
a previous failure or success and whether the patent is cited by subsequent
successes/failures. Control variables for the characteristics of the technolog-
ical classes (defined on the basis of the International Patent Classification,
henceforth IPC), assignees and the patent-innovation itself are added.

The two sets of results will provide a clear picture of the dynamics under-
lying R&D competition in the biopharmaceutical domain. The estimation
of the citation lag distribution function will allow us to show the dynamics
associated with knowledge utilization and diffusion, whereas the regression
analysis aims at disentangling the relationship between the productivity of
knowledge and its sources.

Finally, we take into account the linkage between patent citations and
the private value of patented innovations, as measured by the value of sales
over the patent life. We model the total number of citations received by
the patent as a function of total sales over a 20-year window from launch,
obtaining an estimate for the elasticity of sales with respect to citations.

4 Empirical Results

4.1 Citations and project outcome

Figure 1 compares the observed and estimated citation lag distribution func-
tions for marketed and discontinued patents, taking as a benchmark the
citation lag distribution function of patents with no information about pre-
clinical or clinical development. On the x-axis, the citation lag, i.e. the
difference between the citing and the cited patent grant year, is reported.
It represents the time elapsed from grant date. The y-axis depicts the (av-
erage) observed and estimated citation intensities, i.e. the likelihood that
any patent will be cited by the patents granted x years apart (Jaffe and
Trajtenberg 1996).
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Figure 1: Observed and estimated average citation lag distribution

The observed citation lag distribution is computed as the ratio between
the number of citations received by patents granted in year t from patents
granted in year T and the theoretical number of potential citations:

p(t, T, o) =
c(t, T, o)

n(t, o)n(T )

where t indicates the grant year of the cited patent, T is the grant year of the
citing patent12, and o represents the outcome of the associated R&D project
(marketed or discontinued vs. matched patents). The potential number of
citation is given by the number of citations that would have been observed
if all patents granted in year T would have cited all patents granted in year
t with outcome o (marketed/discontinued/“matched”), that is equal to the
product of the number n(T ) of patents granted in the citing year and the
number n(t, o) of patents granted in the cited year with a known outcome
o.

In order to estimate the theoretical citation lag distribution, we consid-
ered the following specification of the double-exponential function:

12The citation lag is given by T − t.
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p(t, T, o) = α(t, T, o) exp[−β1(o)(T − t)](1 − exp[−β2(T − t)]).

We claim that the grant year of the citing and the cited patent13 only
affect the average citation intensity α, while the outcome of the project affect
both the average citation intensity α and the rate of obsolescence β1. Due to
identification problems, the rate of diffusion (β2) is considered constant over
time and across the three sets of patents. Particularly, given the citation-
value relationship widely documented by the empirical literature, we expect
that marketed patents receive on average a higher number of citations with
respect to discontinued patents. The model specification however allows us
also to dig further into the dynamics of knowledge utilization and diffusion
and to analyze the speed and extent to which existing knowledge is “picked
up” in the case of failures and successes, as a proxy for the diffusion and
utilization of the associated innovation. Estimates, reported in Table 1, are
obtained by nonlinear least squares estimation, weighting each observation
by [n(t, o)n(T )]1/2. The lines depicted in Figure 1 are obtained by taking
the average14, for each lag, of the fitted values from Model 2.

The Figure also indicates the 8-year citation lag, which corresponds to
the average length from patent application to termination of the project15.

Coherently with previous literature showing that the number of citations
received by a patent is positively associated to its value16, citations turn out
to be related to the outcome of the project. The observed and estimated dis-
tributions indicate that, on average, discontinued patents receive a number
of citations that is lower than the number of citations received by patents
associated to marketed projects (compare the values of the αdiscontinued and
αmarketed coefficients). However, both sets receive a higher number of ci-
tations than the average patent in the biopharmaceutical domain with no
information about clinical or preclinical development. The estimate of the α

coefficients associated to discontinued and marketed patents are higher than
1, indicating that patents associated to preclinical or clinical development,

13As in previous empirical literature dealing with this model, convergence problem for-
bids the estimation of the model where all the cited-year effects are considered. The
problem is solved by introducing the cited-year effects considering 5-year time periods.

14Both in the case of observed and estimated citation lag distributions, weighted aver-
ages are considered, where the weights are the same as the ones used in the estimation
process.

15This is actually few months longer for marketed compounds, being equal to 7.8 years
for discontinued R&D projects and to 8.3 years for marketed R&D projects.

16See Trajtenberg (1990); Lanjouw and Schankerman (1999); Harhoff et al. (1999); Jaffe
et al. (2000); Trajtenberg, Henderson and Jaffe (1997); Jaffe and Trajtenberg (2002).
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Model 1 Model 2

αdiscontinued 1.264** 1.329**
(0.182) (0.111)

αmarketed 1.309** 1.511**
(0.158) (0.108)

β1 0.107** 0.084**
(0.008) (0.013)

βdiscontinued
1 0.827** 1.049**

(0.135) (0.108)
βmarketed

1 0.554** 0.604**
(0.087) (0.077)

β2 0.114** 0.248**
(0.014) (0.042)

Cited year effects no yes
Citing year effects no yes
R-squared 0.686 0.858

* statistically significant at 5% level.

Table 1: Results of the double-exponential estimation, dependent variable:
citation intensity

irrespective of their outcome, are more likely to receive a citation than the
average biopharmaceutical patent (taken as the reference category). The
analysis shows that there exists a value associated also with discontinued
patents: even though the compound associated with the patent will never
reach the market, due to the emergence of toxicological problems or lack of
effectiveness, the opened research trajectory is a source of information and
insights for firms other than the original innovator.

It is interesting to note that within the first 5 years from patent grant, no
significant difference is detected between discontinued and marketed patents,
whereas starting from year 5 the two series start to diverge in a significant
way. The analysis of the estimates of β1 reveals an important difference
between marketed and discontinued compounds in terms of knowledge ob-
solescence. Under this perspective, discontinued patents and the matched
set of patents exhibit very similar dynamics (the β1 associated with associ-
ated with discontinued patents is very close to 1, pointing to no differences
between discontinued patents and the matched set of patents). On the con-
trary, the knowledge embedded in patents protecting marketable compounds
becomes obsolete less quickly than the other patents in the biopharmaceu-
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tical domain (the β1 associated with marketed patents is lower than 1).
Indeed, the citation intensity of marketed compounds is rather stable after
commercialization, whereas the citation intensity of discontinued patents
decreases substantially17.

The maximal citation frequency for discontinued patents is earlier in
time than the maximal citation frequency of marketed patents.

Our estimates are coherent18 with the estimates of the Drugs and Med-
ical sector presented by Hall et al. (2001). Moreover, an interesting pattern
emerges in their results when comparing Drugs and Medical to other sec-
tors. The citation lag distribution for this sector is more flat, whereas the
citation lag distribution functions for the sectors of Computers and Commu-
nications, Electrical and Electronics, Chemical, and Mechanical have higher
peak earlier in time. Knowledge in the Drugs and Medical sector diffuses
less rapidly and takes a longer time to become obsolete. Important infor-
mation about the protected compounds in terms of toxicological effects and
effectiveness are revealed over time leading to a lengthier process of citation
within this industry.

The disclosure of the information about the compound under study in
patents and the advances in science sets the ground for a “race” for reaching
the market, where competitors start exploring the new research arena pur-
suing parallel research trajectories even though the outcome is still highly
uncertain. Competition on the R&D side in the pharmaceutical industry is
substantial and firms entering the new research arena build both on future
failures and successes.

The regression model presented in the following aims at adding new
insights into the issue by looking at the relevance of the research building
on failures and on successes, and of the research cited by future failures and
successes.

17Also note that the larger departures between the estimated and observed citation lag
distribution in the case of discontinued patents is registered right after the average time
for discontinuation. This might point to the fact that the termination of the research
around a compound/mechanism of action is a major signal for rival firms that nonetheless
regain interest after few years from the time of discontinuation and the citation intensity
of discontinued patents is still higher than the citation intensity of the “matched” set of
patents, also many years after discontinuation. On this issue, we mention the fact that
we asked a pharmacologist to extensively inspect the patents citing discontinued projects
in search of a reason for the citation, finding no instance of “negative” citations, rather
citations refer to pharmacological action or the structure of the compound.

18With respect to Hall et al. (2001) results, our estimated β2 coefficient is lower. This
might be explained by the fact that we only consider citations by institution other than
the original assignee, which can require a longer time span with respect to self-citations
to manifest.
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The dependent variable is the (log) number of citation received during
the life time of the patent, where the observed citation frequency has been
adjusted using the estimated coefficient of the citation lag distribution func-
tion19 (Table 1).

The independent variables are listed in Table 2 and aim at capturing
the characteristics of the cited patent, of the IPC class and of the patenting
firm. Moreover by taking into account whether R&D projects associated to
backward and forward citations have been discontinued or have successfully
reached the market, we aim at contributing to the discussion about the
productivity of R&D spillovers (Levin and Reiss 1988).

Few patents cited by or citing our sample of patents are associated to a
R&D project with a known outcome. Particularly, we identify 9 per cent of
patents building on a previous failure, and 10 per cent of patents building
on a previous success. On the other side, 6 per cent of patents are cited by a
future success, and 9 per cent by a future failure. This reflects the fact that
pharmaceutical and biotechnology firms screen thousands of compounds but
very few enter into preclinical and clinical stages of development.

As far as the characteristics of the technological class of the patent, we
consider the number of firms active in the IPC class, and the Herfindahl
index of concentration computed at the technology class level on the basis
of patent counts.

Patents characteristics are measured using the indicators developed by
Trajtenberg et al. (1997) on the basis of backward citations. We consider the
share of self-citations in the patents (pt-selfc) that measures the extent to
which benefits from research antecedents are appropriated by the firm and
help in understanding whether the patent belongs to a research trajectory
strongly rooted within the company. The index of originality of the patent
(pt-orig) measures the breadth of its technological roots20, whereas the im-
portance of the previous patents cited by the patent under investigation is
measured by pt-importb which takes into account the number of backward
citations in the patents and the number of citations they receive21. The im-
portance of scientific sources with respect to technological ones within the

19Given the integer nature of the citation values, we set log(0)=0.
20The index is computed as an Herfindahl index of diversification, considering the share

of backward citation in each IPC class. The closer pt-orig is to 1, the broader are the
technological roots of the underlying research, i.e. they span many different IPC classes.
The index is zero when all backward citations contained in the patent are classified within
the same IPC class.

21The higher is the value of pt-importb, the higher is the number of backward citations
contained in the patent and the citations they receive.
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Variable Description Mean σ

failure Dummy equal to 1 if the associated project is
a failure

0.34 0.48

success Dummy equal to 1 if the associated project is
marketed

0.14 0.34

ipc-nimp Number of firms operating in the same IPC
class

112.75 125.33

ipc-conc Concentration of the IPC Class (Herfindhal
index)

0.09 0.19

pt-selfc Share of self-citations of the patent∗ 0.15 0.30
pt-orig Index of originality of the patent∗ 0.42 0.37
pt-science Science Index∗ 0.32 0.34
pt-importb Importance of cited patents∗ 89.44 484.36
pt-timeb Average time lag∗ 5.38 4.41
ass-coree Share of firm patent within the same technol-

ogy class (IPC)
0.14 0.24

dbf Dummy equal to 1 if the originating firm is a
dedicated biotechnology company

0.14 0.35

pro Dummy equal to 1 if the originator is a public
research organization

0.13 0.33

bf Dummy equal to 1 if the project-patent cites
a previous failure

0.09 0.29

bs Dummy equal to 1 if the project-patent cites
a previous success

0.10 0.30

ff Dummy equal to 1 if the project-patent is
cited by a future failure

0.09 0.28

fs Dummy equal to 1 if the project-patent is
cited by a future success

0.06 0.25

∗ defined as in Trajtenberg et al. (1997).

Table 2: Description of the variables
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patent is captured by pt-science, which is the ratio between the non-patent
references and the total number of references (previous patents or previous
scientific literature) listed in the patent. The closer to 1, the larger the sci-
entific underpinnings of the research, relying more heavily on the scientific
literature rather than on previous patents. Finally pt-timeb measures the
time distance between the citing and the cited patents. The higher pt-timeb,
the older the sources the patent builds upon.

As compared to the descriptive statistics reported in Trajtenberg et al.
(1997), no difference emerges with respect to the value of pt-selfc. On the
contrary, the average value of pt-timeb in our sample is lower, indicating
younger sources for our sample of patents, whereas the values of pt-orig,
pt-science, and pt-importb are higher. One important difference with the
sample in Trajtenberg et al. (1997) relies in the fact that we only consider
pharmaceutical patents, and citations are counted only within the pharma-
ceutical technological classes.

As far as the characteristics of the patent assignee are concerned, we
take into account the share of firm patent within the same technology class
(IPC), and two dummy variables indicating whether the patentee is a dedi-
cated biotechnology company (dfb) or a public research organization (pro).
The largest share of patents in our sample are assigned to pharmaceutical
companies: 14 per cent of patents are assigned to dbf, and 13 per cent in
the case of pro.

Results of the estimation of a censored regression model are reported in
Table 322. Cited year dummies are included in all the specifications. The
Tobit estimation procedure has been preferred to simple regression due to
the high incidence of patents receiving zero citations (27.28%).

Coherently with previous results and with the empirical literature sup-
porting the use of citations received by a patent as a proxy for its value
both in economic and technological terms (Trajtenberg 1990, Lanjouw and
Schankerman 1999, Harhoff et al. 1999, Jaffe et al. 2000, Trajtenberg et al.
1997, Jaffe and Trajtenberg 2002), we find that patents associated to mar-
keted R&D projects receive a higher number of citations than patents with
no preclinical or clinical information. However, also discontinued patents
receive a higher number of citations than our sample of matched patents
(taken as the benchmark category), even though the estimated coefficient
of the failure dummy is lower than the estimated coefficient of the success

22We also aggregated the data at the project level, considering the citations to all
the patents associated with a specific project. Results, available from the authors upon
request, do not change substantially.
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Model 1 Model 2 Model 3 Model 4

failure 0.578 (0.056)** 0.561 (0.057)** 0.424 (0.055)** 0.376 (0.060)**

success 1.294 (0.076)** 1.270 (0.078)** 1.036 (0.076)** 1.062 (0.084)**

ipc-conc -0.350 (0.146)** -0.338 (0.148)** -0.263 (0.141)* -0.258 (0.141)**

ipc-nimp -.5E-3 (.2E-3)** -.5E-3 (.2E-3)** -.5E-3 (.2E-3)** -.5E-3 (.2E-3)**

pt-selfc -0.225 (0.088)** -0.228 (0.093)** -0.279 (0.089)** -0.281 (0.089)**

pt-orig -0.423 (0.082)** -0.403 (0.083)** -0.377 (0.080)** -0.381 (0.080)**

pt-science 0.718 (0.091)** 0.709 (0.092)** 0.688 (0.088)** 0.688 (0.088)**

pt-importb .4E-3 (.5E-4)** .4E-3 (.5E-5)** .4E-3 (.5E-5)** .4E-3 (.5E-5)**

pt-timeb -0.004 (0.007) -0.007 (0.007) -0.005 (0.006) -0.005 (0.006)

ass-coree 0.184 (0.110)* 0.186 (0.110)* 0.240 (0.106)* 0.238 (0.106)**

dummydbf 0.560 (0.080)** 0.570 (0.081)** 0.538 (0.078)** 0.540 (0.077)**

dummypro 0.406 (0.079)** 0.396 (0.080)** 0.366 (0.076)** 0.368 (0.076)**

bf 0.125 (0.094) 0.081 (0.091) -0.226 (0.140)

bs 0.215 (0.085)** 0.027 (0.083) 0.118 (0.124)

ff 1.137 (0.086)** 1.142 (0.086)**

fs 0.994 (0.105)** 0.986 (0.104)**

bf*fail. 0.617 (0.188)**

bf*succ. -0.026 (0.329)

bs*fail. -0.116 (0.183)

bs*succ. -0.211 (0.204)

Constant 0.966 (0.158)** 0.957 (0.159)** 0.735 (0.153)** 0.745 (0.153)**

Log Likel. -6880.51 -6739.59 -6600.79 -6594.30

** 5% level of significance; * 1% level of significance

Cited year (application) effects included in all regressions.

Table 3: Regression results. Dependent variable: ln(number of adjusted
forward citations). Number of observation: 4,194.

dummy. Coherently with results reported in Table 1, discontinued patents
receive a lower number of citations than marketed patents.

As far as the share of self-citations, the variable has a negative impact
on the number of forward citations by firms other than the original assignee,
supporting the claim that self-citations are indicative of the level of appro-
priability of research efforts. Being strongly rooted within the technological
domain of the patent assignee significantly affects the number of citations
subsequently received by firms other than the original innovator, i.e. the
level of knowledge utilization outside the originating institution.

The estimated coefficients of pt-orig show that patents with sparse tech-
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nological roots receive a lower number of citations by other firms. These are
likely patents within narrow fields of application, therefore being relevant
only to the firms and institutions working within the same technological
domain.

Patents with predominance of scientific sources over technological ones
contribute more heavily to subsequent research. This is not surprising within
the biopharmaceutical domain, characterized by a strong link of innovative
activity to its scientific underpinnings. Also patents building on an impor-
tant (in the sense of highly cited) knowledge base are more often subse-
quently cited.

The estimated coefficients of pt-timeb, the average age of the sources the
patent builds upon, is negative but not statistically significant. Competition
in the pharmaceutical domain is substantial and the relevant knowledge base
is rapidly evolving, pushing the innovating firms need to rely on the most
recent advances and discoveries. Patents relying upon older knowledge bases
have a low innovative content, and will be less often the basis of subsequent
research. However, the age of the backward citations doesn’t seem to affect
significantly the number of forward patent references.

As far as the characteristics of the patent assignee are concerned patents
by dbf and pro receive on average a higher number of citations. The former
result is consistent with Hall, Jaffe and Trajtenberg (2000) who find that in
the pharmaceutical sector smaller biotechnology firms are more likely to av-
erage a higher citation rate. As a tentative explanation for this phenomenon,
we propose that this is due the growing division of innovative labor and the
wide network of collaborations among the different actors involved in the
drug development process that has come to characterized the pharmaceu-
tical industry (Arora and Gambardella 1994, Powell et al. 1996, Orsenigo
et al. 2001). The small biotechnology firms are highly specialized in the
early stages of drug development, but they lack the resources and capabil-
ities that are needed for the large clinical trials, therefore they are more
likely to license-out their compounds to the large pharmaceutical companies
with significant expertise with clinical trials. This is also true for public
research organizations, strongly oriented toward basic science and the early
stages of the innovation process in pharmaceuticals. As a result, dbf and
pro patents are more likely to be the object of an alliance and the basis
of subsequent research by firms other than the original innovators, lead-
ing to knowledge transfer from the original innovator to the company that
licensed-in the compound and continues the research around it. Likely, the
research undertaken by the licensee will give rise to new technological oppor-
tunities or compounds, and as a result the new innovation will certainly cite
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the licensed patent, therefore increasing the number of citations received by
competitors to dbf and pro patents.

The characteristics of the IPC class of the patent also exert a significant
effect on the number of subsequent citations received by the patent. Patents
in classes that are highly concentrated receive on average a higher number
of citations. This result might be driven by the low incentives of firms other
than the original innovators in pursuing research in classes where concen-
tration on the technological side is high, i.e. the technological competences
are bundled within a low number of firms. On the contrary, a higher num-
ber of firms in the technological class leads to a lower number of citations,
ceteris paribus. Patents in crowded technological fields receive, on average,
a lower number of citations, due to the larger number of different research
trajectories pursued by different firms that can be the source of knowledge
in subsequent developments.

Looking at the relevance of previous/future failures/success citing/cited
by the patent, we note that patents that are subsequently cited by future
failures and successes receive on average a higher number of citations. On
the contrary, previous successes and failures do not have any statistically
significant effect on the relevance of the patent for subsequent research23,
pointing to low cumulativeness of research and high uncertainty in the phar-
maceutical domain. Building on a previous success doesn’t assure to reach
high levels of R&D productivity.

However, looking at the projects that entered into preclinical or clinical
trials reveals that patents citing previous failures receive a higher number
of citations than the base category. The composite effect is statistically
significant for failed R&D project patents. This pattern might be the result
of the process of trial-and-error at work within the pharmaceutical domain.
The estimated coefficients support a role of failures in spurring technological
competition in the pharmaceutical domain, being the basis of future research
by other firms, which seems to reach higher levels of efficiency in pursuing
the research, at least in terms of diffusion and utilization (as proxied by the
number of received citations).

Overall the analysis reveals that the information contained in patents
represent an important source of information for monitoring the R&D ac-
tivities undertaken by the competitors and provide a spur to innovative
efforts by other firms in related fields or in the same area of application of

23The estimated coefficient of bs (a dummy variable equal to one if the project-patent
cites a previous success) is positive and significant in Model 2, but the result is not robust
to the inclusion of the ff and fs dummies.
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the original patent.

4.2 Citations and sales value

We dig further into the citation-value relationship by looking at the strand
of revenues associated to patented products. We considered the marketed
patents in our sample and, by exploiting the information about the trade
name of the compound in different market, we linked each marketed project
(and its associated patent) to sales in the US market from January 1994 to
March 2005. Analogously to the estimation of the citation lag distribution,
we considered the double-exponential function in order to estimate the pa-
rameter of the function characterizing the product life cycle of the patented
pharmaceutical products.

We considered the dynamics of market share within the ATC4 class over
a 19-year time frame24. Figure 2 reports the observed and estimated sales
dynamics starting from market launch, where we considered the evolution
of market shares within the relevant therapeutic market, identified on the
basis of the ATC4 class. Estimated coefficients are reported in Table 4.

coeff. s.e. p-value

α .3667 .0114 0.000
β1 .0502 .0043 0.000

R2 = 0.4044

Table 4: Estimated parameters of the function describing the product life
cycle (4,902 obs.)

Following the same procedure used in the case of the citation lag dis-
tribution function, the estimated coefficients allow us to compute weights
that, applied to the value of sales over the observed time period, enable us
to estimate the sales over a longer time span than the one observed in the
data.

Computations allow us to study the relationship between total (com-
puted) sales over the product life cycle and the total (adjusted) number
of citations the patent protecting the compound receives. This has to be
considered as a preliminary result, since we do not control for market size
and characteristics, or for the level of competition. Nonetheless, available

24The time span has been selected in order to resemble patent life. This has to be inter-
preted as a rough approximation, since effective patent life is shorter for pharmaceutical
products, due to the time needed for drug development (Grabowski and Vernon 2000).
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Figure 2: Observed and estimated sales distribution function

data allows us to characterize the citation-value relationship quite sharply
looking at the strand of revenues associated to a patent during its life.

First, we consider simple correlation between sales and citations. Even
though statistically significant at the 5% level, the magnitude of correlation
coefficient is rather low: it is equal to 0.15 if calculated on adjusted val-
ues (both considering the first patent only or, in case of multiple patents
protecting the same molecule, the sum of the citations received by all the
patents), raising to 0.18 if log of variables is considered25. The scatter of
the log of citations versus the log of sales is depicted in Figure 3.

Finally, we estimate a multiplicative model, where we consider the re-
lationship between number of citations and total sales (estimated over the
life-cycle). Let si be the total sales of the compound, and ci the number of
citations received by the patent (we considered both the citations received
by the first patent covering the compound and the total number of cita-
tions for all the patents). We considered the following model (Cameron and
Trivedi 2005):

E[si|ci] = exp[γ + β ln(ci)],

25Variables deviate substantially from the normal distribution. The log-transformation
is considered in order to reduce the departure.
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Figure 3: Log of citations versus log of product sales

estimated using nonlinear least squares (see Table 5). Given the specification
of the model, β directly estimates the sales-citation elasticity.

First patent Total cits.

γ̂ 13.8407 13.5924
(0.3067) (0.2987)

β̂ 0.2899 0.3496
(0.0827) (0.0730)

N 396 397
R2 0.2429 0.2606

Table 5: Model estimates: sales as a function of life-time citations

The reported R2 is rather low, pointing to the fact that other factors need
to be considered when analysing this relationship. Even though preliminary,
results confirm the positive linkage between number of citations and private
value of patents, documented in the empirical literature. A one percent
increase in the number of citations correspond to a 0.30 per cent increase in
total sales (market share within the relevant therapeutic market).
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5 Discussion and Policy Implications

This paper has looked at the nature of R&D competition in the pharmaceu-
tical industry, a unique framework for studying issues related to innovation
and innovative activities. Besides the importance of patents as a means for
appropriating returns to R&D, as evidenced in surveys of firms in the man-
ufacturing sectors in the US and Europe (Arundel and Kabla 1998, Cohen,
Goto, Nagata, Nelson and Walsh 2002), a number of evolutionary trends
has profoundly shaped the organization of innovative activities within the
industry.

The industry has come to be the archetype of the “science-based” sec-
tor, where advances in basic knowledge about bacterial, animal and human
processes provide a deeper understanding of the molecular and biochemical
roots of specific diseases processes and of the mechanisms of pharmacologi-
cal action of known and new substances, guiding the innovative activities of
the actors involved in drug development. The advances in genomics, gene
sequencing, transgenic animals have provided the industry a huge number
of novel biological targets thought to be relevant to a vast array of diseases.
As a result, firms likely pursue parallel research trajectories searching for
compounds with binding properties around the same target.

Against this background, the paper has explored the learning process of
the actors involved in the pharmaceutical domain, focusing on the learning
processes by rival firms. Differently from previous studies, we also take into
account the role of research failures in providing the ground for subsequent
innovation.

Patent protection forbid direct imitation of the compound (or process),
nonetheless rival firms may search around the original molecule and find a
patentable variant that offer some advantages. Patent citation data allow
tracking subsequent developments.

Coherently with previous literature showing the existence of a relation-
ship between patent citation and (private and social) patent value, marketed
patents receive a higher number of citations, and for a longer time span.
No difference emerges between marketed and discontinued patents in the
early stages of development, where the research outcome is still unknown.
Differences in the citation lag distribution are driven by the post-outcome
behavior, i.e. from the citations received after the successful product com-
mercialization. In addition, we provide evidence of a positive relationship
between market sales and citations.

However, our empirical analysis shows the existence of a set of discon-
tinued compounds whose patent receives a high number of citations, also
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after the termination of the associated R&D project, i.e. they provide the
basis for subsequent innovations, eventually also leading to compounds that
successfully reach the market. This suggests the existence of a social value
associated to discontinued project and to the diffusion of the associated in-
formation, in terms of new (and better) research trajectories exploring new
therapies for treating a disease. Moreover the regression analysis shows that
research building on rival failures has a wider impact on subsequent research,
as measured by the number of life-time citations received by the associated
patent.

The information disclosed through patents leads to an expansion of the
knowledge frontier, that stimulate further R&D effort, both in terms of new
patents and new firms entering the research arena. It may well happen that
firms other than the original innovator are the first to reach the market,
being able to pursue more effectively the new line of research.

In this perspective, the discussion about patent scope becomes crucial
in this industry, where research is highly cumulative in nature and firms
enjoy knowledge spillovers spanning from internal and, to some extent, from
external R&D projects, pointing to a trade-off that cannot be easily resolved.
This poses problems for the optimal design of patent law26. On the one
side, it is necessary to fully reward early innovators for the technological
foundation they provide to later innovators, but also later innovators should
be rewarded adequately for their improvements and new products.

Too narrow patents would be ineffective as incentives to R&D (the main
function of the patent system), whereas too broad patents would be an
obstacle to the development of parallel research trajectories, which might
be improved with respect to their predecessors in terms of side effects or
delivery method. In addition, as shown in Scotchmer (1991) too broad
patents might inefficiently inflate incentives for the first innovator, which
might not be capable of efficiently pursuing all subsequent lines of research.

Coupled with the evidence about the social value of failures provided in
this paper, the argument reinforces the argument of more public sponsorship
for basic research (Scotchmer 1991).
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