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Abstract

The purpose of this paper is to investigate the asymptotic null distribution of stationarity
and nonstationarity tests when the distribution of the error term belongs to the normal
domain of attraction of a stable law in any finite sample but the error term is an i.i.d.
process with finite variance as T ↑ ∞. This local-to-finite variance setup is helpful to
highlight the behavior of test statistics under the null hypothesis in the borderline or near
borderline cases between finite and infinite variance and to assess the robustness of these test
statistics to small departures from the standard finite variance context. From an empirical
point of view, our analysis can be useful in settings where the (non)-existence of the (second)
moments is not clear-cut, such as, for example, in the analysis of financial time series. A
Monte Carlo simulation study is performed to improve our understanding of the practical
implications of the limi theory we develop. The main purpose of the simulation experiment
is to assess the size distortion of the unit root and stationarity tests under investigation.
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1 Introduction

In the literature on testing for stationarity and unit root a crucial maintained hy-

pothesis concerns the existence of the variance of the error term. Whenever this

condition fails the standard asymptotic results are no longer valid, as reported in

Hamilton (1994),. In particular, if the distribution of the i.i.d. error term belongs

to the normal domain of attraction of a stable law with maximal moment exponent

α (Gnedenko and Kolmogorov, 1954; Ibragimov and Linnik, 1971), the relevant

asymptotic theory follows from the weak convergence results to (functionals) of α-

stable Lévy processes given by Phillips (1990), who specialized the results in Resnick

(1986), when the distribution of the error term belongs to the domain of attraction

of a stable law.

When the Data Generating Process (hereafter DGP) is a driftless random walk,

Chan and Tran (1989) for the i.i.d. case and Phillips (1990) for the dependent errors

have developed the appropriate asymptotic theory for time series regressions with

a unit root and infinite variance errors. For the random walk with drift Callegari

et al. (2003) have shown, for i.i.d. errors, that the functional form of the asymptotic

distribution of the least squares estimator and of the t-statistic depends on whether

the maximal moment exponent α lies between zero and one, is equal to one or lies

between one and two. The asymptotic distribution of additional unit root tests

with infinite variance errors has been analyzed by Ahn et al. (2001). As for tests

of the null hypothesis of stationarity, Amsler and Schmidt (1999) have studied the

asymptotic distribution of the KPSS test of Kwiatkowski et al. (1992) and of the

modified rescaled range (MRS) test of Lo (1991).

The purpose of this paper is to investigate the robustness of standard unit root

and stationarity tests to small departures from the maintained hypothesis of finite

variance. To this end, we follow a “local-to” approach. This methodology, in the

spirit of Pitman (1949), is standard for the study of the asymptotic power of test

statistics and it entails the specification of a sequence of local alternatives which

collapses to the null hypothesis as T ↑ ∞. The asymptotic power of unit root tests

has been investigated by, amongst others, Phillips (1987), Perron and Ng (1996) and

Nabeya and Perron (1994).

However, in this paper we consider the asymptotic null distribution of selected

test statistics when one of the maintained hypothesis, namely the existence of the

first or the second moments of the error term, is satisfied only as T ↑ ∞. In

particular, we follow Amsler and Schmidt (1999) who assume that the error term
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of a driftless random walk belongs to the normal domain of attraction of a stable

law in any finite sample but has finite variance in the limit as T ↑ ∞. These local

departures from the finite variance setup are helpful to highlight the behavior of unit

root and stationarity tests in borderline or near borderline cases between finite and

infinite variance and to assess the robustness of these statistics to small departures

from the standard finite variance context1.

We believe that this “local-to” approach has several advantages since it provides a

link between the nowadays standard limiting distribution in autoregressions with in-

tegrated processes and finite variance and those obtained under the infinite variance

assumption. More importantly, it allows to investigate analytically the robustness

of standard asymptotic inference procedures with respect to the presence of an error

term with heavy tails in finite sample. This robustness analysis may be empirically

relevant in settings where the (non)-existence of the (second) moments is not clear-

cut, such as, for example, in the analysis of financial time series. In fact, it is often

argued that financial asset returns can be viewed as the cumulative outcome of a

large number of pieces of information and individual decisions (McCulloch, 1996;

Rachev and Mittnik, 2000). Since the empirical distribution of financial asset re-

turns is usually found leptokurtic, this suggests to consider non-gaussian stable laws,

as first postulated by Maldelbrot in the early 60s2 (Mandelbrot, 1997). However the

empirical evidence in favor of the stable model is not clear-cut (McCulloch, 1997).

Therefore, lacking an established empirical evidence in favor or against the stable

laws we believe that the local-to-finite variance approach proposed by Amsler and

Schmidt (1999) can be useful for improving our understanding of the robustness of

unit root and stationarity tests.

The paper is organized as follows. In the next section, after having introduced

the “local-to-finite” variance approach, we present some results on the weak conver-

gence of sample moments of a random walk process characterized by “local-to-finite”

variance errors. In a Lemma we collect several convergence results on the first and

second sample moments useful in our subsequent analysis. In subsection 2.1 we

establish the limiting distributions of some unit root tests, whereas in subsection

2.2 we consider some tests of the null hypothesis of stationarity. Section 3 is ded-

icated to a MonteCarlo simulation study to assess the finite sample size distortion

of stationarity and nonstationarity tests when the researcher erroneously makes use
1A similar approach has been used to assess the robustness of inferential procedures in cointegrating regressions

when regressors are near-integrated (Elliott, 1998).
2See also Loretan and Phillips (1994) for an analysis on the existence of finite moments in financial time series.
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of the “standard” critical values (i.e. those under finite variance) even though the

error process has infinite variance as in section 2. All proofs are collected in the

Appendix.

2 Asymptotic distribution under local-to-finite variance

To build intuition for the local-to-finite variance setup, let us assume that the process

ut is a weighted sum of two independent processes3:

ut = v1t + ztv2t

where v1t is i.i.d. with zero mean and finite variance σ2
1, v2t is also i.i.d., symmetri-

cally distributed with distribution belonging to the normal domain of attraction of a

stable law with characteristic exponent α, with 0 < α < 2, denoted as v2t ∈ ND(α).4

As for the weight, several specification are of interest. One possibility is to consider

the Bernoulli random variable zt ∼ B(1, p), mutually independent on v1t and v2t.

Intuitively, when p is made suitably small, the process ut is, from time to time, hit

by a realization from an infinite variance distribution. Loosely speaking, since the

probability of “extreme” realizations is bigger when drawing from random variables

whose distribution belongs to the normal domain of attraction of a stable law than

for random variables whose density has finite variance, this model may be helpful

in explaining outliers occurrence in time series. This intuition is made rigorous

in Appendix B where we show that the tail behavior of the distribution function

the process ut is of the Pareto-Lévy form, with characteristic exponent α. How-

ever, under this specification we have infinite variance both in finite samples and

asymptotically.

Here we follow an alternative specification, proposed in Amsler and Schmidt

(1999), which maintain the infinite variance in finite samples but collapses to the
3This is the socalled innovative outlier model.
4Necessary and sufficient condition for v2t to belong to the normal domain of attraction of a stable law with

characteristic exponent α is that the tail behavior of its distribution function has asymptotically the Pareto-Lévy

form,

Pr(v2t < h) = (c1a
α + α1(h))

1

|h|α h < 0

Pr(v2t < h) = 1− (c2a
α + α2(h))

1

|h|α h > 0

where c1 and c2 are non-negative constants such that c1 + c2 = 1, both α1(h) → 0 and α2(h) → 0 as |h| → ∞,

and the constant a is a scale parameter (Ibragimov and Linnik, 1971, pg. 92).
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standard finite variance assumption asymptotically. In particular, we assume that

the process ut is generated according to the following mechanism

ut = v1t +
γ

aT 1/α−1/2
v2t. (1)

so that ut exhibits infinite variance in any finite sample size but finite variance in the

limit as T approaches infinity. Notice that the importance of the stable component

diminishes as the sample size grows but at a slower rate as α increases. Thus, for

a given γ, when α is close to 2 we need a large sample size to annihilate the stable

component whereas when α is less than 1 a relatively small sample size is required.

By Donsker’s theorem (Billingsley (1968)), we have T−1/2
∑[Tr]

t=1 v1t ⇒ σ1W (r),

where ⇒ stands for the weak convergence of probability measures, and W (r) is the

standard Wiener process. Under the above assumptions on the sequence v2t, from

Resnick (1986) and Phillips (1990), we also have the following weak convergence

result  1
aT

[Tr]∑
t=1

v2t,
1
a2

T

[Tr]∑
t=1

v2
2t

⇒ (Uα(r), V (r)) , (2)

where the norming sequence is given by aT = aT 1/α, Uα(r) is the Lévy α-stable

process on the space D[0, 1] and V (r) is its quadratic variation process V (r) =

[Uα, Uα]r = U2
α(r)− 2

∫ r
0 U−

α dUα (see Protter, 1990, pg. 58, Phillips, 1990, eq. (11)).

Here, U−
α (r) stands for the left limit of the process Uα(·) in r.

In order to investigate the asymptotic distribution of the test statistics of interest

(to be described below) when the error term is given by (1), it is convenient to obtain

beforehand some convergence results concerning sample moments and partial sums

of the local-to- finite variance error term . These convergence results are collected

in the following Lemma whose proof can be found in the Appendix.

Lemma 2.1 Let ut be generated as in (1) with v1t ∼ i.i.d.(0, σ2
1) and v2t ∼ i.i.d. and

v2t ∈ ND(α), and let yt =
∑t

j=1 uj, then as T ↑ ∞,

1√
T

[Tr]∑
t=1

ut ⇒ σ1W (r) + γUα(r) ≡ Zα,γ(r)

1√
T

[Tr]∑
t=1

(ut − ū) ⇒ Zα,γ(r)− rZα,γ(1) ≡ Z̃α,γ(r)
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Figure 1: Sample trajectories of W (r), Uα(r) and Zα,γ(r), α = 1.5, γ = 3.16.

1
T

[Tr]∑
t=1

u2
t ⇒ σ2

1r + γ2V (r) ≡ Kγ(r),
1

T 3/2

[Tr]∑
t=1

yt ⇒
∫ r

0
Zα,γ(r)

1
T 2

[Tr]∑
t=1

y2
t ⇒

∫ r

0
Z2

α,γ(r),
1
T

[Tr]∑
t=1

yt−1ut ⇒
∫ r

0
Zα,γdZα,γ

1
T 3/2

T∑
t=1

tut ⇒ Zα,γ(1)−
∫ 1

0
Zα,γ ,

1
T 5/2

T∑
t=1

tyt ⇒
∫ 1

0
rZα,γ

As expected, two are the key parameters affecting these asymptotic distribu-

tions: α, the maximal moment exponent characterizing the Lévy process Uα(r), and

γ, which provides the relative importance of the Lévy process in the limiting distri-

butions. In short, α select the Lévy process while γ tells how important it is. The

interaction between these two parameters will determine how much these limiting

distributions will differ from those under standard assumptions.

To better understand the asymptotic results in the Lemma 2.1 some graphs are

reported. Figure 1 presents one sample trajectory of the three processes W (r),

Uα(r) and Zα,γ(r) for α = 1.5 and γ = 3.16; it is evident the effect of the outliers

in the trajectory of Uα(r), which is reflected in that of Zα,γ(r). Replication of these

trajectories permits to estimate the density of each process for a given r; these

5



Figure 2: Estimated densities of W (1), Uα(1) and Zα,γ(1), α = 1.5, γ = 3.16.

densities5 are showed in Figure 2 for r = 1.

Figure 3 presents a nonparametric estimate of the empirical density of the limiting

random variables
∫ 1
0 W ,

∫ 1
0 Uα and

∫ 1
0 Zα,γ for the α = 1.5 and γ = 3.16 case.

Finally, Figure 4 reports nonparametric estimates of the empirical density of the

limiting random variable
∫ 1
0 Zα,γ for some values of γ and α = 1.5.

Throughout the paper we make the assumption that both v1t and v2t are i.i.d.

error processes even though one might find it desirable to consider serially dependent

errors, such as linear processes6. This extension is left to future research because we

prefer to concentrate our efforts in the assessment of the robustness of test statistics

in non-standard but neat settings and we do not want that our conclusions can

be affected by some other factors such as the lag length selection in augmented

Dickey-Fuller tests or the consistent estimation of the “long-run” variance.
5The nonparametric estimate of all densities is computed by kernel smoothing, with Epanechnikov and band-

width as suggested in Silverman (1986).
6See Phillips (1990) for a treatment of unit root tests when v2t is a linear process.
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Figure 3: Nonparametric estimate of the empirical density of
∫ 1
0 W ,

∫ 1
0 Uα and

∫ 1
0 Zα,γ , α = 1.5,

γ = 3.16.

Figure 4: Nonparametric estimate of the empirical density of
∫ 1
0 Zα,γ , for several values for γ

and α = 1.5.
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2.1 Unit root tests

In order to investigate unit root tests, we assume that {yt} is generated according

to the mechanism

yt = ρyt−1 + ut, t = 1, . . . , T (3)

with ρ = 1 and that the initial condition y0 is any random variable.

We consider several well-known test statistics for testing the null hypothesis

HDS : ρ = 1 in (3) against the alternative hypothesis |ρ| < 1. First, we study two

nowadays standard test statistics proposed by Dickey and Fuller (1976), the T (ρ̂−1)

and the t-ratio statistics. We also consider the Lagrange Multiplier test (hereafter

LM) proposed by Ahn (1993), and the well-known Durbin-Watson (DW ) test. The

interest in the DW test stems from the optimality properties of the test statistic in

the first-order autoregressive model with i.i.d. Gaussian errors. In fact, Sargan and

Bhargava (1983) and Bhargava (1986) show that the DW test statistics can be used

for constructing uniformly most powerful tests of the null hypothesis of a random

walk against stationary alternatives in a driftless and with drift DGP, respectively.

Thus, besides T (ρ̂− 1), our test statistics for the null of a unit root are given by

tρ̂ =

(
T∑

t=2

y2
t−1

)1/2

(ρ̂− 1)/s (4)

LM =

(∑T
t=2(yt − yt−1)yt−1

)2

s̄2
∑T

t=2 y2
t−1

(5)

DW =
∑T

t=2(yt − yt−1)2∑T
t=2 y2

t−1

(6)

where ρ̂ is the OLS estimator of ρ given by ρ̂ =
(∑T

t=2 y2
t−1

)−1∑T
t=2 ytyt−1, s2 =

T−1
∑T

t=2(yt − ρ̂yt−1)2 and s̄2 =
∑T

t=2(yt − yt−1)2/T .

The limiting behavior of the above test statistics under the local-to-finite variance

setup is summarized in the following theorem whose proof is omitted, but available

upon request, since it follows directly by Lemma 2.1 and repeated application of the

continuous mapping theorem

Theorem 2.2 When yt is generated according to (1) and (3), under the null hy-
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pothesis HDS : ρ = 1 and as T ↑ ∞, we have

T (ρ̂− 1) ⇒
∫ 1
0 Zα,γdZα,γ∫ 1

0 Z 2
α,γ

(7)

t(ρ̂) ⇒
∫ 1
0 Zα,γdZα,γ(

Kγ(1)γ2V (1)
∫ 1
0 Z 2

α,γ

)1/2
(8)

LM ⇒

(∫ 1
0 Zα,γdZα,γ

)2

Kγ(1)
∫ 1
0 Z2

α,γ

(9)

TDW ⇒ Kγ(1)∫ 1
0 Z2

α,γ

(10)

It is noticeable that, notwithstanding asymptotically the process ut has finite

variance, the limiting distribution of the unit root test statistics is a (complicated)

function of both the Wiener process W (r) and the Lévy α-stable process Uα(r). In

contrast with the asymptotic distributions available in the infinite variance case (see

Ahn et al., 2001), here they depend not only on the maximal moment exponent α but

also on the nuisance parameters σ2
1 and γ. The role played by Uα(r) in shaping the

asymptotic distribution of the test statistics depends on the magnitude of the weight

γ. Of course, the limit distribution of the test statistics collapse to the standard

ones as γ → 0.

2.2 Stationarity tests

Following Kwiatkowski et al. (1992) let us assume that the observable time series yt

is generated according to

yt = dt + rt + ut t = 1, . . . , T (11)

rt = rt−1 + ηt (12)

where dt = δ′xt depends on the unknown coefficients δ of the (known) deterministic

components, typically a constant and a linear time trend, ut is generated as in

(1) and ηt ∼ i.i.d.(0, σ2
η). In DGP (11)-(12) the null hypothesis of stationarity is

specified as HS : σ2
η = 0. For simplicity, we restrict ourselves to the level stationarity

case, i.e. we set xt = 1.

The first set of stationarity tests look at some measure of “magnitude” of the

cumulated sums of the residual series obtained by demeaning or detrending the
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observable time series. If the observable process is stationary it does have finite

mean, finite variance and it cannot grow without bounds. On the other hand, a unit

root process has trending variance so that its fluctuations are much larger than those

of a stationary process. This suggests that test statistics based on some measure of

the fluctuations in the time series might be useful in deciding between stationarity

and nonstationarity by rejecting the null hypothesis of stationarity whenever the

time series fluctuates too much bewildering.

Let et be the residuals of a regression of the observable time series yt on a constant,

namely et = yt − ȳ, define the cumulative process St =
∑t

j=1 ej and the estimated

variance σ̂2
e = T−1

∑T
t=1 e2

t , we consider the tests

KPSS =
1
σ̂2

e

1
T 2

T∑
t=1

S2
t (13)

MRS =
1√
T σ̂e

(
max

t
St −min

t
St

)
(14)

KS = max
k=1,...,T

k

σ̂eT 1/2

∣∣∣∣Sk

k
− ST

T

∣∣∣∣ (15)

where the KPSS is due to Kwiatkowski et al. (1992), the Modified Range Statistic,

MRS, has been proposed by Lo (1991) and the KS test, a Kolmogorv-Smirnov test,

is in Xiao (2001).

A different strategy to test the null of stationarity is based on the Lagrange

Multiplier principle as proposed by Choi (1994), Choi and Ahn (1999) and Choi and

Yu (1997). These authors consider the following DGP

yt = dt + rt (16)

and the null hypothesis is rt ∼ I(0). Defining the cumulated sum Ct =
∑t

i=1 yi,

they show that the above null hypothesis is equivalent to β = 1 and yt ∼ I(0) in the

model

Ct = βCt−1 + yt

Writing the log-likelihood for this DGP under Gaussian error, they obtain LM tests,

according to how the estimator of the information matrix is chosen

LM1 =
1
ω̂4

(
1
T

T∑
t=1

Qt−1∆Qt

)2

(17)

LM2 =
1
ω̂2

(∑T
t=1 Qt−1∆Qt

)2

∑T
t=1 Q2

t−1

(18)
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where Qt are the residuals of a regression of Ct on the trend variable t, ω̂2 =

T−1
∑T

t=1 ∆Q2
t and ∆ is the first-difference operator.

We also consider the Sargan-Barghava-Durbin-Hausman (SBDH) test given by

SBDH =
1
ω̂2

1
T 2

T∑
t=1

Q2
t (19)

This statistic is clearly a Durbin-Watson test on the residuals Qt and can be inter-

preted as a stationarity test for the observable yt when the rejection region is the

right tail of the distribution (Stock, 1994).

The asymptotic distributions of the above test statistics are summarized in the

following Theorem (see the Appendix for the proof).

Theorem 2.3 Let yt be generated as in (11)-(12) and ut be as in (1), then under

the null hypothesis σ2
η = 0 and as T ↑ ∞,

KPSS ⇒
∫ 1
0 Z̃ 2

α,γ

Kγ(1)
(20)

MRS ⇒ 1
Kγ(1)1/2

(
sup

r
Z̃α,γ(r)− inf

r
Z̃α,γ(r)

)
(21)

KS ⇒ 1√
Kγ(1)

sup
r
|Z̃α,γ(r)| (22)

LM1 ⇒ 1
Kγ(1)

(∫ 1

0
Z̄α,γdZ̄α,γ

)2

(23)

LM2 ⇒ 1√
Kγ(1)

(∫ 1
0 Z̄α,γdZ̄α,γ

)2

∫ 1
0 Z2

α,γ − 3
(∫ 1

0 rZα,γ

)2 (24)

SBDH ⇒ 1√
Kγ(1)

(∫ 1

0
Z2

α,γ − 3
(∫ 1

0
rZα,γ

)2
)

(25)

where Z̄α,γ = Zα,γ − 3r
∫ 1
0 rZα,γdr and dZ̄α,γ = dZα,γ − 3

∫ 1
0 rZα,γdr.

As for the unit root test, the limiting distribution of stationarity test is a com-

plicated function of the compound process Zα,γ = σ1W (r) + γUα(r) and of its

quadratic variation Kγ(1). These asymptotic distribution are also affected by the

maximal moment exponent and the weight γ. Once again the relative importance

of the Wiener and stable components depends on the size of weight attached to the

infinite variance component.

11



3 Finite sample size

In order to improve our understanding of the practical implications of Theorems 2.2

and 2.3, we carry out a MonteCarlo experiment whose main purpose is to investigate

the size distortion of the unit root and stationarity test under local-to-finite variance.

In the experiment we set a = σ2
1 = 1, T = {100, 1000, 10000} and α = {1.5, 1, 0.5}.

Moreover, as in Amsler and Schmidt (1999), we consider the following values for γ

γ = {0.1, 0.316, 1, 3.16, 10, 31.6}

where 3.16 ≈
√

10. The MonteCarlo experiment has been carried out using Gauss

5 and the number of replications N has been set to 20,000. We have 18 parameter

combinations for each sample size and three different sample sizes amounting to a

total of 54 experiments. For each experiment and in each replication, we simulate

a driftless random walk with the error term generated as in (1), calculate each test

statistic and store their values. Thus, we end up with a sample of 20,000 values of

each test statistic for each of the 54 experiments.

The effective size of the tests, when the nominal size is fixed at 5% and the critical

values for the finite variance case are used7, is reported in tables 1 and 2 for the unit

root and stationarity tests, respectively.

With regard to unit root tests we have that as expected, for a given sample size,

the effective size worsens as the stable component becomes more important, i.e. as

γ increases. In general, these tests have effective size smaller than the reference 5%

nominal size. This leads to fewer rejections than admissible under the probability

of type I error chosen which in turns makes them conservative tests. A noticeable

exception is the behavior of the DW test for any value of γ, α = 0.5 and T = 100

and for the smallest value of γ when T = 1000. On the other hand and for all

tests considered, for a given value of γ, the effective size is closer to the nominal

size as α increases. The DW test is little sensitive both to increases in α and in γ

displaying a rather constant behavior across all simulation experiments. This good

performance of the DW test is accordance with previous simulation experiments in

standard settings, see Stock (1990). The T (ρ̂ − 1), t(ρ̂), and LM tests have close

patterns of effective size with little differences in relative performance, even though

the T (ρ̂− 1) test has somehow less severe size distortion.

Analogously, the effective size of stationarity tests at the 5% nominal level, for a
7The 5% critical values have been obtained for all tests by simulation of the case γ = 0, T = 100, 000 and

20,000 replications .
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Table 1: Effective size (in %) with 5% nominal size for nonstationarity tests under (1)

γ γ

0.1 0.316 1 3.16 10 31.6 0.1 0.316 1 3.16 10 31.6

T α T (ρ̂− 1) Left tail t(ρ̂) Left tail

0.5 4.38 3.76 3.23 2.69 2.32 2.02 4.64 3.92 3.34 2.58 2.21 1.88

100 1.0 4.96 4.53 4.14 3.15 2.92 3.31 5.44 4.98 4.37 3.25 2.98 3.34

1.5 5.10 4.86 4.50 4.06 3.94 4.14 5.50 5.19 4.79 4.15 4.13 4.38

0.5 4.37 3.68 3.14 2.73 2.21 2.14 4.39 3.76 3.06 2.60 2.02 1.93

1000 1.0 5.03 4.78 3.88 3.02 3.28 3.38 5.04 4.86 3.91 2.98 3.16 3.23

1.5 5.26 4.92 4.61 4.09 4.04 4.02 5.39 5.00 4.76 4.11 4.06 4.04

0.5 4.38 3.80 3.16 2.54 2.36 1.93 4.37 3.74 3.13 2.41 2.17 1.80

10000 1.0 4.92 4.77 3.72 3.41 3.22 2.94 4.98 4.75 3.69 3.31 3.11 2.77

1.5 5.09 4.97 4.44 4.41 4.38 3.83 5.13 5.03 4.44 4.38 4.35 3.84

LM Right tail DW Right tail

0.5 4.25 3.68 3.02 2.26 1.93 1.59 5.41 5.29 5.32 5.26 5.35 5.34

100 1.0 4.78 4.52 3.81 2.92 2.52 2.86 5.29 5.26 5.10 4.64 4.62 5.05

1.5 5.04 4.81 4.46 3.80 3.67 3.76 5.37 5.16 5.00 4.64 4.79 4.99

0.5 4.40 3.55 3.01 2.38 1.88 1.71 5.26 5.04 4.86 5.02 5.04 5.00

1000 1.0 4.90 4.71 3.75 2.86 2.81 2.94 5.37 5.32 4.84 4.56 4.73 4.60

1.5 5.25 4.89 4.50 3.89 3.78 3.84 5.51 5.05 4.94 4.75 4.56 4.81

0.5 4.18 3.70 2.99 2.28 2.08 1.60 5.24 5.24 5.04 4.87 5.03 4.65

10000 1.0 4.86 4.74 3.52 3.12 2.83 2.61 5.19 5.31 4.71 4.75 4.72 4.56

1.5 5.14 4.96 4.36 4.20 4.11 3.62 5.36 5.33 5.01 5.08 5.03 4.71

given α decreases as γ increases and, for a given γ increases with α. These findings

are not surprising since both γ and α govern the behavior of the test statistics

under the sequence of local-to finite variances. Considering the 5% nominal size the

KPSS and SBDH have effective size closer to the nominal level. The LM1 test

displays effective sizes larger than the nominal ones for the sample size T = 100,

being a liberal test in this case. The effective size decreases as the sample size

grows and it adjusts around the true nominal level as T = 10, 000. The MRS

test statistics has the worst behavior with smallest effective size amongst all test

statistics. These findings are in accordance with the simulation results in Amsler

and Schmidt (1999). The KS test exhibits a slightly better behavior which is clearly
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dominated by the remaining test statistics. The rather bad behavior of the KS and

MRS test statistics can be rationalized by noticing that these tests consider the

maximum or the difference between the maximum and the minimum and that these

values may be the most sensitive to the presence of the outliers induced by the

infinite variance error terms. The performance of the LM2 test is in between the

KPSS, LM1 and SBDH, on the one hand, and the MRS and KS, on the other

hand, even tough it is not negatively affected by small sample sizes as the LM1 test.

So far, by looking at the size distortion we have compared the distributions

under finite variance and the local-to-finite variance at the 5% percentile for the

T (ρ̂ − 1) and t(ρ̂) statistics and at the 95% percentile for all other tests. A better

understanding of the differences between these distributions can be achieved us-

ing graphical methods. In particular, following Davidson and MacKinnon (1998)

we use the P-value discrepancy plots which are built as follows. For each of the

j = 1, 2, . . . , 20, 000, realizations of the test statistics, we compute its P-value, say

pj (using the distribution under the finite variance case). Then, we estimate the

empirical distribution function of the P-values, at m points, as

F̂ (ri) =
1
N

N∑
j=1

I(pj ≤ ri)

where I(·) is the indicator function and

ri = .001, .002, . . . , .010, .015, . . . , .990, .991, . . . , .999 (m = 215).

When plotted against ri, F̂ (ri) should be close to the 45o line. This is the so

called P-value plot. Instead, we plot F̂ (ri) − ri against ri, which should result in

a horizontal line with zero intercept, which is just the deviation of the actual size

from the nominal size obtaining the so-called P-value discrepancy plots.

Table 3 reports P-value discrepancies for all test statistics, α = 1.5, two values of

γ (medium and large) and for three different nominal levels, 1%, 5% and 10 per cent.

The conservative behavior of all test statistics testified by negative discrepancies is

evident, apart from the DW test and the LM1 test for small and medium sample

sizes. This feature tends to be more pronounced as the nominal size increases and/or

γ increases. Two facts are noteworthy: first, in most cases the P-value discrepancies

are small in magnitude, usually much less than 1%, and second, the MRS and

KS (and the LM1 for small sample sizes) have large P-value discrepancies casting

consistent doubts on their robustness to the kind of local departures from finite

variance we are considering.
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In Figure 5 and 6 we graph these P-values discrepancies for our battery of unit

root (top panel) and stationarity (bottom panel) tests for a sample size of T = 1000

and α = 1.5, which may be the most relevant case when working with financial time

series, and for γ = 31.6 and γ = 1, a large and a moderately small weight on the

infinite variance component, respectively. From the top panels of Figure 5 and 6, it

is clear how the DW test outperforms other unit root tests both at the 5% nominal

size and at all other significance level the researcher might choose. It is also clear

that the LM test has the worst discrepancy while the T (ρ̂− 1) and t(ρ̂) moves very

closely. Of course, one should also notice the negative effect of increasing γ on the

P-values discrepancies.

As for the bottom panels of figure 5 and 6, first one notices the striking bad

behavior of the KS and MRS. A look at the behavior of the LM2 test is instructive

of the kind of information one is able obtain from P-values discrepancy plots. In

fact, from both figures we notice that the graph of the LM2 test is very close to

those of the KPSS, SBDH, and LM1 tests at the 5% nominal level. However,

the P-value discrepancy of the LM2 test differs remarkably from those of the above

mentioned tests as the nominal size increases. Thus, the LM2 tests has a tendency

to under-reject at all nominal sizes while KPSS, SBDH, and LM1 do not display

such a behavior.

4 Conclusions

In this paper we have investigated the null distribution of several stationarity and

nonstationarity tests when the maintained hypotheses of finite variance is almost

satisfied. Considering the local-to-finite variance approach suggested by Amsler and

Schmidt (1999) we establish the limiting null distributions of the test statistics and

remark that they depend on the maximal moment exponent and on the weight

attached to the stable component. Simulation results on the empirical size of the

test statistics indicate clearly that some test are more sensitive than others to a

local departure from the maintained hypothesis of finite variance and allow us to

rank the test statistics according to their empirical size distortion. Our simulation

results suggest that using the DW statistics when testing for a unit root and the

KPSS or the SBDH statistics when the null is the stationarity one is not likely

to induce significant size distortions. Therefore, when one is uncertain about the

presence of a stable error term or does not want to rely too much in the estimated
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Figure 5: Discrepancy between effective and nominal size for all tests under local to finite

variance, unit root tests in the upper window and stationarity tests in the lower window, T =

1000, α = 1.5, γ = 31.6

value of the maximal moment exponent, a reasonable strategy could be to use the

standard critical values under finite variance.
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Figure 6: Discrepancy between effective and nominal size for all tests under local to finite

variance, unit root tests in the upper window and stationarity tests in the lower window, T =

1000, α = 1.5, γ = 1

A Appendix

A.1 Proof of Lemma 2.1

We begin by establishing the weak convergence of T−1/2y[Tr]. We have

1√
T

y[Tr] =
1√
T

[Tr]∑
t=1

ut

=
1√
T

[Tr]∑
t=1

v1t +
γ

aT 1/α

[Tr]∑
t=1

v2t

⇒ σvW (r) + γUα(r) ≡ Zα,γ(r)
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Next, we turn to the second convergence result

1
T

[Tr]∑
t=1

u2
t =

1
T

[Tr]∑
t=1

v2
1t +

γ2

aT 2/α

[Tr]∑
t=1

v2
2t +

2γ

aT 1/α+1/2

[Tr]∑
t=1

v1tv2t

⇒ σ2
vr + γ2V (r)

since the first term of the second line converges in probability to σ2
vr, and thus in

distribution, the second term converges in distribution to γ2V (r) and the last term

converges in probability to zero, as T ↑ ∞. The convergence of the last term to

zero follows from the fact that the tail behavior of the product, say εt = v1tv2t,

of independent variates belongs to the normal domain of attraction of the variate

with the smallest maximal moment exponent, see Phillips (1990, Appendix A). Since

εt ∈ ND(α) it follows that (aT 1/α)−1
∑[Tr]

t=1 εt converges in distribution to a Lévy

α-stable process while T−1/2 converges to zero, as T ↑ ∞. Thus, the product tends

to zero as T ↑ ∞.

The third and fourth convergence results follow by direct application of the con-

tinuous mapping theorem. The fifth one can be obtained as follows. After simple

manipulations, we have that

1
T

[Tr]∑
t=1

yt−1ut =
1
T

[Tr]∑
t=1

xt−1v1t +
1
T

[Tr]∑
t=1

zt−1v1t +
γ

T 1/α+1/2

[Tr]∑
t=1

xt−1v2t +
γ2

T 2/α

[Tr]∑
t=1

zt−1v2t

⇒ σ2
v

∫ r

0
W (s)dW (s) + γσv

∫ r

0
U−

α (s)dW (s) +

γσv

∫ r

0
W (s)dUα(s) + γ2

∫ r

0
U−

α (s)dUα(s)

≡
∫ r

0
Zα,γ(s)dZα,γ(s)

where xt =
∑t

s=1 v1s and zt =
γ

aT 1/α−1/2

∑t
s=1 v2s. The weak convergence of the

first terms follows from the weak convergence to stochastic integrals for sample

covariances of i.i.d. processes, convergence of the second term follows from Hansen

(1992), while the weak convergence of the third and fourth terms follows from Caner

(1997). Finally, rearranging terms gives the result in the text.

A.2 Proof of Theorem 2.3

The limiting behavior of the KPSS, MRS, and KS test are obtained from Lemma

2.1, namely,

S[Tr]√
T

=
1√
T

[Tr]∑
t=1

(ut − ū) ⇒ Zα,γ(r)− rZα,γ(1) ≡ Z̃α,γ(r)
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and application of the continuous mapping theorem. Amsler and Schmidt (1999)

provide a proof for the KPSS and MRS tests whereas for the KS test we have

KS = max
k=1,...,T

k

σ̂eT 1/2

∣∣∣∣Sk

k
− ST

T

∣∣∣∣
⇒ sup

r
|Zα,γ(r)− rZα,γ(1)| ≡ sup

r

∣∣∣Z̃α,γ(r)
∣∣∣

As for the LM and SBDH tests we proceed as follows. First, we establish the

limiting distribution of the OLS estimator of a regression of Ct on a time trend

under our DGP (11)-(12) and (1), then we derive the asymptotic behavior of the

test statistics. Letting µ̂ =
∑T

t=1 tCt

/∑T
t=1 t2 it is easy to obtain

√
T (µ̂− µ) ⇒ 3

∫ 1

0
rZα,γdr (26)

Then, given the definition of Qt as the residuals of the above regression we have

Qt = Ct − µ̂t

=
t∑

j=1

uj − (µ̂− µ)t, so that

Qt−1 =
t−1∑
j=1

uj − (µ̂− µ)t + (µ̂− µ), and

∆Qt = ut − (µ̂− µ)

Upon substitution of these expressions in (17)-(19) we can derive the asymptotic

distributions of Theorem 2.3. Thus, letting xt =
∑t

j=1 uj , we have

1
T

T∑
t=1

Qt−1∆Qt =
1
T

T∑
t=1

(xt−1 − t(µ̂− µ) + (µ̂− µ)) (ut − (µ̂− µ))

=
1
T

T∑
t=1

xt−1ut −
√

T (µ̂− µ)
1

T 3/2

T∑
t=1

tut +

+
√

T (µ̂− µ)
1

T 3/2

T∑
t=1

ut +
√

T (µ̂− µ)
1

T 3/2

T∑
t=1

xt−1 +

+T (µ̂− µ)2
1
T 2

T∑
t=1

t + T (µ̂− µ)2
1
T 2

T∑
t=1

1

⇒
∫ 1

0
Zα,γdZα,γ − 3

∫ 1

0
dZα,γ

∫ 1

0
rZα,γ +

∫ 1

0
r

(
3
∫ 1

0
rZα,γ

)2

≡
∫ 1

0
Z̄α,γdZ̄α,γ
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where Z̄α,γ and dZ̄α,γ are defined in Theorem 2.3,

1
T

T∑
t=1

∆Q2
t =

1
T

T∑
t=1

(
ut + (µ̂− µ)2 − 2(µ̂− µ)ut

)
=

1
T

T∑
t=1

ut + T (µ̂− µ)2
1
T 2

T∑
t=1

1− 2
√

T (µ̂− µ)
1

T 3/2

T∑
t=1

ut

⇒ σ2
1 + γV (1) ≡ Kγ(1)

and

1
T 2

T∑
t=1

Q2
t−1 =

1
T

T∑
t=1

x2
t−1 + T (µ̂− µ)2

1
T 3

T∑
t=1

t2 + T (µ̂− µ)2
1
T 3

T∑
t=1

1−

−2
√

T (µ̂− µ)
1

T 5/2

T∑
t=1

txt−1 + 2
√

T (µ̂− µ)2
1

T 5/2

T∑
t=1

xt−1 −

−2
√

T (µ̂− µ)
1

T 5/2

T∑
t=1

t

⇒
∫ 1

0
Z2

α,γ −
(

3
∫ 1

0
rZα,γ

)2

which, together with the continuous mapping theorem yield Theorem 2.3.

B Tail behavior of ut = v1t + ztv2t

In this section, we provide a Lemma establishing the tail behavior of the process

ut = v1t + ztv2t introduced in section 2.

Lemma B.1 Let v1t be an i.i.d. process with zero mean and finite variance σ2
1 and

distribution function F1t(·), let v2t belong to the normal domain of attraction of a

stable law with characteristic exponent α with 0 < α < 2 with distribution function

F2t(·), independent on v1t and let zt ∼ B(1, p). Let ut = v1t + ztv2t, then the

distribution function Fu(·) of ut belongs to the normal domain of attraction of a

stable law with characteristic exponent α.

Proof. The proof is in two steps. First, we show that the random variable ztv2t

belongs to the normal domain of attraction of a stable law with characteristic expo-

nent α, secondly, we show that ut also belongs to the normal domain of attraction

of a stable law with the same characteristic exponent α.

Letting dt = ztv2t we have

dt =

 0 if zt = 0

v2t if zt = 1
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for each t. Letting Fd(·) and fd(·) be the distribution function and the density

function of dt, respectively, we factorize the marginal density of dt as

fd(h) = fd|u(h|zt = 0)prob(zt = 0) + fd|u(h|zt = 1)prob(zt = 1)

= (1− p)δ0(h) + pfu(h)

where δ0(·) is a p.d.f. that assigns probability one to the value zero and f2(·) is the

density of v2t. Integrating the p.d.f., we obtain the distribution function of dt as

Fd(h) = (1− p)
∫ h

−∞
δ0(s)ds + p

∫ h

−∞
fu(s)ds

= (1− p)I(h≥0)(h) + pFu(h)

where

I(h≥0)(h) =

 0 if h < 0

1 if h ≥ 0

It is immediate to see that

Fd(h) =

 pFu(h) if h < 0

1− p + pFu(h) if h ≥ 0

which, taking into account the tail behavior of f2(·), can be written as

Fd(h) =


[c̃1a

α + α̃1(h)]
1
|h|α

if h < 0

1− [c̃2a
α + α̃2(h)]

1
|h|α

if h ≥ 0

where c̃1 = pc1, c̃2 = pc2, α̃1 = pα1, and α̃2 = pα2. Since c̃1 > 0, c̃2 > 0 with

c̃1 + c̃2 > 0, and limh→−∞ ˜α1(h) = p limh→−∞ α1(h) = 0 and limh→∞ ˜α2(h) =

p limh→−∞ α2(h) = 0, the distribution function Fd(·) belongs to the normal domain

of attraction of a stable law with characteristic exponent α by Theorem 2.6.7 of

Ibragimov and Linnik (1971).

Next, we turn to the compound process ut. Let us define the normed sums

Sd,T =
d1 + d2 + · · ·+ dT

Bd,T
−Ad,T

and

Su,T =
u1 + u2 + · · ·+ uT

Bd,T
−Ad,T

where the norming factors Bd,T and Ad,T are those required for the convergence of∑T
t=1 dt to a non-degenerate random variable. Since Fd(·) belongs to the normal
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domain of attraction of stable law with characteristic exponent α and the norming

factor Bd,T is given by aT 1/α, it follows that Sε,T may be rearranged as

Sε,T =
1

aT 1/α−1/2

v1 + v2 + · · ·+ vT

T 1/2
+

d1 + d2 + · · ·+ dT

aT 1/α
−Ad,T

Now, T−1/2
∑T

t=1 vt →d N(0, σ2
v) by a CLT for i.i.d. sequences and aT 1/2/T 1/α → 0

because of 1/α > 1/2 for α ∈ (0, 2), the first term converges in distribution to

zero, and hence in probability. Therefore, Su,T is asymptotically equivalent to Sd,T .

It follows that the distribution function Fu(·) belongs to the normal domain of

attraction of a stable law with the same characteristic exponent α of Fd(·), which,

in turn, is the same characteristic exponent of the distribution function Fu(·).
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Table 2: Effective size (in %) with 5% nominal size for stationarity tests under (1)

γ γ

0.1 0.316 1 3.16 10 31.6 0.1 0.316 1 3.16 10 31.6

0.1 0.316 1 3.16 10 31.6 0.1 0.316 1 3.16 10 31.6

T α KPSS MRS

0.5 4.12 3.45 2.80 2.34 1.71 1.34 1.74 1.32 0.86 0.50 0.14 0.01

100 1.0 4.69 4.56 3.66 3.12 2.94 2.76 2.09 1.76 0.88 0.33 0.09 0.05

1.5 5.05 4.76 4.40 4.10 4.04 4.13 2.29 2.11 1.25 0.77 0.65 0.63

0.5 4.39 3.47 3.03 2.05 1.59 1.24 3.12 2.36 1.61 0.77 0.23 0.07

1000 1.0 4.83 4.25 3.80 2.99 2.67 2.90 3.79 2.97 1.60 0.48 0.18 0.14

1.5 4.76 4.77 4.23 3.96 3.93 4.20 3.91 3.72 2.45 1.32 1.15 1.09

0.5 4.28 3.56 2.95 2.10 1.58 1.37 3.51 3.06 1.91 0.80 0.25 0.03

10000 1.0 4.65 4.44 3.61 3.04 3.02 2.74 4.48 3.60 1.87 0.58 0.20 0.18

1.5 4.97 4.61 4.31 3.93 4.02 4.10 4.87 4.20 2.71 1.47 1.27 1.23

KS LM1

0.5 2.74 2.20 1.48 0.94 0.41 0.19 12.85 11.77 10.51 8.05 7.04 5.95

100 1.0 3.18 2.83 1.89 0.96 0.64 0.56 15.15 13.57 11.63 8.77 8.09 7.85

1.5 3.43 3.32 2.51 1.99 1.88 1.81 15.20 14.78 13.43 11.49 11.05 10.98

0.5 3.75 2.71 2.04 0.97 0.49 0.19 6.18 5.69 5.17 4.71 4.22 3.72

1000 1.0 4.37 3.52 2.46 1.12 0.89 0.81 6.75 6.46 5.85 4.74 4.65 4.47

1.5 4.54 4.15 3.10 2.37 2.17 2.35 7.35 6.78 6.17 5.67 5.57 5.45

0.5 3.78 3.16 2.23 1.12 0.55 0.19 4.84 4.53 4.13 4.11 3.87 3.46

10000 1.0 4.45 3.88 2.44 1.29 0.77 0.78 5.19 4.88 4.64 4.31 4.02 4.32

1.5 4.84 4.22 3.20 2.31 2.35 2.27 5.34 5.45 4.65 4.58 4.68 4.55

LM2 SBDH

0.5 3.89 3.30 2.79 2.26 2.00 1.96 4.98 4.44 4.06 3.48 3.04 2.80

100 1.0 4.53 3.96 3.15 2.43 2.56 2.69 5.15 5.15 4.78 4.23 3.86 4.10

1.5 4.42 4.23 3.81 3.36 3.43 3.33 5.05 5.48 4.81 4.70 4.72 4.92

0.5 4.13 3.55 2.65 2.18 1.69 1.82 4.19 4.13 3.42 2.73 2.18 1.97

1000 1.0 4.76 4.41 3.67 2.83 2.69 2.92 4.93 4.43 4.20 3.55 3.19 3.17

1.5 5.01 4.61 4.20 3.97 3.83 3.93 4.96 5.04 4.56 4.47 4.30 4.02

0.5 4.04 3.69 3.01 2.20 1.71 1.54 4.36 3.80 3.41 2.75 2.26 1.95

10000 1.0 4.85 4.63 3.59 2.92 2.48 2.65 4.97 4.57 3.99 3.53 3.30 3.23

1.5 5.01 4.92 4.68 3.88 3.77 3.82 5.21 4.92 4.40 4.50 4.25 4.18
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Table 3: Discrepancy (in %) between effective and nominal size for all tests under local to finite

variance, α = 1.5.

Nominal

Size T (ρ̂− 1) t(ρ̂) LM DW KPSS MRS KS LM1 LM2 SBDH

T = 100, γ = 1

0.01 -0.155 -0.030 -0.275 0.070 -0.355 -0.830 -0.705 10.840 -0.400 0.040

0.05 -0.505 -0.205 -0.535 0.000 -0.605 -3.745 -2.495 8.435 -1.190 -0.190

0.10 -1.230 -0.850 -1.300 -0.415 -0.570 -6.825 -4.300 6.395 -2.175 0.010

T = 1000, γ = 1

0.01 -0.005 -0.030 -0.100 0.205 -0.195 -0.620 -0.465 2.520 -0.255 -0.060

0.05 -0.395 -0.245 -0.505 -0.055 -0.765 -2.545 -1.905 1.175 -0.800 -0.440

0.10 -1.000 -0.920 -1.070 -0.375 -0.465 -4.790 -2.820 0.840 -1.640 -0.535

T = 10000, γ = 1

0.01 -0.215 -0.255 -0.265 0.015 -0.365 -0.555 -0.525 0.210 -0.120 -0.270

0.05 -0.565 -0.575 -0.635 0.005 -0.690 -2.295 -1.800 -0.345 -0.315 -0.605

0.10 -0.770 -0.770 -1.075 -0.325 -0.860 -4.100 -2.755 -0.500 -1.175 -1.015

T = 100, γ = 31.6

0.01 -0.200 -0.100 -0.285 0.170 -0.340 -0.940 -0.810 8.235 -0.365 -0.045

0.05 -0.860 -0.620 -1.240 -0.010 -0.870 -4.365 -3.185 5.975 -1.670 -0.085

0.10 -1.480 -1.325 -2.100 -0.640 -1.000 -8.26 -5.445 4.520 -2.860 -0.195

T = 1000, γ = 31.6

0.01 -0.185 -0.215 -0.305 0.125 -0.375 -0.915 -0.680 1.515 -0.215 -0.345

0.05 -0.980 -0.970 -1.160 -0.190 -0.805 -3.910 -2.650 0.455 -1.070 -0.980

0.10 -1.655 -1.640 -2.120 -0.955 -1.055 -7.165 -4.720 0.135 -2.435 -1.030

T = 10000, γ = 31.6

0.01 -0.325 -0.355 -0.420 -0.035 -0.435 -0.905 -0.770 -0.145 -0.115 -0.325

0.05 -1.170 -1.160 -1.385 -0.290 -0.905 -3.770 -2.730 -0.450 -1.185 -0.820

0.10 -2.095 -2.195 -2.410 -1.010 -0.985 -6.795 -4.405 -0.570 -2.210 -0.735
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