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Abstract

In this paper we present a stochastic volatility model assuming that the return shock has

a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry

and heavy tails in the conditional distribution of returns. The Skew-GED distribution

nests both the GED, the Skew-normal and the normal densities as special cases so that

specification tests are easily performed. Inference is conducted under a Bayesian framework

using Markov Chain MonteCarlo methods for computing the posterior distributions of the

parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed

Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and

of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily

and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with

fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.

Keywords: Stochastic volatility, Markov Chain MonteCarlo, Skewness, Heavy tails, Bayesian

inference, Metropolis-Hastings sampling.
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1 Introduction

The time series econometrics literature on the modeling of time varying conditional

variances of asset returns has grown enormously since the seminal paper on ARCH

models by Engle (1982). A large literature has also grown up on modeling financial

time series using stochastic volatility models (see Taylor, 1994; Ghysels et al., 1996

for a review). Several variants of ARCH and SV models have been proposed so

far to account for the empirical regularities of financial time series. Amongst these

regularities two are tackled in this paper within a stochastic volatility model, namely,

the heavy tails and the asymmetry in the distribution of returns.

Fat tails have been documented since the work by Mandelbrot (1963) and Fama

(1965) and several studies have been concerned with modeling of asset returns with

stable distributions. In the stochastic volatility literature, Jacquier et al. (1999) and

Liesenfeld and Jung (2000), amongst others, have provided consistent evidence that

leptokurtic distributions, such as the Student’s t or the GED ones, are more adequate

to capture this empirical regularity. As for asymmetry, Corrado and Su (1997)

suggests that fat tails and asymmetry jointly determine the so-called “volatility

smile” in option pricing using the Black-Scholes approach and that explicit account

of them improve accuracy in option pricing, Chunhachinda et al. (1997) show that

the introduction of skewness affects significantly the construction of the optimal

portfolio, Mittnik and Paolella (2000) argue that skewness and heavy tails should

be taken into account explicitly in Value-at-Risk forecasts, Peiró (1999) provides

further evidence of asymmetry in returns, both from stock market indices and from

individual assets.

Heavy tails are usually accounted for by relaxing the normality assumption and

assuming a distribution with fatter tails, such as the Student’s t or the GED. In

this paper we suggest that a flexible and parsimoniuos treatment of both asym-

metry and heavy tails in the distribution of returns can be achieved by a skewed

distribution built upon a fat tailed distribution. We provide such a direct treat-

ment of the asymmetry in returns by exploiting a result by Azzalini (1985) which

allows the construction of an asymmetric distribution which nests symmetric ones

and whose asymmetry is characterized by as single parameter. In practice, this is

accomplished by specifying a stochastic volatility model where returns shocks are

modeled according to the Skew-GED distribution and volatility is modeled as an

AR(1) process with Gaussian errors, independent on the returns shock. We are

aware that as a consequences of the absence of correlation between the returns and
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the volatility shock we are not able to take into account the so-called “leverage”

effect: episodes of high volatility induce expectations of lower future returns, hence

the negative correlation between these shocks. However, in our empirical application

of the model we consider exchange rates data where the “leverage” effect is usually

not effective. The extension to correlated shocks is currently under development.

Inference on the Skew-GED stochastic volatility model is performed in a Bayesian

framework via Markov Chain MonteCarlo methods (MCMC), as in Jacquier et al.

(1994, 1999). MCMC permits to obtain the posterior distributions of the param-

eters by simulation rather than analytical methods. Our updating scheme for the

transition kernel involves both standard Gibbs sampling steps and the use of the

Delayed-Rejection Metropolis-Hastings algorithm, introduced by Tierney and Mira

(1999), for the sampling of the volatility process. Direct sampling of volatilities

is not feasible in our setup because their full conditional distributions have not a

standard form. Further, the asymmetry and kurtosis parameter of the Skew-GED

distribution are sampled by Adaptive-Rejection Metropolis Sampling. We apply

our methodology to a data set of three exchange rates over the 1990s. Our findings

indicate strong evidence in favor of the SGED specification for the U/US$, where

a GED or a Skew-Normal model might be more appropriate for the DM/US$ and

US$/£rates.

The paper is organized as follow. In section 2 we outline a standard stochastic

volatility model with autoregressive volatility and introduce the Skew-GED distribu-

tion, characterizing both the marginal moments of the return process and the corre-

lation structure of squared returns. In section 3 we briefly review the MCMC method

and the most popular updating schemes, while in section 4 we discuss our Gibbs-

MH updating scheme based upon Delayed-Rejection MH and Adaptive-Rejection

Metropolis Sampling. Section 5 is devoted to the estimation of the model with a

data set of exchange rates and to the posterior distributions analysis.

2 A Skew-GED stochastic volatility model

A stochastic volatility model for the observable return process yt is usually speci-

fied as yt = β exp{ht/2}εt, where β is a scale factor, εt is a random return shock

with some known distribution and ht is the unobserved stochastic volatility process

with some conditional (on past volatilities) distribution (see Ghysels et al. (1996)

for a comprehensive survey). The most popular specification of this conditional
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distribution is the first-order autoregressive process for log(ht) such as

yt = β exp{ht/2}εt (1)

ht+1 = µ + φ(ht − µ) + σηηt, t = 1, . . . , T (2)

where the scale factor β must be set equal to unity for identifiability reasons (see Kim

et al. (1998)) and h1 is drawn from some known distribution. Several contributions

have considered different specification for the distribution of the return shock and

its correlation with the volatility shock. When εt is Gaussian with zero mean and

unit variance and is independent on ηt, we have the lagged autoregressive random

variance model of Taylor (1994). Jacquier et al. (1994) and Kim et al. (1998) also as-

sume that εt is Gaussian, while Jacquier et al. (1999) and Chib et al. (1998) consider

a return shock with a Student’s t distribution and some correlation between return

and volatility shocks, Steel (1998) considers a Skew Exponential Power distribution

for log(ε2t ) which implies a fat-tailed distribution for the return shock, and finally,

Andersen (1996) suggests the use of the Generalized Exponential distribution.

To account for fat tails and asymmetry, we introduce the Skew-GED distribution,

SGED in short, for the return shock εt. This distribution is completely characterized

by two parameters: λ, which is related to the asymmetry and ν which measures how

heavy are the tails. As we shall show below, this distributional assumption is very

convenient since the SGED nests most previously used distributions.

The SGED density can be obtained via an ingenious Lemma by Azzalini (1985):

Lemma 2.1 (Azzalini (1985)) Let f(·) be a density function symmetric about 0,

and G(·) an absolutely continuous distribution function such that G′(·) is symmetric

about 0. Then 2G(λx)f(x),−∞ < x < ∞, is a density function for any real λ.

In our application of Lemma 2.1, the density f(·) and the distribution function

G(·) are those of a random variable with a Generalized Error Distribution (GED)

because we believe that the GED distribution is a simple, yet effective, way of

modeling the tail behavior of the distribution of return shocks. Letting Z be a GED

random variable with zero mean, its probability density function is given by

f(z) =
ν exp{−0.5|z|ν}
21+1/νΓ(1/ν)

−∞ < z < ∞ ν > 0

The crucial parameter of the GED is ν which controls the thickness of the tails. In

fact, for ν = 2 the GED reduces to the normal density while for ν < 2 we have a

leptokurtic density (with heavier tails than the normal one) and for ν > 2 we have
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a platykurtic density (with thinner tails than the normal one). Even moments of a

GED random variable are given by

E[zr] = 2r/νΓ
(

r + 1
ν

)
/Γ(1/ν)

so that, for instance, the variance is given by σ2 = 22/νΓ(3/ν)/Γ(1/ν) while odd mo-

ments are zero. Finally, this density is symmetric about 0 satisfying the conditions

of Lemma 2.1.

The absolutely continuous distribution function of a GED random variable with

zero mean can be written as

G(a) =
∫ a

−∞
f(z)dz =

1
2

1 +
sign(a)γ

((a

2

)ν
;
1
ν

)
Γ(1/ν)


where γ((a/2)ν ; 1/ν) is the incomplete gamma function γ(b;w) =

∫ b
0 tw−1e−tdt.

Following Lemma 2.1, for any real λ we are able to build a random variable X

with probability density function given by1

f(x;λ, ν) =

1 +
sign(λx)γ

(
0.5 (λx)ν ;

1
ν

)
Γ(1/ν)


ν exp(−0.5|x|ν)
21+1/νΓ(1/ν)

(3)

and we say that X has a SGED distribution. Several well-know densities can be

obtained as special cases of the SGED random variable. The parameters λ and ν

control the asymmetry and the fat tails of the distribution of returns, respectively.

It is not difficult to see that when ν = 2 and λ = 0 we have the standard Normal,

for ν = 2 and λ 6= 0 we obtain the Skew Normal of Azzalini (1985), for λ = 0 we

have the GED distribution. Thus, the SGED nests several distributions which have

been used to model the return shock in stochastic volatility models. In Figure 1 we

graph the density of the SGED random variable for different values of λ and ν. For

ν < 2 (ν > 2), this distribution exhibits fatter (thinner) tails then the benchmark

standard normal case of λ = 0 and ν = 2 (dotted line). Skewness is introduced when

λ 6= 0: positive (negative) values of λ induce a longer and fatter right (left) tail.

The even moments of X are given by2

E[Xr] = 2r/2 Γ((r + 1)/ν)
Γ(1/ν)

(4)

1The Skew-GED distribution is also defined in Azzalini (1986) as Distribution Type I (his formula (12)) with

another parametrization. See also Goria (1998).
2For r even the moments of the skew distribution are equal to those of the symmetric one, see Proposition 1

in Azzalini (1986).
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Figure 1: The S-GED distribution for different values of λ and ν.
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while the odd moments are

E[Xr] = 2r/2 sign(λ)Γ((r + 1)/ν)
Γ(1/ν)

B

(
|λ|ν

1 + |λ|ν
;
1
ν

,
r + 1

ν

)
(5)

where B(z; p, q) is the distribution function of a Beta random variable.

In this paper, we assume that the return shock εt in the stochastic volatility

model (1)-(2) has a SGED distribution with zero mean and is normalized to have

unit variance. As for the initial condition for the volatility process, we assume that

h1 ∼ N(µ, σ2
η/(1 − φ2)). With this specification of the stochastic volatility model,

the marginal moments of the return process yt are given by

E[yr] = exp

{
r

2
µ +

r2

8
σ2

η

1− φ2

}
E[εr

t ]

where E[εr
t ] is obtained from (4) and (5) according to the value taken by r. The

dynamic properties of the model are summarized by the covariance structure of

squared returns

Cov(y2
t , y

2
t−s) = exp

{
2µ +

σ2
η

1− φ2

}(
exp

{
σ2

η

1− φ2
φs

}
− 1

)

which is independent on the assumptions on the distribution of the return shock

εt. These moment conditions suggest that a GMM estimator could be implemented;

however we do not follow this avenue in the paper but a Bayesian approach as in

Jacquier et al. (1994).

3 Markov Chain MonteCarlo

Letting θ = (µ, φ, ση, ν, λ) be the parameter vector, a consequence of our specifica-

tion of the stochastic volatility model is that, conditional on (ht,θ), the return yt

and the volatility ht+1 are stochastically independent. This allows the factorization

of the joint density for a single observation as

p(yt, ht+1|ht,θ) = p(yt|ht,θ)p(ht+1|ht,θ)

so that the likelihood can be written as

p(y,h|θ) = p(h1|θ)

[
T−1∏
t=1

p(yt, ht+1|ht,θ)

]
p(yT |hT ,θ)

= p(h1|θ)

[
T−1∏
t=1

p(ht+1|ht,θ)

][
T−1∏
t=1

p(yt|ht,θ)

]
p(yT |hT ,θ)
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where

p(yT |hT ,θ) =
∫

p(yT , hT+1|hT ,θ)dhT+1.

Analytic expressions are available both for the above likelihood and for p(yt|ht,θ)

and p(ht+1|ht,θ). Once we specify some prior distribution of the parameters p(θ),

assumed mutually independent throughout the paper, the joint density of returns,

volatilities, and the parameters is available in closed form as

p(y,h,θ) = p(y,h|θ)p(θ) (6)

Our task is to obtain the posterior distribution of the parameter vector given the

data, namely, p(θ|y).

Whenever both y and h are observable, the posterior distribution for the param-

eters θ, say p(θ|y,h), can be calculated. In the presence of unobserved data, i.e.

the volatilities, Tanner and Wong (1987) argue that, the posterior distribution of in-

terest is p(θ|y) which may be difficult to calculate and they suggest that integration

of (6) with respect to the latent data could be performed by simulation methods. If

one could generate realizations of the latent process from its predictive density given

the observed data, namely p(h|y), then one could evaluate the posterior density of

interest as the expected value p(θ|y) =
∫

p(θ|y,h)p(h|y)dh. In practice, suppose

we can generate a sequence of simulated parameter vectors {θ(i)}M
i=1 and unobserved

data {h(i)}M
i=1 from p(θ,h|y), then by MonteCarlo we can integrate out h. It follows

that the sequence of parameter vectors is implicitly a sample from the posterior dis-

tribution of θ given the data y. This approach is called “data augmentation”. In our

context, the number of unobservables is quite large and simulation from p(θ,h|y)

directly is not possible. In order to sample from such high-dimensional densities, we

resort to Markov Chain MonteCarlo (MCMC) methods.

The basic idea behind MCMC is to build a Markov chain transition kernel

P(x,A) = Prob{(θ(m+1),h(m+1)) ∈ A|(θ(m),h(m)) ∈ x},

starting from some initial state (θ(0),h(0)), with limiting invariant distribution equal

to the posterior distribution of the parameters given the data p(θ|y). Under suitable

conditions (Tierney, 1994; Chib and Greenberg, 1996), we can build such a tran-

sition kernel generating a Markov chain {θ(m+1),h(m+1)|θ(m),h(m),y}M
m=1 whose

elements (draws) converge in distribution to the (target) posterior density p(θ|y).

Once convergence is achieved, we obtain a sample of serially dependent simulated
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“observations” on the parameter vector θ (and on the volatilities), which can be

used to perform MonteCarlo inference3.

Much effort has been devoted to the design of updating schemes able to generate

a convergent transition kernel. The Metropolis-Hastings (MH) algorithm is one of

them and it can be very effective in building the above mentioned Markov chain

transition kernel (Metropolis et al., 1953; Hastings, 1970). This algorithm is very

popular because it is possible to show that, under suitable (mild) conditions (see

Robert and Casella 1999), the Markov chain converges to correct invariant distribu-

tion. The MH updating scheme works as follows: letting π(x) be the target density

and q(x, y) be a proposal density function from which we generate the transition

from state x to state y, the Markov chain is updated according to the following

steps:

1. let x be the starting state (or the initial condition),

2. sample y from a proposal density q(x, y),

3. sample u from the uniform density U(0, 1).

4. compute α(x, y) =

{
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
if π(x)q(x, y) > 0

1 otherwise

5. new state of the chain =
{

y if u ≤ α(x, y)
x otherwise

6. go to step 2.

Several special cases of the MH scheme are of particular interest: if the proposal

does not depend on the present state of the chain, that is q(x, y) = f(y), MH

generates a so called Independence Chain; if, on the other hand, y = x + z with

z ∼ f(z) implying q(x, y) = f(y − x) we have a Random Walk Chain, see Chib and

Greenberg (1995) for details.

An important special case of the MH algorithm arises when x is a vector. In

this case it is possible to apply a “divide and conquer” strategy in which the vector

is updated one component at a time. If the proposal for each component is the

full conditional distribution, i.e. the distribution of each component conditional

on all other components, the algorithm is known as Gibbs sampler. In practice,

the acceptance probability α(x, y) is by definition equal to 1, so all suggestions are
3The period from the start of the chain until convergence to the stationary distribution is achieved is called

the “burn-in” period. Since “draws” in this period do not come from the posterior distribution of interest, they

are discarded when making inference on the parameter vector (see Gilks, Richardson and Spiegelhalter (1995)

for a discussion on the appropriate choice of the “burn-in” period).

9



accepted. This updating scheme is particularly straightforward to implement since

there is no need to evaluate α(x, y).

In practical works, the choice of the proposal is somehow arbitrary but subject

to the condition that the chain has the stationary distribution π(x), is π-irreducible

and aperiodic4. From Chib and Greenberg (1996), if the Markov chain has an invari-

ant distribution π(x), it is π-irreducible and aperiodic then an ergodic distribution

exists and that, irrespective of the starting point, the Markov chain with transi-

tion kernel P(x,A) will converge to the invariant distribution. A further important

computational issue concerns the selection of a proposal distribution q(x, y) so that

“observations” may be generated easily.

4 A Gibbs-MH updating scheme

Many variants of the basic MH algorithm and Gibbs sampler have been proposed

so far. The most relevant in our setup, where the state is a vector of parameter

and volatilities, are the so-called “blocking schemes”. Under these schemes one

divides the parameter set, say S, into subset Si such that S = {Si|i = 1, . . . , n},

and then samples each block Si individually, conditional on the most recent value of

the remaining blocks S
(j+1)
−i = {S(j+1)

1 , . . . , S
(j+1)
i−1 , S

(j)
i+1, . . . , S

(j)
n }. The distribution

of Si conditional on all other blocks and the data is called the full conditional

distribution, and is denoted by p(Si|S−i,y). Similar techniques were applied to

state space models in Kim et al. (1998), Steel (1998), Jacquier et al. (1994, 1999),

and Carlin et al. (1992).

Alternative updating schemes may be implemented for the different blocks of the

parameters, according to the difficulties originated by the problem at hand, giving

rise to hybrid MH updating schemes (see Robert and Casella 1999 and Tierney 1994)

For example, if we are not able to extract some drawings from a full conditional

distribution inside a Gibbs sampler, it is possible to solve the problem introducing

a Metropolis-Hastings step. This procedure is known (even if somehow improperly)

as MH within Gibbs sampler. Other examples about this kind of strategies are in

Tierney (1994).

Since the main problem we deal with is the high dimensionality of the latent
4Loosely speaking, a Markov chain with invariant distribution, π, is said to be π-irreducible if from any

starting point x0, the state A will be reached with positive probability. When the chain is π-irreducible then it

said to be aperiodic if any point x0 in the support of π can not be visited with probability 1 when starting from

some specific set of states A.
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process, it is very important to look for a proposal distribution for each volatility

that reduce the risk of an high probability of rejection and at the same time be

computationally easy to sample. We update the volatility vector and each parameter

one at a time beginning with the volatility vector, so our blocking scheme is the

simplest one.

4.1 Sampling the volatility process

Given our specification of the prior densities, it is a matter of tedious calculation to

obtain the full conditional density of ht for t = 2, . . . , T − 1 as proportional to

p(ht|y,h−t,θ) ∝ exp
{
−ht

2

}
exp

{
−1

2

∣∣∣∣yt exp{−ht/2} − λ1

λ2

∣∣∣∣ν}×
×
[
1 + sgn

(
λ

exp{−ht/2}yt − λ1

λ2

)
×

× γ

(
1
2

∣∣∣∣λexp{−ht/2}yt − λ1

λ2

∣∣∣∣ν ;
1
ν

)
/Γ(1/ν)

]
×

× exp

{
−1

2

[
(ht+1 − µ)− φ(ht − µ)

ση

]2
}
×

× exp

{
−1

2

[
(ht − µ)− φ(ht−1 − µ)

ση

]2
}

where h−t = (h1, . . . , ht−1, ht+1, . . . , hT ). Further, for t = 1 we have

p(h1|y,h−1,θ) ∝ p(y1|h1,θ)p(h2|h1,θ)p(h1|θ) (7)

while for t = T ,

p(hT |y,h−T ,θ) ∝ p(hT |hT−1,θ)p(yT |hT ,θ). (8)

Some difficulties arise in this step because of the complexity of the full conditional

distributions. Therefore, we make use of the Delayed Rejection MH algorithm pro-

posed in Tierney and Mira (1999) who suggest that, in case of rejection of a draw

from a proposal density, one should re-sample the new state of the chain from a

different proposal, exploiting the information (of rejection) contained in the pre-

vious step5. This Delayed Rejection MH is used whenever we refuse a candidate

for the volatility, appending a further MH step according to a new proposal. Mira

(2001) and Tierney and Mira (1999) prove that, in order to maintain the reversibil-

ity of the chain, for each sub-step of the MH algorithm the acceptance probability
5See Cappuccio et al. (2001) for a similar stochastic volatility model with a different approach to sampling of

the volatility process.
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α(x, y1, · · · , yn) has the form

αi(x, y1, . . . , yi) = 1 ∧
{

π(yi)q1(yi, yi−1)q2(yi, yi−1, yi−2) · · · qi(yi, yi−1, . . . , x)
π(x)q1(x, y1)q2(x, y1, y2) · · · qi(x, y1, yi)

×

[1− α1(yi, yi−1)][1− α2(yi, yi−1, yi−2)] · · · [1− αi−1(yi, . . . , y1)]
[1− α1(x, y1)][1− α2(x, y1, y2)] · · · [1− αi−1(x, y1, yi−1)]

}
In the first step the proposal is based on an Independence Chain as proposed in

Kim et al. (1998)

q(ht | ht−1, ht+1,θ) ∼ N(µt, σ
2
t ) (9)

where µt = h∗t + 0.5σ2
t /[y2

t exp{−h∗t } − 1], σ2
t = σ2

η/(1 + φ2) and

h∗t = µ +
φ[(ht−1 − µ) + (ht+1 − µ)]

1 + φ2
.

Even though this proposal was suggested for a stochastic volatility model with Gaus-

sian errors, it turns out to work well with a SGED error term also, approximating

in a precise way the full conditional distribution. In case of rejection we consider

a random walk proposal with the same variance as the previous step. Combining

these proposals allows to exploit the advantages of both: when the independence

proposal is a good approximation of the invariant target distribution the number

of rejections will be small whereas a rejection implies a poor approximation and a

random walk proposal provides some control on this undesirable behavior6.

4.2 Sampling the SGED parameters

Then, we move to sampling each component of the parameter vector θ beginning

from the parameters characterizing the SGED distribution. For these two parameter

we specify uniform priors such as ν ∼ U(0, νH) and λ ∼ U(λL, λH) which cover a

wide range of parameter values for both the tail thickness and the skewness measures.
6Sufficient conditions for the convergence of this chain are stated in Tierney (1994). Letting f(·) be the

proposal density we have that if f > 0 almost everywhere on R then the random walk Metropolis kernel is

irreducible and aperiodic. An Independence Metropolis kernel is irreducible and aperiodic if and only if f > 0

almost everywhere in E+ = {x : π(x) > 0}. In practice, the sufficient conditions require that the proposal density

be positive in the sets of positive probability of the target distribution π.
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Then, the full conditional distribution for ν and λ are given by

p
(
ν|y,h, σ2

η, φ, µ, λ
)

∝ p(ν)
n∏

t=1

ν

21+1/νΓ(1/ν)λ2
×

× exp
{
−1

2

∣∣∣∣exp{−ht/2}yt − λ1

λ2

∣∣∣∣ν}×
×
[
1 + sgn

(
λ

exp{−ht/2}yt − λ1

λ2

)
×

× γ

(
1
2

∣∣∣∣λexp{−ht/2}yt − λ1

λ2

∣∣∣∣ν ;
1
ν

)
/Γ(1/ν)

]
and

p
(
λ|y,h, σ2

η, φ, µ, ν
)

∝ p(λ)
n∏

t=1

1
λ2

exp
{
−1

2

∣∣∣∣exp{−ht/2}yt − λ1

λ2

∣∣∣∣ν}×
×
[
1 + sgn

(
λ

exp{−ht/2}yt − λ1

λ2

)
×

× γ

(
1
2

∣∣∣∣λexp{−ht/2}yt − λ1

λ2

∣∣∣∣ν ;
1
ν

)
/Γ(1/ν)

]
respectively, where λ1 = −E[X]/

√
Var(X) and λ2 = 1/

√
Var(X) are introduced in

order to standardize the SGED distribution.

Sampling ν and λ is accomplished via the Adaptive Rejection Metropolis Sam-

pling (ARMS) proposed by Gilks, Best and Tan (1995). The rationale behind this

sampling method is that the Adaptive-Rejection sampling method of Gilks and Wild

(1992) for log-concave full conditional distributions cannot be used in the present

context as the full conditional distribution is not log-concave. They argue that

even though a MH algorithm could be used it is likely that a high probability of

rejection will result, hence a slower convergence. To avoid this drawback they sug-

gest to adapt the proposal density to the shape of the full conditional distribution.

Since Adaptive-Rejection sampling is a way to accomplish this adapting, it can

be effectively used to build a good proposal density. Thus, by supplementing the

Adaptive-Rejection sampling with a MH step, an ARMS scheme is devised which

preserves the stationary distribution of the Gibbs sampler.

4.3 Sampling the AR parameters

Following Kim et al. (1998), we assume a conjugate prior for the variance of the

log-volatility σ2
η ∼ IG(n/2; δ/2), so that the full conditional distribution follows
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directly

p(σ2
η|y,h, ν, φ, µ, λ) ∝ IG

(
T + n

2
;

δ + (h1 − µ)2(1− φ2) +
∑T−1

t=1 [(ht+1 − µ)− φ(ht − µ)]2

2

)
where IG stands for the inverse-gamma distribution. As for the autoregressive

parameter, letting φ = 2φ∗ − 1 where φ∗ ∼ Beta(b1, b2), our prior distribution is

given by7

p(φ) ∝
(

1 + φ

2

)b1−1(1− φ

2

)b2−1

,with b1, b2 > 1/2

with support in the interval (−1, 1) and prior mean of 2b1/((b1 + b2) − 1. The full

conditional distribution for φ becomes

p(φ|y,h, σ2
η, ν, µ, λ) ∝ p(φ)p(h1|σ2

η, ν, µ, λ)
n−1∏
t=1

p(ht+1|ht, σ
2
η, ν, µ, λ)

where the full conditional for ht with t = 1, . . . , T are given in subsection 4.1. Last,

for the drift in the volatility process we assume a diffuse prior leading to the following

full conditional distribution

p(µ|y,h, σ2
η, φ, ν, λ) ∝ N(τ, σ2

µ)

where

τ = σ2
µ

[
1− φ2

σ2
η

h1 +
1− φ

σ2
η

T−1∑
t=1

(ht+1 − φht)

]
σ2

µ = σ2
η/[T (1− φ)2]

from which we sample directly. Therefore, in this step we have a standard Gibbs

sampling update. Notice that because of the lack of identification of β and µ we

find it easier to sample µ but reporting the value β = exp(µ/2).

4.4 Summary

In short, our MCMC updating scheme can be summarized as follows. We begin

with initialization of the volatilities and the parameter vector at some value h(0)

and θ(0), respectively. Then, for i = 1, . . . ,M

1. simulate the volatility vector h(i) from the full conditional distribution

p(ht|h(i)
1 , . . . , h

(i)
t−1, h

(i−1)
t+1 , . . . , h

(i−1)
T ,θ(i−1),y)

via Delayed-Rejection MH sampling,
7See Kim et al. (1998) for a discussion on different prior densities.
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Figure 2: Returns DM/US$ - December 26,1990 - January 15,1999

2. sample one at a time the parameters from their full conditional distributions,

namely

(a) σ
2(i)
η from p(σ2

η|h(i), φ(i−1), µ(i−1), ν(i−1), λ(i−1)) via full conditional distri-

bution,

(b) φ(i) from p(φ|h(i), σ
2(i)
η , µ(i−1), ν(i−1), λ(i−1)) via full conditional distribu-

tion,

(c) µ(i) from p(µ|h(i), σ
2(i)
η , φ(i), ν(i−1), λ(i−1)) via full conditional distribution,

(d) ν(i) from p(ν|h(i), σ
2(i)
η , φ(i), µ(i), λ(i−1)) via Adaptive-Rejection Metropolis

sampling,

(e) λ(i) from p(λ|h(i), σ
2(i)
η , φ(i), ν(i)) via Adaptive-Rejection Metropolis sam-

pling.
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Figure 3: Returns US$/£- December 31, 1990 - December 4,2000

Figure 4: Returns U/US$ - December 31, 1990 - December 4,2000
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Table 1: Exchange rates, daily and weekly series
Name Symbol Sample Period

Daily Weekly
Deutsche Mark vs. US Dollar DM/US$ 12/31/1990- 1/15/1999 12/26/1973 - 1/13/1999
US Dollar vs. English Pound US$/£ 12/31/1990 -11/29/2000 12/26/1973 - 11/29/2000
Yen vs. US Dollar U/US$ 12/31/1990 - 12/4/2000 12/26/1973 - 11/29/2000

5 An application to daily and weekly exchange rates

5.1 The data

Our empirical application concerns three daily and weekly (Wednesday quote) ex-

change rates over the 1990s as detailed in Table 1. Each returns series is regressed on

daily and month dummies (the weekly series only on these dummies) to account for

“day” and “month” effects. Moreover, an autoregressive filter is applied to remove

the (weak) evidence of serial correlation in returns , with maximum lag variable with

the series (detailed results are available from the authors upon request). The de-

scriptive statistics in Table 2 are the per cent annualized sample mean, median and

standard deviation computed multiplying the usual daily and weekly sample statis-

tics by 256 and by 52, respectively. As for the standard test statistics for skewness

and excess of kurtosis, we report the t statistics and their p-values. Under the null

hypothesis of normality, these two test statistics are normally distributed with stan-

dard errors given by SE(Skewness) =
√

6/T and SE(ExcessKurtosis) =
√

24/T ,

respectively. While the DM/US$ exchange rate does not exhibit significant skewness,

both the US$/£and U/US$ display negative skewness. As for the excess kurtosis,

the stylized fact of fat tails in the marginal distribution is confirmed for all exchange

rates series. Last, the Jarque-Bera test is a test of the joint null hypothesis of no

skewness and zero excess kurtosis, asymptotically distributed as a χ2 with 2 degrees

of freedom. This test reject the null hypothesis very soundly but, from previous

results on testing for skewness and excess kurtosis separately, it is clear that for the

DM/US$ exchange rate this is due to the strong evidence of thick tails.

Letting xt be the original series, returns yt are computed as yt = 100× [ln(xt)−

ln(xt−1)]. Daily and weekly returns are displayed in Figures 2 to 4. To provide more

evidence of asymmetry in the marginal distribution of returns we consider several

nonparametric tests. Returns have been split in two sub-samples: y+
t = (yt − ȳ)

if yt > ȳ, say positive “excess” returns, and y−t = (ȳ − yt) if yt < ȳ, say negative

“excess” returns, where ȳ is the annualized sample mean of returns.
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Table 2: Descriptive statistics for exchange rates returns
DM/US$ US$/£ U/US$

Daily Weekly Daily Weekly Daily Weekly
Mean 1.441 -1.872 -2.816 -1.799 -1.984 -3.416
Median 0.000 -1.138 0.000 0.000 0.000 1.440
Maximum 3.103 7.274 2.889 7.397 3.239 6.586
Minimum -2.896 -8.113 -3.28 -8.668 -5.630 -9.694
Std. Dev. 1.063 1.049 0.929 1.011 1.162 1.054
Skewness 0.040 -0.095 -0.23 -0.256 -0.600 -0.519
tSkewness 0.771 -1.409 -4.893 -3.928 -12.478 -7.956
P-value (0.440) (0.158) (0.000) (0.000) (0.000) (0.000)
Kurtosis 4.919 4.860 5.981 6.572 7.751 6.185
tExcessKurtosis 18.068 13.727 30.953 27.337 49.345 24.375
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 327.06 190.43 982.04 762.768 2590.67 657.46
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 2127 1307 2586 1405 2589 1405

Table 3: Asimmetry Tests
Wilcoxon Siegel-Tukey Kolmogorov-Smirnov

Daily Weekly Daily Weekly Daily Weekly
DMUS$ 0.183 -0.227 0.106 0.052 0.651 0.717

(0.854) (0.819) (0.914) (0.958) (0.788) (0.681)
US$/£ 0.169 -0.038 0.159 2.270 0.568 0.864

(0.865659) (0.969) (0.873) (0.023) (0.902) (0.443)
UUS$ 0.567 -2.030 1.474 2.956 0.795 1.503

(0.570) (0.042) (0.140) (0.003) (0.551) (0.021)
The Wilcoxon, Siegel-Tukey and Kolmogorov-Smirnov statistics test the null hypothesis that

the empirical distribution of positive and negative excess returns are identical.

Under symmetry both sub-samples should have the same empirical distribution.

As in Peiró (1999), in Table 3 we report the Wilcoxon test and the Siegel-Tukey test

based on rank and the Kolmogorov-Smirnov test based on the empirical distribution

(see Hollander and Wolfe (1999) for a thorough treatment). Tests results indicate

that there is strong evidence of asymmetry in the weekly exchange rate returns for all

exchange rates series and evidence of asymmetry in the daily U/US$ exchange rate.

Summarizing the evidence form descriptive statistics, we conclude that our findings

of asymmetry and fat tails testifies a departure from normality in the marginal

distribution of returns. Thus, our idea of joint parsimonious modeling of skewness

and tails thickness by means of the SGED distribution may be useful in estimating

a stochastic volatility model.

Bayesian estimation of the parameters of the stochastic volatility model (1)-(2)

has been carried out via the MCMC algorithm presented in section 4. The hybrid
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Gibbs-MH updating scheme has been implemented with the following specification

of the prior distributions

1. φ = 2φ∗ − 1 where φ∗ ∼ Beta(20, 1.5),

2. σ2
η|φ, ν ∼ IG(2.5, 0.025),

3. µ ∼ N(0, 20),

4. ν ∼ U(0, 4),

5. λ ∼ U(−5, 5)

The burn-in period has been set to 25000 and M = 50000. All calculations have

been performed with the package Oxr v. 3.0.

Besides the SGED specification we also consider the Gaussian, the Skew-Normal

(see Azzalini 1985) and GED specifications for the distribution of the returns shocks.

To estimate these models we apply the algorithms described in section 4 for the

relevant parameters8.

5.2 Posterior analyisis

Analysis of the posterior distributions for the parameters of the stochastic volatility

models is presented in Tables 5-7. We also report results for the square of the coef-

ficient of variation of the volatility, i.e. Var(exp{ht})/[E(exp{ht})]2, which provides

a measure of relative dispersion since, partly, the mean and standard deviation tend

to change together in many experiments, its knowledge is of some value in evaluating

these experiments (Jacquier et al., 1994). For daily and weekly exchange rate series

and for each parameter of the different models, we report the mean of the poste-

rior distribution, the standard error (MCSE) of this mean, the standard deviation

of the posterior distribution and a 95% confidence interval. Since draws from the

posterior distributions are not independent, the reported MCSEs are an estimate of

2π times the spectral density matrix at frequency zero computed by standard time

series method. In particular, our estimator is based on a VAR(1) prewhitening,

than 2π times the spectral density matrix at frequency zero of VAR residuals is

estimated by smoothing methods using the Parzen kernel and automatic bandwidth

selection. Recolouring provides an estimate of 2π times the spectral density matrix

at frequency zero of interest.

As expected from the descriptive statistics, we are not able to find significant

asymmetry in the DM/US$ series, both daily and weekly. In fact, confidence in-
8For the Skew-Normal errors we impose the restriction ν = 2 in the SGED case
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tervals for the asymmetry parameter λ in the SGED and Skew-Normal models are

almost symmetric around zero. However, we find strong evidence of fat tails in the

conditional distribution of daily returns with posterior means for ν of about 1.5 and

confidence intervals not including the threshold value of 2. Further, these findings

remain unchanged under the SGED and GED specifications. Finally, there is some

improvement in the coefficient of variation when we move from the standard normal

model to a model with heavier tails. Thus, the standard normal and both skewed

specifications are rejected for the daily data set in favor of the GED model. As

for the weekly series, both the asymmetry and fat tails hypotheses appear to be

inconsistent with the data, suggesting a model where returns shocks are normally

distributed.

Figures 6 and 7 report empirical estimates (by kernel smoothing) of the posterior

distributions for the parameters and of the coefficient of variation. In each panel,

the solid line refers to the SGED model, the dash-and-dotted line to the Skew-

Normal model, the short dashed line to the GED model and the dashed line to

the Normal model, when they are available. It is noticeable the dramatic effect

on the posterior distributions of φ and ση for daily data when the assumption of

normality is relaxed. As for the Skew-Normal specification, in the daily data we

observe a leftward shift of the posterior density of φ and a rightward one for ση with

respect to the SGED or GED models. However, the most relevant result concerns

the posterior distribution of the skewness parameter λ which is clearly uninformative

being flat over the parameter space.

Results for the US$/£ exchange rate are summarized in Table 6. As far as we

are concerned with asymmetry, we find strong evidence in the weekly data (nega-

tive skewness) but not in the daily data. In the former case we notice that explicit

modeling of the asymmetry parameter has consequences on the tails thickness pa-

rameter ν, whose 95% confidence interval in the SGED model does include the value

of 2 suggesting that a Skew-Normal model for the conditional distribution of returns

may be more appropriate. In fact, under the Skew-normal specification we observe

an increase in the skewness parameter and a more precise confidence interval. Since

when under a GED specification ν is well below 2 and a 95% confidence interval

does not contain it, we argue that failure of correct asymmetry modeling may result

in spurious heavy tails. On the other hand, for daily data, the GED specification

appears to be appropriate. Once again, by looking at the posterior densities for daily

US$/£ in Figure 8, we notice that the posterior density of φ is very concentrated
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in the vicinity of unity and that it changes dramatically as we relax the hypothesis

of normality, the same comment applies to ση. Once again, in the daily data the

posterior density for λ in the Skew-Normal model is uninformative.

Figure 9 reports estimates of the posterior densities for weekly exchange rates.

It is noticeable the higher precision of the posterior density for λ when moving from

the SGED model to the Skew-Normal one.

Last, we consider the U/US$ exchange rate. Here, we find significant evidence

of both asymmetry and fat tails in daily and weekly exchange rates since the 95%

confidence intervals for λ and ν do not include the values of zero and 2, respec-

tively. In particular, the posterior means of λ are -0.12 and -0.567 for the daily and

weekly series respectively indicating significant negative skewness while the poste-

rior means for ν are 1.336 and 1.323 for the daily and weekly series respectively

signaling significant departures from the normal model in favor of a distribution

with fatter tails. Failure of proper treatment of the tails of the distribution is re-

flected in higher estimates of the skewness parameter and of ση. Thus, neglecting

the importance of heavy tails may results in higher estimates of asymmetry. This

fact is even more evident as we consider the estimated posterior distributions for

λ in the Skew-Normal and SGED models where we observe a significant leftward

shift when the role of the tails is neglected. As usual, the posterior mean of the

autoregressive parameter φ is close to unity increasing significantly as we move from

the Normal and Skew-Normal specifications to the GED and SGED ones. Thus for

this data set the SGED specification seems the correct one. As for the estimates

of the posterior densities in Figures 10 and 11, we notice the usual shift towards

unity of the density of φ as we relax the normality assumption. The posterior for σ

is also affect in dramatic way by the normality assumption. The posteriors for the

parameter ν in the daily exchange rates are almost identical while for the weekly

data the SGED model entails a leftward shift with respect to the GED model, even

though both models imply significant departure from normality.

5.3 Model ranking

The SGED stochastic volatility model, say M1, nests three models according to

alternative restrictions on the parameters: for λ = 0 we have the GED model, say

M2, for ν = 2 we have the Skew-Normal model, say M3, and for λ = 0 and ν = 2

we have the Gaussian model, M4. Both models M2 and M3 also nest model M4

but they are not nested between them. This entails a model reduction scheme such
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as in Figure 5 where we move from model M1 with skewed and heavy tailed errors

to either model M2 with no skewness but fat tails or to model M3 with skewed

but Gaussian errors and then to model M4 with symmetric Gaussian errors. The

parameter vector in the four models can be summarized as

1. M1 : θ1 = (φ, ση, µ, λ, ν)′,

2. M2 : θ2 = (φ, ση, µ, ν)′,

3. M3 : θ3 = (φ, ση, µ, λ)′,

4. M4 : θ4 = (φ, ση, µ)′

from which is evident that M2 and M3 are not nested.

M1 M4

M2

M3

�������:

XXXXXXXz

XXXXXXXz

�������:

Figure 5: Model reduction

In our framework, it is natural to make use of the Bayes factor to compare the

four different models. In general, the Bayes factor for comparing model Mj and

model M1 is given by

BF21 =
p(y|Mj)
p(y|M1)

, j = 2, 3, 4

where p(y|Mj) is the predictive density of the data under model Mj , namely

p(y|Mj) =
∫
h

∫
θj

p(y,h|θj ,Mj)p(θj |Mj)dθjdh.

In the context of nested hypotheses on the parameters and because of the a

priori independence amongst the parameters, the Bayes factors is referred to as the

Savage-Dickey (SD) ratio and it simplifies dramatically 9. The SD ratio for model

M2 versus model M1 is given by

SD21 =
p(λ = 0|y,M1)
p(λ = 0|M1)

(10)

where p(λ = 0|y,M1) and p(λ = 0|M1) stand for the marginal posterior and the

marginal a priori density for λ, respectively, both under the SGED model M1 and
9See Verdinelli and Wasserman (1995) for a methodological treatment and Forbes et al. (2002) for an appli-

cation to a stochastic volatility model.
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evaluated at λ = 0. Analogously, the SD ratio for model M3 versus model M1 is

given by

SD31 =
p(ν = 2|y,M1)
p(ν = 2|M1)

(11)

and a SD ratio for model M4 versus model M1 is then given by

SD41 =
p(λ = 0, ν = 2|y,M1)
p(λ = 0, ν = 2|M1)

(12)

In a similar fashion we also have SD ratios for model M4 versus model M2 and

for model M4 versus model M3. These SD ratios are given

SD42 =
p(ν = 2|y,M2)
p(ν = 2|M2)

(13)

SD43 =
p(λ = 0|y,M3)
p(λ = 0|M3)

(14)

where both the posterior and the prior densities are those under the GED model

M2 and the Skew-Normal model M3, respectively. As for the interpretation of the

Bayes factor, we follow Kass and Raftery (1995) who suggest that the evidence for

Mj is “negative” when SDj1 < 1, when 1 < SDj1 < 3.2 the evidence is “not worth

more than a bare mention”, when 3.2 < SDj1 < 10 the evidence is “substantial”,

when 10 < SDj1 < 100 the evidence is “strong” and, finally, when SDj1 > 100 the

evidence is “decisive” (see Jeffreys 1961). Intuitively, when the SD ratio is small

the “probability mass” associated with the parameter restrictions implied by model

Mj is unimportant relative to the a priori “probability mass” associated to those

parameter values under the more general model M1. Hence, the evidence provided

by the data does not support the restricted model. A similar reasoning applies for

large values of the SD ratio, which provides increasing support to the restricted

model Mj .

Computation of the SD ratios is straightforward since the denominator is di-

rectly available from the a priori distributions and the numerator can be calculated

using the MCMC simulation output by kernel smoothing estimation of the relevant

marginal posterior densities at the point of interest. Results are reported in Table 4.

This evidence complements our findings on 95% confidence interval for the skewness

and tails parameters. For the daily data, we have strong evidence in favor of the

GED model for the DM/US$ and £/US$ exchange rates while the evidence is sub-

stantial for the U/US$ exchange rate. For weekly data, we observe strong evidence

in favor of the Gaussian model for the DM/US$ rate while for the £/US$ there is

some evidence in favor of the Skew-Normal model and in the U/US$ case the SD

ratios favors the Skew-GED model.
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Table 4: Bayes Factors
Daily Weekly

SGED GED SNORM NORM SGED GED SNORM NORM
DM/US$

SGED 1 33.39 0.00 0.00 1 4.57 5.09 22.60
GED 1 * 0.00 1 * 4.84
SNORM 1 4.90 1 4.12
NORM 1 1

£/US$
SGED 1 52.95 0.00 0.00 1 1.05 3.45 0.81
GED 1 * 0.00 1 * 0.71
SNORM 1 4.10 1 0.15
NORM 1 1

U/US$
SGED 1 9.52 0.00 0.00 1 0.00 0.00 0.00
GED 1 * 0.00 1 * 0.00
SNORM 1 0.01 1 0.00
NORM 1 1
Entry (i, j) indicates the Bayes factor in favour of model j versus model i.

6 Concluding remarks

In this paper we have proposed a stochastic volatility model with an explicit model-

ing of asymmetry and fat tails. This is accomplished by assuming that the returns

shock be distributed as Skew-GED distribution. We restricted our attention to a

model with no correlation between the return and the volatility shock, this interest-

ing extension is left to ongoing research. Inference on the model has been conducted

in a Bayesian framework via Markov Chain MonteCarlo. Difficulties in the calcu-

lation of posterior distributions arising because the volatilities are not observed are

overcome by the design of a Gibbs-MH updating scheme which allows to simulate

these posterior distributions. We make use of both a Delayed-Rejection MH and an

ARM sampling which permit us to simulate the volatilities and the parameters of

the model in a fast and effective fashion. Finally, we have considered an application

to daily and weekly exchange rates and found some significant evidence in favor of

our Skew-GED model.

Summarizing the findings from our empirical application we conclude that the

normal model may be relevant for the weekly DM/US$ case and the GED model

for the daily DM/US$ returns. As for the US$/£ exchange rate we do find evidence

of asymmetry and heavy tails in the daily data but the Skew-normal seems to be

preferred for weekly data. Finally, for the U/US$ data we find consistent evidence
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in favor of the SGED specification.
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Figure 6: Posterior densities DM/US$daily

Figure 7: Posterior densities DM/US$ weekly

Solid line: SGED errors; Dash-and-dotted line: S-Normal errors; Short dashed line: GED errors;

Dashed line: Normal errors.
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Figure 8: Posterior densities US$/£ daily

Figure 9: Posterior densities US$/£ weekly

Solid line: SGED errors; Dash-and-dotted line: S-Normal errors; Short dashed line: GED errors;

Dashed line: Normal errors.
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Ŝ

D
(ν
|d

a
ta

)
0.

05
5

0.
05

5
0.

08
8

0.
08

0
95

%
C

on
f.

In
te

r.
[1

.2
33

,
1.

45
0]

[1
.2

33
,
1.

44
9]

[1
.2

44
,
1.

59
1]

[1
.1

77
,
1.

49
3]

λ

Ê
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Figure 10: Posterior densities U/ US$ daily

Figure 11: Posterior densities U/ US$ weekly

Solid line: SGED errors; Dash-and-dotted line: S-Normal errors; Short dashed line: GED errors;

Dashed line: Normal errors.
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