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Abstract

This paper develops a new moment condition for estimation of linear panel
data models. When added to the set of instruments devised by Ander-
son, Hsiao (1981, 1982) for the dynamic model, the proposed approach can
outperform the GMM methods customarily employed for estimation. The
proposal builds on the properties of the iterated GLS, that, contrary to
conventional wisdom, can lead to a consistent estimator in particular cases
where endogeneity of the explanatory variables is neglected. The targets
achieved are a reduction in the number of moment conditions and a better
performance over the most widely adopted techniques.

Keywords: panel data, dynamic model, GMM estimation, endogeneity.

1 The linear panel data model
Consider the linear panel data model on N units observed over 7" > 2 time periods:

v =x,0+¢eu, i=1,..,N;t=1,...,T (1)

where x;; can also contain lagged values of the y; or (expectation of) leading
values. Our analysis focuses on micro panels where N is typically large and 7' is
typically small.
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The error term g; is usually decomposed into two sources: «; + e;, where «;
captures individual ‘unobserved heterogeneity’, constant over time and different
across units, and e; is an idiosyncratic component changing both over time and
across units.!

Since the early Sixties two approaches have been considered for estimation in a
static framework, i.e. the fized effect (FE) and the random effect (RE) estimation
(Mundlak, 1978).2 The FE approach to estimation removes «; from the estimating
equation by considering the within-group transformation. Within the RE frame-
work, «; is included in the error term, whose variance is estimated. In the latter
case, a generalized least squares (GLS) estimator is usually adopted for g. The
difference between the two approaches is driven by the assumptions on the corre-
lation structure between «; and x;, ruled out in the RE framework and allowed
for in the FE framework. In both cases, the assumption of strict exogeneity is
needed for consistency, where x;; is assumed to be uncorrelated with e;s at any
times=1,...,7.3

Under the assumptions of orthogonality, strict exogeneity, and normally distributed
errors, a maximum likelihood (ML) approach can be employed for estimation. For
given 02 and o2, the ML estimator for 3 is the same as the GLS estimator. When
02 and o2 have to be estimated, GLS is usually applied in two steps, while Gaus-
sian ML could be obtained from iterating GLS to convergence.? Nonetheless, with
normally distributed errors, ML and GLS estimators are asymptotically equiv-
alent, and over time the latter has been preferred as computationally simpler
(Balestra and Nerlove, 1966; Maddala and Mount, 1973; Cameron and Trivedi,
2005, pag.734).

If the orthogonality condition is not satisfied, the RE approach (GLS or ML) is
usually claimed to be biased and inconsistent.

As amajor exception, the first result of this paper shows cases where an endogenous

IThe more general specification includes three sources of variation. Besides the individual
component «; and the idiosyncratic error term e;;, a time component 7 can be considered,
which varies over time and is constant across all units. As the panel analysis usually focuses on
the ‘heterogeneity’ across individuals, in order to simplify our analysis, we will assume 7 = 0.
As the time dimension is typically small, the time effects can be controlled for by including time
dummies in the regression.

2For an alternative approach see Kmenta (1986, ch.12) who proposes a cross-sectional het-
eroskedastic and timewise autoregressive model, allowing both for heteroskedasticity among units
and autocorrelation over time.

3In addition, first differences of the data can be considered, and model in (1) is estimated by
ordinary least squares (OLS) regression of y;; — y; -1 on z;; — x; 4—1. Weaker assumptions are
needed for the consistency of the estimator, as x;; is required to be uncorrelated with e;s with
s=1t—1,t,t+ 1. Still, feedback effects are ruled out.

4The ML and GLS estimators of the variance components differ in terms of degree of freedom
adjustment (see e.g., Cameron and Trivedi, 2005, pag. 736; Hsiao, 2003, pag. 38-40).



xy (t = 1,...,T), if correlated also with ;5 (s # t), can lead iterative GLS to
produce a consistent estimator.

This insight is particularly relevant for dynamic panel data models, where the re-
gressors x; include y; 41, and y; .1 includes €;;_1, thus x; is correlated with €; ;1.
Within this setting, the assumptions underlying the FE and RE frameworks for
estimation are clearly violated, and an instrumental variable approach has been
first proposed (Anderson, Hsiao, 1981, 1982), followed by GMM methods (Arel-
lano, Bond, 1991; Arellano, Bover, 1995; Blundell, Bond, 1998). More recently,
a transformed likelihood approach has been proposed for the estimation of linear
dynamic model within a FE framework (Hsiao, Pesaran, Tahmiscioglu, 2002).

In this paper we start from a Gaussian ML approach (iterative GLS), and we take
into account the probability limit of the score function. We first show why xz;
correlated with «; leads nevertheless to consistency, provided that x;; is correlated
with g;5 (s # t). Then we focus on the particular (but most interesting in practice)
case of the dynamic model. As well known, Gaussian ML provides a consistent
estimator of the autoregressive parameter in cases where the initial observation
Yio 1s unrelated with the corresponding error term. In the more interesting case
where correlation is allowed for between y;9 and the unit heterogeneity, ML esti-
mation is inconsistent. However the “bias” of the score can be estimated, and an
“adjusted score” can be used for estimation. Furthermore, the set of moment con-
ditions based on the “adjusted score” can be fruitfully employed within the GMM
framework leading to an improved estimation efficiency. Even better, a “new sin-
gle” moment condition can be obtained. Adding it to a “parsimonious” set of
moment conditions (e.g. Anderson, Hsiao, 1981, 1982), it can beat the efficiency
of the most adopted GMM methods, driving down the number of moment condi-
tions, thus avoiding the well known problem in small sample caused by instrument
proliferation (Roodman, 2009).

The paper proceeds as follows. The next section sets forth the basic intuition
underlying our analysis in a static framework. Section 3 considers a dynamic
specification and provides details on the proposed methodology. Monte Carlo
experiments are considered in section 4. Section 5 concludes.

2 Static framework

We consider the estimation of the static model defined in (1).° The model can also
be seen as a seemingly-unrelated regression model with 7" equations and N obser-
vations (Bhargava, Sargan, 1983). For simplicity we let the number of regressors

5At the onset, the presence of lagged values of 7;; on the right hand side is ruled out. The
dynamic case, i.e. the case where lagged values of the endogenous variable are included in the
regression is taken into account in section 3.



k equal to 1,5 and we define the matrix of regressors X’ of size T' x NT"

T4 To1 ... xn1 | O 0O ... 0 |...70 o ... 0
0 0 ... 000 0 ..o 0| |ew 2w o onr
By letting ) = (214, oty . . ., Tnt), We can write
2y 0...] 0
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Accordingly, we let:
6, = [511,521, ce >5N1’51275227 Ce ,ENQ‘ c. |€117 Ce ,ENT] = [8/1‘8/2’ Ce |E/T] (4)

and F(ee’) = B® Iy, with B (T x T') positive definite.

Under the assumption of normally distributed errors as well as orthogonality and
strict exogeneity, the (Gaussian) score function with respect to § can be written
as:
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which is equal to the sum of all the terms in the column vector (a task that is
accomplished as we pre-multiply by ¢/, a row vector of elements equal to 1).

6By letting k& > 1, complications in the formula arise. Main differences from our baseline case
will be discussed when needed. Results are not affected.
"In case of k > 1 variables in X, we would need to pre-multiply by v/ @ I.



2.1 Consistent estimation neglecting endogeneity

Contrary to conventional wisdom, we show cases where, even when regressors are
“endogenous”, the application of a “Gaussian maximum likelihood” that ignores
endogeneity can provide a consistent estimator of 5. Namely, we show that, in cases
where x;; (t =1,...,T) is correlated with g;5 (s # t), iterating to convergence GLS
can lead to a consistent estimate,® no matter whether z;; is correlated also with
i+ (thus endogenous) or not. Suppose that the correlation between the elements
of x5 and the corresponding elements of ¢ is such that

Ty = 25 + 28] (6)

with 25 exogenous and 7, a fixed constant.
The second row of the vector X'(B~! ® Iy)e/N would be:

1

N [lezéel 4+ 0T e 4+ bl + 0P yaehes + .+ bQT")/2€/1€T] (7)

By letting N — oo and from exogeneity of z;, we get

0O+...4+40+ ’Yg[bmbll + b22b21 + ...+ bQTle] = 2 [bQ.b.l] =0 (8)

as we have the product of row 2 of B~! with column 1 of B.

Generally, we will get 0 if elements in x; (t = 1,...,T) are correlated with the
corresponding elements in £ with s # ¢ (analogously to equation 6), as the formula
would include the product of row ¢ of B~ with column s of B. This would allow for
correlation with the individual effect and idiosyncratic error term at any previous
or subsequent time periods. If this pattern of correlation holds, the probability
limit of the score is zero for any structure of the matrix B.?

This would be a case where neglected endogeneity of the regressors does not affect
consistency of the ML estimator. Estimation can be performed iterating a GLS-
type algorithm: iterations stop when the empirical analogue of (5) is zero.

2.2 Inconsistency: strict exogeneity without orthogonality

Consider the case where z;; is correlated with the individual effect «;, but not with
any e;s (s = 1,...,T), i.e. the standard case where the orthogonality condition is
not satisfied, but we can assume strict exogeneity: =, = z; + yo'. Let B =

8Strictly speaking, iterative GLS is not a ML estimator in this context. A correctly specified
likelihood would require the full specification of the pattern of endogeneity of x.

9The result holds even if matrix B departs from the standard decomposition considered in
the random effect framework, i.e. B # o2l + o2upi).



02I7 +o2uptly and p = 02 /02, then the probability limit of the ¢-th element of the
vector on the r.h.s. of equation (5) is:

T
Y[bho? + 202 + .+ b = % [1 } n #0 (9)

_T+u :T+,u

unless v = 0, i.e. the orthogonality condition holds.

2.3 Consistency in a special instance of simultaneity

In this case we take into account a very special case (presumably not of interest
in practice; but it might happen!). Iterating to convergence GLS can also provide
consistent estimates in the case when z; is correlated not only with a but also
with e;, provided it has a particular negative correlation with e;; that is 2} =
2, + pal — 'ytme;, where = 02/0%. If the matrix B has the “classical”
equicorrelated structure, i.e. B = 02l + c2irtlp, then row ¢ of the right hand side
of equation (5) has the following probability limit (N — o0):

2 1 1
blo? L p202 & 4 ptTy2 _ Oe _ _ —0
TVt o, +b70,+...+0" 0, 2T + 1) Ve T+ Ve T+p
(10)

3 Dynamic model

As a particular case, let us consider x; = y;_1:1°

Yit = BYir—1 + it = BYir—1 + 0, + ey (11)

where we assume that y;o is observed (1" + 1 observations are available for estima-
tion). The observation x; = y;_; “contains” €;_1, and thus «;; it is therefore an
endogenous regressor, at the same time correlated with an ;5 (s # t).

The score function in (5) (Gaussian score ignoring endogeneity) becomes:

b11y6€1 + b12y6€2 +...+ blTy{)aT
1 0logL  up b*yier + 0Pylea + ...+ 0 yler (12)
N 98 N |:

by yer + 0y qea 4+ 0 Ty e

If y0 is exogenous both with respect to c; and e, then + [b" yher + b yies + ...+

b Tyher] 2 0. Also the other terms of the score (i.e. the rows on the right hand

10Tn the case of k regressors, 4,1 is one of them and the other k — 1 variables are exogenous.



side of equation 12) have a zero probability limit (as it was shown in section 2.1).
This is well known in the literature: Gaussian maximum likelihood estimation
does provide a consistent estimator of  with exogenous initial conditions (Ander-
son, Hsiao, 1982; Bhargava, Sargan, 1983). Furthermore, by writing the dynamic
model as a system of T' equations over N individuals we get a triangular structure;
therefore by iterating to convergence a GLS-type estimator we get a consistent and
efficient estimator even if the regressors v;1,...,4; 7—1 are endogenous (see Lahiri and
Schmidt, 1978, extended to the case of simultaneous equations by Calzolari and
Sampoli, 1993).

More interestingly, if yo is correlated with «, the rough (Gaussian) maximum
likelihood does not provide a consistent estimator.

Estimation of this model largely relies on GMM. Two main frameworks are em-
ployed in the empirical analysis: GMM-difference estimator, proposed by Arellano,
Bond (1991), and the GMM-system estimator (Arellano, Bover, 1995; Blundell,
Bond, 1998).!1

The GMM-difference estimator first transforms the model using first differences to
remove the individual effect «;, and then, under the assumption of uncorrelated e,
uses lag 2 and older of y;; as instruments for Ay;; ;. The set of moment conditions
used for GMM estimation can be written as (j,t > 2):

E[yitfjAgit] =0 (13)

As ;0 is observed, we get T(T — 1)/2 moment conditions. Note that under the
assumption that e; is uncorrelated over time, the covariance between the initial
condition y;o and the composite error term is only driven by the presence of the
individual effect «; and is therefore constant over time, i.e. we can write:

E[?ﬁo&t] = E[yloOél] = 0Q¢e for each ¢ 2 1 (14)

The GMM-system estimator introduces an additional hypothesis by adding the
following 7" — 1 moment conditions (¢ > 2) to the moment conditions in (13):

E[Ayi—164] =0 (15)

Despite this additional restrictive assumption, the GMM-system method is widely
used due to its superior performance with respect to the GMM-difference estima-
tor, especially as the value of g approaches 1 (Blundell, Bond, 1998).

We will now show the relationship between conditions (15) and (14), and explain
why (15) is more restrictive. We shall then show how the less restrictive condition
(14) is exploited in the set up we propose.

"Please refer to the original papers for a detailed description. In the following we will only fo-
cus on the characteristics of the two methods that are relevant for comparison with our estimation
strategy.



By letting t = 2, equation (15) becomes:

0 = E[Aynci] = El(yan — vio)in)
= E[(ﬁylo +en — yiO)giQ]
—(1 — ,B)E[yioé“ig] + E[EilgiQ]

As (for the lack of serial correlation in e;;) Elese:0] = o2, this is equivalent to:

2
a

1—p

In general terms, by recurrent substitution, the moment conditions in (15) can be
written as (t > 3):

E[yi05i2] =

0 = E[Ayz‘t—1€it] = E[(yit—l - yit—2)5it]

t—3
<(5 - 1)5t72yi0 + (5 - 1) Z ngitfij + 5it1) €¢t]

=0

= b

t—3
= (8- 1)Bt_2E[yi05it] + Z(ﬂjﬂ - Bj)E[git—j—Zgit] + Eleit_1€it]
§=0

-3

= (B8—1)8"Elyieu] + z:(ﬁjurl —BNo? + 02
=0

= (8-1)B"Elyioca) + (B> — 8902 + o>

= (8—1)8"*Elyies) + 8202

that is:
0= (8 —1)Elyiocu) + o>

Summing up, condition (15) can also be written as

o
1—-p

a condition that is more stringent than (14). In fact, while equation (14) simply
assumes that covariance between y;o and the corresponding «; is constant for any
i, equation (16) also implies that y;0 have been produced by the same “stationary
in o” process that we assume for ¢ > 1 (equation 11).

Recent literature has stressed the fact that the number of instruments to be used
with GMM-difference and GMM-system estimators fast increases with 7" and has

2
o

Elyioei] = for each t > 2 (16)

8



highlighted their poor performance when instruments are “too many” (Roodman,
2009; Ziliak, 1997). By building on the insights of section 2.1 and exploiting the
information in (14), in this paper we propose an estimation strategy that allows
to avoid the problem of instrument proliferation with gains in efficiency. The
covariance o is estimated and treated as a nuisance parameter.

Consider the first part of the score (¢t = 1, corresponding to the first row on the
r.h.s. 12). This can be written as:

1
N[bnyégl + bl2y6€2 + ...+ blTy(/)éT] ﬁ) bHE[yégl] + bl2E[y6€2] + ...+ blTE[y6€T]

= o9 D"+ + b (17)

where E[yi0€i] = 00- as in equation (14). The probability limit is different from
zero, as the values in B take into account times from 1 to T', whereas correlation
is considered with error terms that do not enter into the construction of B (i.e.
t=0).

For t = 2, we have:

1

%[bmyisl +0%ges . A0 yier] = =07 (Byo + 1)'er + 07 (Byo + €1)'es
+ ..+ 0T (Byo +e1)'er]
= %ﬁ[bmygsl + b2 yhen + ...+ BT yper]
—i—%[bma’lel + b2y 4 ... 4+ bl er]
L Boge [b + 02 + 4+ 0] 4 67%ba
= Bog [b" + 02+ ..+ 0] (18)
as b*°be; =

In general terms we have (t =1,...,T):
1
N
Put it differently:

[yl o1 + 02y oo+ ..+ 0Tyl o] 2 3160, [bﬂ +0+ .+ th} (19)

1

N[bﬂyg,lsl +0%y,_qea+. .+ 6Ty o] — B oo B+ 4L+ 0] B0 (20)

These equations might suggest a set of T orthogonality conditions to be exploited in
a GMM framework. However, in order to reduce the number of moment conditions,
we propose to sum up the (empirical analogues of the) 7" moment equations in (20)



7

over t = 1,...,T, obtaining a single “new
Z€ro):

moment condition (to be set equal to

yber + ... + b yler o0 [t + ... + b7
+bHyier + .+ By er +B00:[0*! + ... + b*]

1
N (21)

FOT e A 0 Ty e F8T o O 4 .+ 67T

In this paper we propose to add this single moment condition to existing GMM
estimators that do not use “too many” instruments. As it will be shown in the
next section, we may obtain, in cases of practical interest, a triple benefit:

(1) improved efficiency (verified by Monte Carlo experiments);

(2) reduction of the number of moment conditions over the most adopted GMM
methods;

(3) wider applicability, as ;o do not need to be “stationary endogenous”.

During GMM iterative procedure, the last iteration residuals are used to estimate
the covariance matrix B; together with the observed y;, they also produce the
estimate of oy, to be used in the next iteration.

4 Monte Carlo experiment

In this section we explore the performance of the proposed approach.'? We gener-
ated a dynamic panel data model as:

Yit = BYig—1 + €t = BYir—1 + o, + ey (22)

where || < 1, a; ~ N(0,1), e = &;mywy with 6; ~ U(0.5,1.5), , = 0.54+0.1(t —1)
(for t > 0), and w; ~ x*(1) — 1. As a result, the idiosyncratic component e;
exhibits heteroschedasticity both over time and across units, as well as asymmetry.
A sort of “stationarity for a” is produced generating a fifty-time-period pre-sample,
with 7, = 0.5 for t = —50, ..., 0 before the estimation sample is drawn up to t = 713
We assume that ;9 is observed, therefore T+ 1 time periods are included in the
data. We also consider a “non-stationary case”, where the pre-sample draws are
still considered, but y;o is generated as exogenous with respect to a; (we keep the
variance of y;o unchanged with respect to the previous case).

Table 1 reports the results of the Monte Carlo experiments (10,000 replications)
with 5 =0.1,0.5,0.9 and 7" =5 (with y;o observed). We start from the simple IV

12Simulation experiments are run using Fortran 77.
13The generation of e;; closely resembles the generating process employed by Windmeijer (2000,
p. 34).

10



estimator proposed by Anderson, Hsiao (1981, 1982), IV-AH, where first differ-
ences of the original model are considered for estimation (in order to remove the
individual heterogeneity «;), and y; ;o is taken as an instrument for Ay;;—1; 4 time
periods are thus available for estimation and 4 instruments are used. The same set
of instruments is then used within a GMM framework, and will be labeled GMM-
AH. This is one of the most “parsimonious” among the methods proposed in the
literature in terms of the number of employed moment conditions (“only” 7" — 1).
The proposed moment condition (21) is then added to this set of instruments and
the method, labeled GMM-AH-CM (AH and Calzolari-Magazzini), employes T
moment conditions.

More commonly used by practitioners, the GMM-difference estimator proposed
by Arellano, Bond (1991) exploits not only lag 2 but also all previous lags of
yi as instruments for the equation in first differences (GMM-AB). The moment
condition (21) is also added here: GMM-AB-CM. As widely acknowledged by the
literature, the number of moment conditions employed for estimation by GMM-AB
increases quadratically with T', posing concerns about the performance of GMM
estimation when instruments are “too many” (see Roodman, 2009 for a review of
available evidence).

The Monte Carlo mean of the estimated coefficient is “close to the true value”,
with the exception of the AH (GMM and IV) estimator when 8 = 0.9 with en-
dogenous y.1* As also highlighted by Arellano, Bond (1991), lack of identification
seems to arise when using AH. Note that in this case (8 = 0.9, yo endogenous)
when the proposed moment condition is added to the AH set (GMM-AH-CM), the
performance of the estimator increases and the average of Monte Carlo coefficients
gets much closer to the true value.

This is also the case with the GMM-AB estimator where the additional moment
condition (GMM-AB-CM) leads to a slight decrease in bias and to a substantial
reduction in the variance of the estimator (from .86E-1 to .36E-1). This is not
the case for smaller values of 3, where the additional moment condition (21) does
not bring significant gains to the performance of both the (GMM) AH and AB
estimators.

In the cases where g, is exogenous, adding the condition (21) improves the per-

14 The GMM-system estimator (Blundell, Bond, 1998) is not considered here as it would not be
consistent in the case where yq is exogenous or endogenous but not mean stationary. Unreported
Monte Carlo analysis performed using the STATA command xtdpdsys show that the GMM-
system estimator outperforms the proposed approach (GMM-AH-CM) only with endogenous yo
and no constant term in the model. When an intercept is added to the data generating process
(see Table 2) the performance of the GMM-AH-CM estimator is comparable to the GMM-system
approach with the advantage of a reduced set of moment conditions (5 versus 14 in this setting)
and robustness to the lack of mean stationarity hypothesis required for consistency of the GMM-
system. The full set of results is available from the authors upon request.

11



v GMM GMM GMM GMM
AH AH AH-CM AB AB-CM
1o endogenous
8=0.1
Mean .1000 .1007 .1003 .1019 .1002
Variance A7E-2 (15E-2 A5E-2 (14E-2 (14E-2
8 =0.5
Mean .4998 .4986 4991 .5047 .5069
Variance b4E-2  45E-02 46E-2  37E-2  .37E-2
6=0.9
Mean .6433 42.85 .8966 .8862 9115
Variance 476.0 .23E47 .1632 .86E-1  .36E-1
Yo €X0genous
8=0.1
Mean .1000 .1004 .1004 .1005 .0996
Variance 98E-3 .69E-3 .64E-3  .44E-3  .45E-3
6=0.5
Mean .4999 .4997 .5007 .4996 .4997
Variance 16E-2  .82E-3 BOE-3 .29E-3 .29E-3
5=0.9
Mean .8998 .8997 .9000 .8996 .8996
Variance .26E-3  .18E-3 A8E-3 .11E-3 .11E-3
N. instruments 4 4 5 10 11

Table 1: Monte Carlo results (10,000 replications), N = 1000, T’ = 5 (y, observed)

12



formance of AH except when § = 0.9, whereas the performance of AB is basically
unchanged.

The results of further experiments with different instances of “non-stationarity”
are reported in Table 2. Starting from our baseline data generating process (22),

(i) we added a constant term in the generation of y;o only, that is y;o is generated
as Yo = i+ Byi—1+¢€i and equation (22) is considered for ¢ # 0 (pre-sample
draws as described before are still considered);

(ii) we added a constant term to the pre-sample draws but not to the estimation
data (t = 1,...,T), that is yz = u + Byir—1 + € for t < 0, while equation
(22) is considered for t > 0.

We set i = 10 in all the experiments.'®

The identification problems with AH in Table 1 now disappears. All estimators
are consistent with significant gains spanning from the application of the proposed
methodology. Adding the one moment equation defined in (21) leads to significant
gains for the GMM-AH estimator and makes the additional moment conditions
employed by AB (i.e. lags 3 and beyond of y as instruments for the differenced
equation) redundant. The use of the additional moment condition (21) significantly
improves on the performance of the AH estimator leading to a decrease in the
variance of about 40% with 5 = 0.1 and 8 = 0.5, up to 90% with 5 = 0.9 in
the endogenous cases (79% when g, is exogenous). Even though GMM-AB is
more efficient than GMM-AH, the method is less efficient than the GMM-AH-
CM estimator (that also matches the variance of the GMM-AB-CM estimator).
Furthermore, GMM-AH-CM allows to keep the number of moment conditions
remarkably small.

5 Summary

Starting from a (Gaussian) maximum likelihood approach for the estimation of
linear panel data models, this paper takes into account the convergence conditions
of iterative GLS. We have considered models where neither the orthogonality con-
dition nor the strict exogeneity requirement are satisfied, and we show interesting
cases where, iterating to convergence a GLS estimator neglecting the endogeneity

15Tn case (ii) the long run average (the value met in y;o) is p/(1 — f3), i.e. it is increasing with
the value of 8. Set up (i) and (ii) produce similar results when the same value is met in y;0. As
an example, if we let 4 = 5 when 8 = 0.5 in (ii) with p/(1 — ) = 10, the performance of the
proposed estimator is identical to the case where p = 10 (and § = 0.5) in (i). The same result
emerges if we set 4 = 1 when 8 = 0.9 in (ii) (where 1/(1 — 0.9) = 10) as compared to setting
=10 in ().

13



v GMM GMM GMM GMM
AH AH AH-CM AB AB-CM

intercept added in the pre-sample, yy endogenous

6 =0.1
Mean .1000  .1003 .1004 .1005 .1004
Variance 12E-4  11E-4  .68E-5 .75E-5 .69E-5
6 =0.5
Mean .5000  .5002 .5001 .5003 .5002
Variance b2E-5  40E-5  .26E-5  .35E-5 27TE-5
6=0.9
Mean .9000  .9000 .9000 .9002 .8999
Variance A7E-5  14E-5 .14E-6  .14E-5 .14E-6
intercept added in ¢ = 0, yg endogenous
6 =0.1
Mean .1000  .1003 .1004 .1006 .1005
Variance 15E-4 14E-4  .84E-5 .92E-5 .85E-5
6 =0.5
Mean .5000  .5003 .5002 .5007 .5004
Variance 23E-4 19E-4 .11E-4 .15E-4 11E-4
6 =0.9
Mean .8997  .9008 .8988 .9010 .8990
Variance A2E-3  29E-3 2TE-4  .23E-3 .26E-4
intercept added in ¢t = 0, yg exogenous
6 =0.1
Mean .1000  .1003 .1004 .1006 .1006
Variance 15E-4  .14E-4 .82E-5 .90E-5 .83E-5
6 =0.5
Mean .5000  .5003 .5003 .5007 .5005
Variance 22E-4  18E-4 .10E-4 .13E-4 .10E-4
6 =0.9
Mean 8998  .9004 .8998 .9008 .9000
Variance .10E-3 .78E-4 .16E-4 .59E-4 .16E-4
N. instruments 4 4 5) 10 11

Table 2: Monte Carlo results (10,000 replications), N = 1000, T'= 5 (yo observed),
experiments with intercept
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of the explanatory variables, can lead to a consistent estimator. Namely, if x; is
related to e, (t # s), we get a consistent estimator of the parameter of interest
(8).

Since this is the typical condition when z; = ;1 (correlated with &;_;), we have
focused on the dynamic case. By developing the “score function” that neglects
endogeneity of y;_1, we propose a new moment condition that can be employed for
GMM estimation. Monte Carlo simulations show that the proposed approach has
three advantages: (i) it avoids the problem of instrument proliferation by adding
a single moment condition to the “parsimonious” set of instruments proposed by
Anderson, Hsiao (1981, 1982), leading to “only 7”7 moment conditions for estima-
tion; (ii) improvements in performance with respect to standard GMM methods
can be substantial; (iii) it does not require additional assumptions with respect to
Anderson, Hsiao (1981, 1982), and Arellano, Bond (1991).
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