
Working Paper Series
Department of Economics

University of Verona

Estimation and pricing with the Cairns-Blake-Dowd model of
mortality

Edmund Cannon

WP Number: 65 December 2009

ISSN:    2036-2919 (paper),    2036-4679 (online)



Estimation and pricing with the 
Cairns!Blake!Dowd model of mortality 

Edmund Cannon 

edmund.cannon@bristol.ac.uk 

 

Abstract 

Parametric forecasts of future mortality improvements can be based on models 

with a small number of factors which summarise both the improvement in  

mortality and changes in the relationship between mortality and age.  I extend the 

analysis of the two!factor model of Cairns, Blake and Dowd (2006) to a more 

general dynamic process for the factors and also consider the problems arising 

from modelling estimated rather than observed factors.  The methods are applied 

to mortality data for sixteen countries and are used to estimate the value of an 

annuity and measures of risk.  The consequences for the money�s worth of an 

annuity and reserving are also considered. 
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1. Introduction 

Recent advances in actuarial practice have resulted in a variety of models for 

describing and projecting mortality: a convenient survey and exposition is 

provided by Pitacco et al (2009)."  One of the important features of the more 

recent models is that mortality projections are stochastic rather than 

deterministic.  This is important for two reasons.  First, the value of an annuity or 

any similar pension!type product is a non!linear function of future mortality and 

hence calculations of annuity values should be based upon the entire distribution 

rather than just the expected future mortality.  Secondly, risk management 

requires knowledge of the distribution of the annuity and this can only be 

calculated with knowledge of the mortality distribution.  This paper describes 

several important modelling, estimation and forecast issues within the context of 

the model proposed by Cairns, Blake and Dowd (2006) (which I shall refer to as 

the �CBD model�).  Most of the results have wider applicability. 

The CBD model is a �two!factor� model and is one among a large number of 

contenders for projecting mortality.  The underlying idea is that there is a 

(downward) trend in mortality, which is presumably either a stochastic trend or a 

deterministic trend with some variation about the trend.  If improvements in 

mortality were perfectly correlated at all ages then it would be possible to project 

mortality using a �one!factor� model such as the simple Lee!Carter ("992) model.  

However, improvements in mortality do not just consist of downward shifts in the 

functional relationship between mortality and age but also changes in the �shape� 

of the relationship.  If this relationship were sufficiently complicated, or the 

changes were sufficiently complicated, then this might need to be modelled non!

parametrically.  This is the P!spline type approach of Eilers and Marx ("996) or 

CMI (2006).  However, empirically it is possible to approximate well the 

relationship between mortality and age by fairly simple functional forms involving 

relatively few parameters (Cairns et al, 2009).  In the simplest case only one 

parameter is needed to describe the relationship and hence mortality projection 

                                                 
"
 Of course, this does not mean that practising actuaries actually use these new models.  CMI 
(2009, p.6) reports that 83% of life insurers and 82% of pension funds still used a particular 
version of the deterministic projections made by the UK�s Institute of Actuaries in "999 and up!
dated in CMI (2002). 



requires two factors, which jointly provide a description of the relationship 

between mortality and age and the trend in mortality over time. 

This results in a wide variety of modelling strategies: should the model predict log 

mortality or the log!odds of mortality (e.g., Cairns et al, 2009); should there be 

two or more factors (e.g., Plat, 2009, suggests four); should there be additional 

cohort effects (Renshaw and Haberman, 2006)?  Merely surveying a sub!set of 

these possibilities takes up a substantial number of pages in Pitacco et al (2009). 

However, any n!factor model (with n equal to a small number greater than one, 

such as two) will face the question of how the factors evolve over time and it is 

this question that I consider here.  In the simplest case of two factors, there are 

three possibilities: both factors are stochastic trends (the original CBD model); 

both factors vary stochastically about deterministic trends (Sweeting, 2009); or the 

factors are stochastic trends but share a unit root so that they are cointegrated. 

In section 2 of this paper I shall provide an exposition of the model under all three 

cases in Section 2.  A consequence of this class of model which has not received 

much attention in the literature is that there is ambiguous relationship between 

the variance of mortality forecasts and the expected value of an annuity: I prove 

this in section 3.  In section 4 I discuss the application of the two factor model to 

mortality data for sixteen countries taken from the Human Mortality Database. In 

section 5 I discuss the problems that arise from the fact that the CBD methodology 

first estimates the factors and then analyses their dynamic properties: in the light 

of this I report tests for distinguishing the models and quantify the importance of 

measurement error.  The resulting analysis provides estimates of annuity values, 

measures of risk and measures of the consequences for the money�s worth of 

annuities actually sold.  Section 6 discusses my results and concludes. 

2. An outline of the two!factor model 

The CBD model works with a logistic transform of death probabilities or death 

rates.  Given constraints on data availability it is often necessary to work in a 

discrete!time model with such variables and accordingly in this paper I work 

consistently with one!year death probabilities, where 
,x t

q  is the probability of 



dying within one year for someone aged x in year t and 
, ,

1
x t x t

p qω " . 2   The 

original CBD model uses period rather than cohort life tables and can be written 

(") # $ ∴ ⊥ ∴ ⊥1 2
, ,

ln 60,..., 95 , 0,..., 1
x t x t t t

q p A A x x t T' ( ) ) "  

where the choice of ages 60 to 95 is driven mainly by considerations of data 

availability and partially to reduce problems of heteroskedasticity which occur 

when very high ages are included. 

Equation (") says that the log!odds of death probabilities for different ages in year 

t is a linear function of age, where both the intercept 1
t

A  and the slope 2
t

A  of the 

linear function can vary through time.  At the risk of stating the obvious, because 

this is a model of different ages at the same point in time, it is using data from 

cohorts born in different years.  1
t

A  and 2
t

A  are the two �factors�.  In practice it is 

impossible to observe either factor, so they must be estimated: CBD do this using 

OLS although alternative procedures are available.3  In this section I ignore the 

problem of estimation.  In a generalisation of the CBD model, the evolution of the 

two factors through time is modelled by 
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To simplify notation I re!write equations (") and (2) respectively as  

(3) 
t t
'Q XA  
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t t t t

t
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where 

                                                 
2 The relationship between one!year death probabilities, death rates and mortality, are 
discussed in actuarial texts such as Bowers et al ("997) or Pitacco et al (2009). 
3 A simple alternative to control for heteroskedasticity would be GLS; when information 
on the exposed!to!risk is also available a more efficient estimator would explicitly model 
q with the binomial distribution. 



(5) 
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I  is the identity matrix and 0 a vector of zeros.  With appropriate estimators of 

the parameters, this model can be used to predict numerically the density function 

of the factors using equation (4). 

The crux of the matter is how to model equation (4), the interpretation of which 

depends crucially upon the rank of the matrix " IΘ .  CBD assume  

(6) # $1
, 0

t t t"
' ( ( " 'A A IrankΝ [ Θ  

i.e. the two factors are independent random walks with drift (stochastic trends),4 

whose only possible relationship is contemporaneous correlation in the shock 

terms through non!zero off!diagonal components of V .5  Two obvious alternative 

parameterisations are 

(7) 
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(8) # $, 2
t t t

t rank' ( ( ( " 'A A IΘ Ν Ε [ Θ  

The second of these assumes that both factors are deterministic trends (rather 

than stochastic trends), whereas the first assumes that there is one stochastic 

trend and the two factors are cointegrated. 

A special case of (8) is that = 0Θ , which is considered by Sweeting (2009) in the 

context of a model where the parameters Ν  and Ε  are subject to infrequent and 

stochastic shifts. 

                                                 
4 When the system in equation (4) has # $ 0,1" 'Irank Θ  it is assumed that 'Ε '  and the 

stochastic trend is modelled by the parameter Ν ; when # $ 2" 'Irank Θ  the deterministic 

trend is modelled by the parameter Ε . 
5 In my analyses I find that the correlation between 1ˆ

t
[  and 2ˆ

t
[  from model (5) is almost 

unity (as do CBD), which may suggest that the model be under!parameterised. 



3. Pricing an annuity 

In this section I discuss the use of the two!factor model for valuing a financial 

product, specifically an annuity (although it could also be used to value products 

such as a mortality bond as in the original CBD article). 

Consider a simple life annuity paying an annual income of one unit per period in 

arrears without proportion.  The general formula for the expected value of an 

annuity sold at time T is  

(9) 
1

, ,
01

i

x T T i x j T j
ji

a R p
δ "

( ( (
''

'3 4 !  

where R is the discount factor for term!to!maturity i.  In actuarial textbooks this is 

often assumed to be the same for all terms but in economists� analysis of the 

money�s worth it is usually taken from estimates of the yield curve.  The future 

probabilities are unknown and have to be projected, denoted by 
,x j T j

p
( (
! .  To 

simplify notation, and without loss of generality, I assume that the maximum 

number of periods that the annuitant will live is two so equation (9) can be 

written 
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Note that when the annuity is sold the most recent data available will be for 

period 1T "  (in practice the most recent data available will be older than this). 

3." Deterministic projection 

The simplest projection methodology would be to ignore all of the uncertainty.  

Then 
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where the superscript {"} denotes the method of calculating the annuity.6  This 

method of calculation is similar to the projections methods used in the UK in the 

construction of the �80�, �92� or �00� tables, where a statistical estimation method 

was used to estimate a relationship between mortality and age and then projected 

forward deterministically using a trend.7 

3.2 Stochastic projection taking parameters as certain 

The uncertain nature of the factors can be modelled using 
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where the density function of the factors can be simulated by generating pseudo!

random values for the shock terms from the estimated distribution 

# $1
ˆ, ~ 0,

T T (
VN[ [! ! .  In the simulations below I generate "00,000 simulations allowing 

me to calculate "00,000 values of the annuity using 
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Note that this method involves generating the survival probabilities to each age 

rather than each annual survival probability: the latter would substitute ("3) by 

("4) 
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6 Note that in models (6) and (7) there is no Ε  term. 
7 The trend was based on data supplemented by judgements about ceilings or floors on 
mortality or mortality improvements. One of the most recent publications by the UK 
actuarial profession advocates this approach (CMI, 2009). 



and hence ignore the correlation between the survival probabilities in different 

periods.8 

3.3 Stochastic projection taking parameters as uncertain 

The final possibility is to acknowledge that the parameter values are themselves 

estimates and hence uncertain.  Then 

("5) 
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In each of my "00,000 simulations I draw a set of parameters from their assumed 

distribution and then add the pseudo!random shock terms.  Generation of the 

parameter values is slightly different in each model (6), (7) and (8) and is detailed 

in the appendix.  Finally 
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3.4 Relationship between the different valuations 

Perhaps surprisingly there is no reason to believe that incorporating risk has an 

unambiguous effect on the value of the annuity.  The reason for this is that the 

annuity formulae in equations ("3), ("4) and ("6) may be concave functions of the 

risk in mortality improvement: the concavity or otherwise of the function depends 

upon the actual survival probabilities and interest rates.  By a standard application 

of Jensen�s inequality, a value function which is a concave function of a stochastic 

variable will have a negative relationship to the variance of the variable.  To see 

this, rewrite equation ("0) as 

("7) 
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8 From the equation on page 694 of CBD it appears that they used the method in equation 
("4) rather than that in equation ("3). 



where the stochastic component is 1 2
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Thus both of the diagonal elements of the Hessian matrix will be negative if the 

probability of dying in the first period is sufficiently low, namely less than one!

half.  From "970 onwards in the UK such high death probabilities were only found 

among men aged 96 or more and this is also true for most other developed 

countries.  For the function to be concave function, the Hessian would need to be 

negative semi!definite.  From the derivatives in (27), the determinant of the 

Hessian is  

("9) 
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so it is quite possible that the function will be concave, confirming that the effect 

of the variance on the value of the annuity is ambiguous. 

4. Data and preliminary discussion of the model 

In the rest of the paper I apply the BCD model and its extensions to male 

population mortality data taken from the Human Mortality Database for sixteen 



countries for which good data are available and which are representative of most 

developed countries.  In this section I briefly introduce the data. 

The England & Wales log!odds data is plotted for the whole period in Figure ", 

which confirms that the log!odds is an approximately planar surface in age!year 

space.  There is sufficient detail in the graph to see an oblique kink running 

through the data for the cohort aged 60 in "985 (born "925), suggesting that there 

may be a significant cohort effect as noted in Willets (2004).  An obvious 

extension to this paper would be to replicate the analysis using cohort data.9 

Figure " about here 

Figures 2 and 3 illustrate my calculated values of the two factors for all sixteen 

countries: the first figure shows how the factors evolve over time and second is a 

scatter plot joining temporally consecutive points.  Visual inspection shows that 

there is a large structural break in the trend for most countries in the middle of 

the post!war period. For nearly all countries the time!series plot for the second 

factor is almost a mirror image of that for the first factor.  This is confirmed in the 

scatter plots where the points lie close to a straight line, although in many 

countries the scatter plot appears to be in the shape of a letter �V� lying on its 

side.   

Certainly over the period "980 onwards and possibly for the whole period there 

appears to be a fairly tight relationship between the two factors.  This could be 

either because models (7) or (8) fit the data better than model (6), or because 

model (6) is correct but the magnitude of the drift terms, Ν , is large relative to the 

variance of the shocks in the random walk process. 

Figures 2 and 3 about here 

The data for the USA are particularly problematic: while sharing many of the 

features present in the data for other countries, there is an additional change in 

behaviour of the factors after 2000.  Having been in decline from about "975 

onwards the first factor 1
t

A  starts to increase and the opposite happens for the 

second factor.  At the same time the relationship between these two factors 

changes as can be seen from the cross!plot in Figure 3.  Such a change in 

                                                 
9 This would introduce further complications since the factors for the youngest cohorts 
would have to be estimated from fewer data observations. 



behaviour would be difficult to reconcile with any model and it is unsurprising 

that the BCD model is unable to fit these data. 

5. Analysis of the BCD model and extensions 

5." Measurement error in the factors 

The analysis so far in both this paper and BCD has assumed that the factors are 

perfectly observed, but in fact they have to be estimated.  Consider replacing 

equations (") and (3) with 

(20) # $2~ ,
t t t t

Ξ' (Q XA 0 INΦ Φ  

Using a �hat� to denote the fitted values of the factors, 

(2") # $ # $
1ˆ ~ ,

t t t t t t t t t

"
α αω ' (A X X X X Q A 0 HNΙ Ι  

where the vector 
t
Ι  can be interpreted as a form of measurement error. "0  

Substituting ("0) into (4) one obtains 
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leading to the standard result that the OLS estimator is inconsistent, since  
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where 
t

R  are the residuals obtained from regressing ˆ
t

A  on a constant and a 

trend.""   

There are only two cases in which the OLS estimator will be consistent.  If 'Θ '  

there is no problem, but this is implausible and rejected by the data.  If the 

assumption of the original CBD model, namely ' IΘ , be true it is unnecessary to 

                                                 
"0 Visual examination of the estimated errors suggests mild heteroskedasticity, but I 
ignore that here to save space.  Measurement errors are usually assumed to be serially 
uncorrelated. 
"" Since 

t
Ψ is orthogonal to the constant and the trend they can be �partialled out�.  Notice 

that 
1 1t t" "

€ ↓αϒ °′ ±R RE  only has a limiting distribution if the data generating process is that of 

equation (8), but # $
1

1 1t t

"

" "
€ ↓αϒ °′ ±R RE  has a limiting distribution regardless of the DGP. 



estimate Θ  and it is possible to obtain unbiased estimates of Ν ."2  Continuing with 

the general case it follows that 

(24) # $# $1 1t t t t t t t t" "

€ ↓α€ ↓ ϒ °α α' ( " ( " ' ( (ϒ °′ ± ϒ °′ ±
V H HE EΨ Ψ [ Ι ΘΙ [ Ι ΘΙ Θ Θ  

showing that the true residuals from the second!stage regression are a 

combination of the stochastic evolution of the factors and the measurement error.  

In the special case of the BCD model (equation 6) the OLS estimates are unbiased 

and the right hand side of equation (24) simplifies to 2(V H , so a possible 

estimator for the relevant matrix would be 

(25) 
1

1
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T
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where an estimator for H  could be obtained from the first!stage regressions 

(26) # $ # $ # $ # $
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Unfortunately there is no guarantee that the expression in equation (25) will be 

positive definite and using the data discussed above (from "980 onwards) it is so 

for only the Netherlands and Norway.  In fact for some countries even the diagonal 

elements of equation (25) � that is the variances � are negative.  This problem 

could arise either through sampling error or because the simple BCD model is 

incorrect: regardless of the cause of the problem, the consequence is that it is 

impossible to implement a logically consistent version of the BCD model for most 

of the countries in my sample using OLS alone."3   

For models (7) or (8) projecting mortality is more complicated.  Using equation 

(23) a possible estimator for Θ  would be 

                                                 
"2 The estimates are unbiased (rather than just consistent) in this case because the only 
regressor is a constant, which is obviously fixed in repeated samples. 
"3 The possibility of this problem arises due to estimating the parameters in a two!stage 
procedure: first estimating the A parameters and only secondly estimating their dynamic 
properties.  This might be avoided if both were estimated simultaneously (perhaps 
through Maximum Likelihood), but such an extension is beyond the scope of the current 
paper. 



(27) 
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where for model (8) Θ̂  would be the OLS estimate from the VAR and for model (7) 

Θ̂  could be the estimate with # $ 1" 'Irank Θ  imposed. The variance might then be 

estimated using 
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where the estimated residuals are those obtained using ˆ̂Θ  rather than Θ̂ . This 

formula is only positive definite for Denmark and Norway.  Again the problem 

arises partly from sampling error:, at best the expressions in equations (27) and 

(28) would be consistent and the sample size available is relatively small. 

5.2 Distinguishing the models 

My analysis so far has considered three versions of the BCD model, based on the 

three possibilities for the rank of the matrix " IΘ .  If these models were to result 

in very similar valuations of pension or life products then it would not matter 

which were used: but for some data sets the models give very different answers, so 

some guidance is needed on which model to use. 

An obvious first step is to test the estimated factors for a unit root individually.  

Table " reports Dickey!Fuller statistics for these series for each country, 

accompanied by conventional p!values for the test under the null hypothesis of a 

unit root.  For six countries (Australia, Belgium, France, Germany, Spain and 

Sweden) the null of unit roots is comprehensively rejected for both factors and it 

is marginal for a further two (Poland and Switzerland).  This result appears similar 

to that of Sweeting (2009) although he obtained different results for England & 

Wales.   

However, all of this analysis assumes that there is no measurement error in the 

factors.  I re!calculate the p!values under the null hypothesis assuming that there 

is measurement error, where the variances of the shocks driving the unit root and 

the measurement error are estimated using equations (25) and (26): this procedure 

is only possible where the resulting estimated variance of the shocks is positive.  

Of the countries for which the exercise is possible, only Australia and Belgium 



appear unambiguously not to have unit roots, with mixed evidence for the 

Netherlands and Sweden.  Failure to reject the null of a unit root does not appear 

to be due to unduly low power: the final column calculates the power of the test 

under the alternative hypothesis that the auto!regressive parameter is 0.9 and 

these figures seem acceptable given the small sample sizes. 

If there be a unit root it is now necessary to distinguish model (6) from model (7): 

are the two factors cointegrated?  Johansen ("988, "995) provides a ML procedure 

to distinguish the models in equations (6), (7) and (8) using the estimated 

eigenvalues of " IΘ  to construct the trace statistic:"4 this test is just the multi!

variate extension of the Dickey!Fuller test.  The null hypothesis is that equation 

(6) is correct: the alternative hypothesis is that either one or both eigenvalues are 

non!zero."5  The univariate analysis in Table " suggests that measurement error has 

a big effect on the correct size of tests and this will presumably be true for 

multivariate tests also.  

The asymptotic 5 per cent critical value when there is no measurement error is 

25.32 and the trace statistics for the Netherlands and Norway respectively are 

29.88 and "4.86, which would suggest rejecting the null for the Netherlands.  This 

is prima facie consistent with the result that the Dutch factor 2ˆ
t

A  does not have a 

unit root when tested in isolation.  However, the critical value is too small when 

there is measurement error, since this biases the test towards rejecting the null.  

Using the estimated parameter values for these two countries a Monte Carlo 

experiment suggests that the correct critical values should be 39."8 and 32."0 

respectively, so it is impossible to reject the null hypothesis of the model in 

equation (6). 

As noted in the previous section, the Netherlands and Norway are the only two 

countries for which equation (25) can be used to obtain a positive definite V̂ , and 

hence the only two countries for which I can construct confidence intervals under 

the assumption of measurement error.  Thus for Norway and (to a lesser extent) 

                                                 
"4 Note that, due to non!linearity, the ML estimates of the eigenvalues are not the same as 

the eigenvalues of the ML estimator ˆ " IΘ . 
"5 The Johansen VAR regression includes a trend restricted to lie in the cointegrating 
space since, under one of the alternative hypotheses (model 8), there must be such a 
trend for the model to fit the data. 



the Netherlands, the mortality data for these countries appears consistent with the 

original BCD model.  For the other countries the problem remains that the 

procedures used here are insufficient to obtain a satisfactory estimator of the 

variance using either V̂  or 
ˆ̂V  so it is impossible either to distinguish the models 

or use them for valuing an annuity. 

5.3 Annuity valuation using different versions of the two!factor model 

Given the problems in operationalising the model when there is measurement 

error in the factors, I start by ignoring the problem (ie imposing the assumption 

that )+ ' ).   While this is not ideal it does allow me to make some comparisons 

of the different models under discussion.  So I use the models in equations (6), (7) 

and (8) with post!"980 data for all sixteen countries to generate the annuity values 

∴ ⊥2a  and ∴ ⊥3a .  The annuities are valued assuming a constant interest rate of 3 per 

cent.  As has been discussed above, there are particular problems with the data 

from the USA, but I continue to include that country for purposes of comparison.  

The simulated expected values, together with the upper and lower deciles and the 

90:"0 spread, are reported in Table 2 and the density plots are illustrated in 

Figures 4, 5 and 6.  Perhaps surprisingly, the median value is usually close to the 

mean value and the distributions are approximately symmetric although there is 

some strange behaviour in the tails (of course these are the parts of the 

distribution which are modelled least well).  

Figures 4, 5 and 6 about here 

Table 2" about here 

The expected value of the annuity tends to be highest using the model with 

# $ 2" 'Irank Θ  and lowest using the model with # $ 1" 'Irank Θ , but there are many 

exceptions to this generalisation.  To emphasise the very different annuity prices 

of the three models I look at the �spread�, ie the difference between the largest 

and smallest expected values from the three models divided by the average 

expected value.  So for England and Wales the annuity is valued (with parameter 

uncertainty) as either "5.68, "5.35 or "5.55 depending on which model is used: a 

difference of 0.34 between the highest and lowest price, equal to 2.2 per cent of 

the annuity value, clearly a large discrepancy.  Where the �spread� is greater than 

two per cent it is shaded in the table, which occurs for seven countries other than 



the USA.  The latter is notable in that the model with # $ 2" 'Irank Θ  fits so badly 

as to be nonsense, unsurprisingly given the behaviour of the A factors for that 

country shown in Figures 2 and 3: interestingly despite the strange behaviour of 

the estimated factors model (6) still provides �plausible� densities, suggesting that 

analysis of this model in isolation may prompt an inappropriate reliance on the 

results of the model. 

For all countries, the result of modelling parameter uncertainty is fairly small: 

what changes when parameter uncertainty is introduced is the 90:"0 spread.  In 

section 3 I established that the effect of greater variance in the mortality has an 

ambiguous effect on the annuity price.  From the table it can be seen that greater 

variance tends to increase the price slightly under model (6) but reduce the price 

slightly under model (8): ie the effects are opposite for the two models which I 

tended to find difficult to choose from the unit root tests.   

For either prudential or regulatory reasons a life insurer might sell an annuity not 

at the actuarially fair price but at a higher price which would limit the probability 

of a policy making a loss: for example, the price might be set to ensure that the 

policy be expected to make a loss only "0 per cent of the time.  This is one of the 

possible reasons why the �money�s worth� which is observed for annuity price 

quotes is less than one (Cannon and Tonks, 2008). Note that the money�s worth is 

conventionally calculated assuming the expected value of the annuity, whereas the 

prudential pricing I have described would result in prices based on the upper 

decile.  So to calculate the resulting money�s worth, I simply calculate the ratio of 

the expected value to the upper decile, using the numbers in Table 2 with 

parameter uncertainty.  This assumes that there no other transactions costs or 

reasons for unfair pricing such as adverse selection.  The results are reported in 

Table 3.  Excluding the special case of the USA, it can be seen that the money�s 

worth would be in the range 93 to 97 per cent if life insurers were using model (6).  

This is an upper bound to the money�s worth since there may be additional 

mortality variance (which I have not modelled) arising from the possibility of 

future structural breaks such as that which appeared to occur in the late "970s for 

many countries.  Cannon and Tonks (2008, chapter 6) survey money�s worths for 

different countries and time periods and find that the money�s worth is typically in 

the range 80 to "00 per cent and a rough average would be 90 per cent.  



Comparing the figures for model (6) in Table 3 to a money�s worth of 90 per cent 

would therefore suggest that reserving against unexpectedly high mortality is 

playing a relatively large r¬le in low money�s worths.  Consequently problems such 

as transactions costs, adverse selection or other market failures may be less 

important than assumed by economists until now. 

Table 3 about here 

I now turn to the issue of measurement error and calculate the annuity values for 

the Netherlands and Norway (ie the two countries for which I can estimate the 

matrix V
 
using equation 25).  Results for these countries under model (6) are 

reported in Table 4, where I calculate annuity values on the assumption that 

parameters of the underlying processes are uncertain.  The differences between 

the calculations that assume measurement error and those that explicitly model it 

are surprisingly small.  This provides some evidence that measurement error in the 

factors is quantitatively unimportant. 

Table 4 about here 

6. Conclusion 

In this paper I have extended the Cairns, Blake and Dowd (2006) two!factor model 

in two important ways: first, to generalise the dynamic processes underlying the 

modelling of the factors; and secondly, to account for the measurement error 

arising from using estimated rather than observed factors.  The two!step 

procedure used by CBD means that there is no guarantee that estimators of the 

relevant covariance matrices will be logically admissable (i.e., positive definite) 

and thus it is impossible to separate the errors in the dynamic process from the 

measurement error.  This is most likely due to be sampling error arising from the 

short time!series data available.  Where it is possible to estimate the covariances, 

the effect on annuity valuation appears to be minimal, so this problem does not 

appear to be a major one. 

However, the effect of measurement error does have important implications for 

tests to distinguish the models.  Contrary to the results of Sweeting (2009) I find 

adequate evidence that the factors do follow unit root processes for most countries 

and my results differ due to the measurement error issue.  However, I agree with 



Sweeting�s analysis that there appears to be a structural break in about "980 and 

incorporating this into a unit root framework is clearly a job for future research. 

The choice between models can have significant differences in the estimated value 

of an annuity with differences of up to 2 per cent arising purely from model 

uncertainty (and this is model uncertainty within the class of log!odds!mortality 

two!factor models). 

Increased uncertainty within a model does not necessarily mean that an annuity 

will be more costly (in the sense that its expected value is higher), since the effect 

of the variance is ambiguous.  My simulations in Table 2 demonstrate that this is a 

practical possibility since greater uncertainty, arising from explicit modelling of 

parameter uncertainty, can increase or decrease expected annuity values.  This has 

important implications for pricing of annuities by life insurers and monitoring of 

annuity prices by government regulators."6  

International evidence suggests that the money�s worth of annuities (the price at 

which they are actually sold compared to the expected actuarial value) is less than 

one.  Although there are other reasons for low money�s worths, this could arise 

from purely prudential motives of the life insurer or be required by a regulator 

who was concerned about the solvency of life insurers if realised mortality was less 

than expected when the annuities were sold.   Cannon and Tonks (2009) quote a 

letter from the UK regulator (the Financial Services Authority) explicitly asking 

life insurers to build in adequate safeguards against insolvency.  Although widely 

recognised as a possible contributory reason for low money�s worths of annuities, I 

know of no attempt to quantify this hitherto.  Using the models estimated in this 

paper, I calculate how much the money�s worth of annuities might be reduced if 

life insurers priced not on the expected value but on the upper decile.  The 

resulting money�s worth under the CBD model would be about 93 to 97 per cent, 

suggesting a relatively important r¬le for reserving in money�s worths observed in 

markets around the world. 

  

                                                 
"6

 The issue is particularly acute in the UK where, in exchange for tax privileges, it is compulsory 
to annuitise part of a personal pension fund.  Government studies of the annuity market include 
Cannon and Tonks (2009) for the Dept of Work and Pensions and HM Treasury (200###). 
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Appendix: Simulation procedures with uncertain 

parameters 

For the model in equation (6) we are assuming that both factors are random walks 

and imposing ' IΘ .  Therefore we only need to estimate the drift term and the 

variance of the shocks.  I simulate the drift term from 

(A.") # $
1 ˆˆ~ , 1T
"* ←↑- " ↑- ↑. →

VNΝ Ν!   

Simulating the variance term is slightly more complicated and I use the procedure 

suggested by BCD: first, generate pseudo!random vectors y  from the distribution 

# $1 1ˆ,T " "VN '  and then use # $
1

1

1

T

s ss

"
"

'
α' 3V y y! .  I use this method to calculate the 

variance matrix for all three models 

The model in equation (7) is also fairly straightforward: the OLS standard errors of 

the parameter estimates are used so that 

(A.2) # $ # $ # $
1ˆ ˆˆˆ~ ,
"* ←↑α- E ↑- ↑. →

V Z Zvec N vecΘ Ν Ε Θ Ν Ε!!!  

where Z  is the stacked vector of explanatory variables in the VAR.  This procedure 

sometimes results in a value of Θ!  with an eigenvalue numerically close to zero (in 

which case the model resembles that of equation 8) and I discard all such 

simulations.  This happened with France, Italy, Norway, Spain and the USA (the 

maximum number of simulations discarded was sixteen out of "00,000). 

For model (8), the variance of the parameters except Χ  is conditional on the value 

of Χ  itself.  In the simulations I took the value of Χ  as given and then used the 

OLS standard errors so that 

(A.3) # $ # $ # $
1ˆˆˆ~ ,
"* ←↑α- E ↑- ↑. →

V Z Zvec N vecΗ Ν Η Ν!!  

 

  



Figures and Tables 

Figure ": Mortality by age and year for England and Wales 

 

  



Figure 2, part ": Time series of A factors 

 

  



Figure 2, part 2: Time series of A factors 

 

  



Figure 3: Cross plots of A factors 

 

  



Figure 4: Density Plots of Annuity Valuation with # $ 0" 'Irank Θ , parameters 

certain (solid line) and uncertain (dotted line). 

 

  



Figure 5: Density Plots of Annuity Valuation with # $ 1" 'Irank Θ , parameters 

certain (solid line) and uncertain (dotted line). 



Figure 6: Density Plots of Annuity Valuation with # $ 2" 'Irank Θ , parameters 

certain (solid line) and uncertain (dotted line). 

 

  



Table ": Unit Root Tests on Estimated Factors 

 

   Analysis of 1ˆ
t

A         Analysis of 2ˆ
t

A      

DF test Measurement error  DF test Measurement error 

[conventional p!value] p!value power   [conventional p!value] p!value power 

Australia !4.62 [0.0"] 0.02 0.95  !5.36 [0.00] 0.00 0.99 

Belgium !4.49 [0.0"] 0.03 0.9"  !4.65 [0.0"] 0.02 0.96 

Canada !2.42 [0.36] 0.99 ".00  !".88 [0.63] 0.94 0.04 

Denmark !3.06 [0."4] 0.87 ".00  !3.42 [0.07] 0.54 ".00 

England & Wales !2.74 [0.24] 0.56 0.32  !3.25 [0."0] 0.20 0.7" 

France !3.95 [0.03]    !4.35 [0.0"]   

Germany !3.57 [0.05]    !4.46 [0.0"]   

Italy !2.70 [0.25] 0.95 ".00  !3."6 [0."2] 0.37 0.45 

Japan !2.73 [0.24]    !4.29 [0.0"] 0.44 ".00 

Netherlands !3."7 [0.""] 0.47 0.27  !4.72 [0.0"] 0.03 0.86 

Norway !".88 [0.63] 0.76 0."9  !2.09 [0.52] 0.64 0.30 

Poland !3.37 [0.08]    !3.43 [0.07] 0.88 ".00 

Spain !3.68 [0.04]    !4.36 [0.0"] 0."6 ".00 

Sweden !4.35 [0.0"] 0.80 ".00  !5."" [0.00] 0.05 ".00 

Switzerland !3.30 [0.09]    !3.60 [0.05]   

USA 0.99 [".00]       0.79 [".00]     

 

  



Table 2: Annuity valuation under different models of the factors 

 

  Australia Belgium Canada Denmark Eng & Wales France Germany Italy 

  Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc 

Rank 2 (equation 7)

Expected value "6.36 "6.49 "4.85 "4.85 "5.96 "6.44 "4.53 "4.76 "5.6" "5.68 "5.65 "5.68 "5.84 "6.30 "5.63 "5.62

Lower decile "6.29 "6.04 "4.83 "4.76 "5.86 "5.43 "4.42 "4."" "5.55 "5.36 "5.62 "5.5" "5.73 "5.3" "5.60 "5.48

Upper decile "6.43 "7.00 "4.87 "4.94 "6.06 "8.48 "4.65 "5.54 "5.66 "6.07 "5.68 "5.85 "5.95 "8.24 "5.66 "5.78

90:"0 range 0."4 0.96 0.05 0."8 0."9 3.05 0.23 ".43 0."" 0.7" 0.06 0.34 0.22 2.93 0.05 0.30

Rank " (equation 8)

Expected value "6.20 "6.20 "4.8" "4.8" "5.90 "5.88 "4."8 "4."8 "5.35 "5.35 "5.67 "5.67 "5.26 "5.26 "5.47 "5.49

Lower decile "5.97 "5.86 "4.57 "4.47 "5.72 "5.60 "3.87 "3.73 "5."8 "5."" "5.49 "5.40 "5."0 "5.04 "5.29 "5.2"

Upper decile "6.43 "6.53 "5.06 "5."5 "6.08 "6."6 "4.49 "4.62 "5.5" "5.58 "5.86 "5.94 "5.4" "5.48 "5.65 "5.79

90:"0 range 0.46 0.67 0.49 0.68 0.37 0.56 0.62 0.89 0.33 0.47 0.37 0.54 0.30 0.44 0.35 0.58

Rank 0 (equation 6)

Expected value "6.32 "6.35 "4.95 "4.97 "5.56 "5.56 "4.46 "4.47 "5.54 "5.55 "5.66 "5.67 "5.37 "5.38 "5.95 "5.97

Lower decile "5.58 "5.26 "4.47 "4.28 "5.25 "5."" "4.0" "3.84 "5.04 "4.83 "5."9 "4.97 "5.02 "4.86 "5.36 "5."0

Upper decile "7.09 "7.49 "5.44 "5.72 "5.87 "6.03 "4.9" "5."" "6.04 "6.3" "6."4 "6.38 "5.73 "5.90 "6.56 "6.87

90:"0 range ".5" 2.23 0.98 ".44 0.62 0.92 0.89 ".27 ".00 ".48 0.96 ".4" 0.7" ".04 "."9 ".78

"Spread" ".0% ".8% 0.9% "."% 2.5% 5.5% 2.4% 4.0% ".7% 2.2% 0."% 0."% 3.8% 6.7% 3."% 3.0%



Table 2 (continued) 

 

Japan Netherlands Norway Poland Spain Sweden Switzerland USA 

  Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc Cert Unc 

Rank 2 (equation 7)

Expected value "6."8 "6.28 "6.00 "6.8" "5.53 "5.67 "3.40 "3.75 "5.27 "5.40 "5.47 "5.48 "6.06 "6."3 "7."5 "7.02

Lower decile "6."0 "5.9" "5.80 "4.89 "5.42 "5."4 "3."8 "2.63 "5.23 "5."0 "5.44 "5.37 "6.02 "5.87 "6.93 "4.69

Upper decile "6.25 "6.68 "6.20 20.34 "5.63 "6.28 "3.62 "5.43 "5.3" "5.7" "5.50 "5.59 "6."" "6.40 "7.36 "9.64

90:"0 range 0."4 0.77 0.40 5.45 0.2" "."4 0.44 2.80 0.08 0.6" 0.05 0.23 0.09 0.53 0.43 4.95

Rank " (equation 8)

Expected value "6.49 "6.48 "5.07 "5.07 "5.26 "5.26 "2.79 "2.8" "5.24 "5.24 "5.39 "5.39 "6.04 "6.04 "7.29 "6.95

Lower decile "6."5 "5.96 "4.83 "4.74 "4.95 "4.80 "2.29 "2.09 "5.08 "5.02 "5.20 "5."3 "5.77 "5.65 "6.95 "4.""

Upper decile "6.82 "7.00 "5.30 "5.40 "5.57 "5.7" "3.30 "3.54 "5.40 "5.47 "5.58 "5.65 "6.3" "6.44 "7.59 "9.7"

90:"0 range 0.67 ".03 0.48 0.66 0.62 0.9" ".0" ".45 0.32 0.45 0.37 0.52 0.54 0.79 0.64 5.59

Rank 0 (equation 6)

Expected value "6.35 "6.35 "4.82 "4.84 "5.47 "5.50 "2.99 "3.0" "5.47 "5.49 "5.60 "5.62 "6.23 "6.25 "5.08 "5.09

Lower decile "5.83 "5.60 "4.40 "4.25 "4.84 "4.60 "2.43 "2.23 "4.93 "4.7" "5."4 "4.96 "5.73 "5.52 "4.80 "4.67

Upper decile "6.88 "7."2 "5.25 "5.46 "6."3 "6.48 "3.58 "3.83 "6.02 "6.30 "6.08 "6.32 "6.75 "7.00 "5.37 "5.52

90:"0 range ".05 ".52 0.85 ".2" ".30 ".88 "."5 ".6" "."0 ".59 0.93 ".36 ".02 ".48 0.57 0.85

"Spread" ".9% ".2% 7.7% "2.7% ".7% 2.6% 4.7% 7.2% ".5% ".6% ".4% ".5% ".2% ".3% "3.3% "".8%

 



Table 3: Consequences for the money�s worth (parameters uncertain) 

 

  
Rank 2 
(equation 7)

Rank " 
(equation 8)

Rank 0 
(equation 6)

Australia 0.970 0.980 0.935 

Belgium 0.994 0.978 0.953 

Canada 0.890 0.982 0.97" 

Denmark 0.950 0.970 0.957 

Eng & Wales 0.976 0.985 0.954 

France 0.989 0.983 0.956 

Germany 0.894 0.986 0.967 

Italy 0.990 0.98" 0.946 

Japan 0.976 0.970 0.955 

Netherlands 0.827 0.978 0.960 

Norway 0.962 0.97" 0.94" 

Poland 0.892 0.946 0.940 

Spain 0.980 0.985 0.950 

Sweden 0.993 0.983 0.957 

Switzerland 0.984 0.976 0.956 

USA 0.867 0.860 0.972 

  



Table 4: The effect of incorporating factor measurement error into projections 

 

  Ignoring measurement error in factors Modelling measurement error in factors

Netherlands 

Mean "4.838 "4.836 

Lower decile "4.257 "4.276 

Upper  decile "5.450 "5.4"4 

90:"0 "."92 "."38 

Money's worth 0.960 0.962 

Norway 

Mean "5.505 "5.509 

Lower decile "4.6"" "4.648 

Upper  decile "6.462 "6.446 

90:"0 ".85" ".798 

Money's worth 0.942 0.943 

 

 

 


