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1 Introduction

The Separation Theory, which is a fundamental topic in Mathematics, takes a particular

importance in Optimization since it can be assumed as basis for the theory of constrained

extremum problems and related fields. For example, the necessary optimality conditions for an

extremum problem can be expressed in terms of separation between two suitable sets defined

by the objective function and the constraints. In particular, in the image space associated

with a constrained extremum problem [4], these two sets are a suitable conic approximation

of the image of the functions involved in the problem and a convex cone that depends only of

the type of conditions, which define the feasible region of the extremum problem.

A classic kind of separation between two sets is the linear separation obtained by means

of a hyperplane that separates the space in two halfspaces, each of them containing one of

the two sets. In this paper, we aim at deepening the analysis of the linear separation between

two particular sets in the Euclidean space. In Sect.2, we give a condition equivalent to the

linear separation between a convex cone C and a generic set S; this condition can be called of

”Helly-type” because, if each subset of S of finite cardinality enjoys a separability property,

then S itself enjoys a separability property. The relationships between linear separation and

regularity are clarified at the beginning of Sect.3, where we propose a condition equivalent to

the regular linear separation between C and S; it is expressed in terms of the tangent cone to

a suitable approximation of the set, which allows us to include also the nonconvex case. All

these results are illustrated through several examples.

We stress the fact that the separation results obtained in this work have been conceived
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for their application to constrained optimization. Hence, now, we introduce a well known

format of the constrained extremum problem and we briefly recall the separation approach

based on the analysis in the image space [4]. For this, assume we are given the integer m, the

nonempty subset X of a Banach space B and the functions f : X → R, g : X → R
m. We

consider the following constrained extremum problem

min f(x), subject to x ∈ R := {x ∈ X : g(x) ∈ D}, (1)

where D is a closed convex cone in Rm. The format (1) has been largely considered in the

literature (see Chapter 3, Sect.3, page 178 of [1]; Chapter 3 of [2]; Sect.4 of [5]). It embeds

several particular formulations, including the classic case where, given the integer p with

0 ≤ p ≤ m, the condition g(x) ∈ D is:

gi(x) = 0, i ∈ I
0 := {1, ..., p}, gi(x) ≥ 0, i ∈ I

+ := {p + 1, ...,m}. (2)

It is immediate to observe that x̄ ∈ R is a (global) minimum point of (1) iff H ∩ Kx̄ = ∅,

where H := {(u, v) ∈ R × Rm : u > 0, v ∈ D} and Kx̄ := {(u, v) ∈ R × Rm : u =

f(x̄) − f(x), v = g(x), x ∈ X}. Obviously, a sufficient condition for the disjunction of H

and Kx̄, and hence for the optimality of x̄, is the existence of a hyperplane which contains H

and Kx̄ in two disjoint level sets. Such a condition is also necessary for the optimality, under

regularity assumptions; i.e., under a condition guaranteeing that the separation hyperplane

does not contain Hu := {(u, v) ∈ R × Rm : u = 0, v ∈ D}. An important case is that

where Kx̄ is replaced by its linear approximation or, more generally, by its homogenization

[3]. In such a case, when D has nonempty interior – as, for example, when p = 0 in (2) – the
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disjunction between H and Kx̄ implies the disjunction between H and the approximation of

Kx̄. Unfortunately, this implication does not hold anymore when the interior of the cone D

is empty (see Example 5.10 of [7]); in other words, there are cases where the optimality of x̄

for (1) does not imply the optimality for the linearized problem .

Now, we recall the main notations and definitions that will be used in the sequel. On

denotes the n-tuple, whose entries are zero; when there is no fear of confusion the subfix is

omitted; for n = 1, the 1-tuple is identified with its element, namely, we set O1 = 0; 〈·, ·〉

is the usual scalar product in Rn. Let M ⊆ R
n; dim M , cl M , conv M , aff M , int M and

ri M denote the dimension, the closure, the convex hull, the affine hull, the interior and the

relative interior of M , respectively. The vectors k1, . . . , km+1 ∈ Rn, with m ≤ n are affinely

independent iff dim aff {k1, . . . , km+1} = m. If x̄ ∈ Rn and M 6= {x̄}, the cone generated by

M from x̄ is the set

cone (x̄; M) := {x ∈ Rn : x = x̄ + α(y − x̄), y ∈ M,α > 0}.

If M 6= ∅ and x̄ ∈ cl M , then the set of x̄+x ∈ Rn for which ∃{xi} ⊆ cl M , with lim
i→+∞

xi = x̄,

and ∃{αi} ⊂ R+ \ {0} such that lim
i→+∞

αi(x
i − x̄) = x, is called tangent cone to M at x̄ and

denoted by TC(x̄;M). We stipulate that TC(x̄; ∅) = ∅. If x̄ = O, then x̄ is omitted from the

notation of the cones. For a cone C with apex at x̄, the (positive) polar cone associated to C

is

C∗ := {x ∈ Rn : 〈x, y − x̄〉 ≥ 0,∀y ∈ C}.
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Let a ∈ Rn \ {O} and b ∈ R; in the sequel we will consider the hyperplane

H0 := {x ∈ Rn : 〈a, x〉 = b}

and the related halfspaces

H− := {x ∈ Rn : 〈a, x〉 ≤ b}, H+ := {x ∈ Rn : 〈a, x〉 ≥ b}.

Definition 1.1. The nonempty sets K1 and K2 ⊂ Rn are linearly separable iff there exists a

hyperplane H0 ⊂ Rn, such that:

K1 ⊆ H−, K2 ⊆ H+. (3)

H0 is called separating hyperplane. The separation is strict iff

K1 ⊆ int H−, K2 ⊆ int H+;

proper iff, besides (3), we have

K1 ∪ K2 6⊆ H0.

Definition 1.2. A hyperplane H0 ⊂ Rn is called supporting hyperplane of K ⊂ Rn, iff

K ⊆ H+, (or K ⊆ H−) and H0 ∩ cl K 6= ∅.

Definition 1.3. Let K ⊂ Rn. F ⊂ cl K is a face of K iff it is the intersection of cl K with

a supporting hyperplane H0 of K, or

F := H0 ∩ cl K.
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2 A Helly-type condition for linear separation

In this section, we will give a necessary and sufficient condition for the linear separation

between two sets of Rn and, in a particular case, sufficient for their proper separation. We

suppose that one of the two sets is a nonempty convex cone C with apex at O /∈ C, and the

other is any nonempty subset S of Rn; set s := dim S. Let z ∈ Rn; denote by proj z its

projection on C⊥ := {x ∈ Rn : 〈x, k〉 = 0,∀k ∈ C}, the orthogonal complement of C. Let

p := dim C⊥ so that dim C = n − p. Let us consider the following condition.

Condition 2.1. For every set {z1, ..., zs+1} of affinely independent vectors of S, such that

dim conv {proj z1, ...,proj zs+1} = p and

O ∈ ri conv {proj z1, ...,proj zs+1}



















, (4)

we have:

(ri C) ∩ ri conv {z1, ..., zs+1} = ∅. (5)

In the above Condition 2.1, if p = 0, we stipulate that (4)−(5) shrinks to (5). We stipulate

also that a singleton coincides with its relative interior. Let us consider the case p > 0: every

set {z1, ..., zs+1} of affinely independent vector of S satisfying (4) is a set for which we have to

check condition (5), that is equivalent to the linear separation between C and {z1, ..., zs+1}.

In other words, it is enough to check condition (5) for every set {z1, ..., zs+1} ”representative”

of S with respect to the linear separation from C. If it is not possible to find such a set,

then, of course, condition (4)− (5) is meant to be satisfied; otherwise, Condition 2.1 requires

that (4) implies (5). This distinction originates two possible cases where Condition 2.1 is
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fulfilled, that are treated separately in the following lemma. For a geometric interpretation

of Condition 2.1, see Example 4.6.1 on page 278 of [4].

Lemma 2.1. Suppose that C⊥ be a coordinate subspace of Rn of dimension p such that

1 ≤ p ≤ s. If Condition 2.1 holds, then C and S are linearly separable and, moreover, the

separation is proper.

Proof. There are two possible cases that we consider separately.

(A) (4) does not hold, in the sense that no set of affinely independent vectors of S verifies

(4). Denote by proj S ⊂ Rn the projection of S on C⊥. Since for every set of s + 1 affinely

independent vectors of S, relation (4) does not hold, then

O /∈ ri conv proj S. (6)

In fact, if ab absurdo O ∈ ri conv proj S, then ∃α1, ..., αp+1 > 0 with
p+1
∑

i=1

αi = 1 and

∃x1, ..., xp+1 ∈ proj S affinely independent, such that O =
p+1
∑

i=1

αix
i. Thus, we would have

p + 1 affinely independent vectors of S such that xi = proj zi, zi ∈ S, i = 1, ..., p + 1 and

O =
p+1
∑

i=1

αiproj zi. Since dim S = s, then the set {z1, ..., zp+1} could be augmented (if p < s)

to form a set {z1, ..., zs+1} of affinely independent vectors of S which would satisfy (4), this

contradicts the initial assumption. Since C⊥ is a coordinated subspace, then (6) becomes:

Op 6∈ int conv proj S.

Applying the Hahn-Banach Theorem, we get the existence of a hyperplane of Rp through Op

with equation
p
∑

i=1

aixi = 0 and such that
p
∑

i=1

aiwi ≤ 0, ∀ (w1, ..., wp) ∈ conv proj S. Setting
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ai = 0, i = p + 1, .., n, it follows that
n
∑

i=1

aiwi ≤ 0, ∀ (w1, ..., wn) ∈ conv S because conv and

proj are permutable. The hyperplane H0 = {x ∈ Rn :
n
∑

i=1

aixi = 0} contains the cone C and

therefore separates C and S. Moreover, the separation is proper since S cannot be included

in the hyperplane H0, otherwise (6) would be contradicted.

(B) (4) holds, in the sense that there exists a set {z1, ..., zs+1} of affinely independent vectors

of S which verifies (4). We prove that (5) implies

ri C ∩ ri conv S = ∅. (7)

Suppose that (7) does not hold, i.e., there exists z̄ ∈ ri C ∩ ri conv S. Because of a well

known Carathéodory Theorem, z̄ can be expressed as a convex combination of s + 1 affinely

independent vectors of S, say w1, ..., ws+1, that is z̄ =
s+1
∑

j=1

αjw
j , with αj > 0, ∀j = 1, ..., s + 1

and
s+1
∑

j=1

αj = 1. If these vectors verify (4), then (5) is contradicted. Therefore we have:

O /∈ ri conv {proj w1, ...,proj ws+1}.

Since C⊥ is a coordinated subspace, the previous relation becomes:

Op 6∈ int conv{proj w1, ...,proj ws+1}

and thus there exists (a1, ..., ap) 6= Op with
p
∑

i=1

ai(proj wj)i ≤ 0, ∀j = 1, ..., s + 1. If we

set ai = 0, ∀i = p + 1, ..., n we get
n
∑

i=1

ai(w
j)i ≤ 0, and therefore also

n
∑

i=1

aiαj(w
j)i ≤ 0,

∀j = 1, ..., s+1. On the other hand, z̄ ∈ ri C and thus 〈a, z〉 = 0. Since the coefficients αi are

all positive, it follows that
n
∑

i=1

ai(w
j)i = 0, ∀j = 1, ..., s + 1. This implies that

p
∑

i=1

ai(w
j)i = 0,

∀j = 1, ..., s + 1, which contradicts Op 6∈ int conv{proj w1, ...,proj ws+1}. Therefore (7) is

satisfied and this implies proper separation between C and S. �
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Theorem 2.2. C and S are linearly separable, if and only if Condition 2.1 holds. The

separation is proper if 0 ≤ p ≤ s.

Proof. If. In the proof of the sufficiency we will consider three different cases.

(A) p = 0. C is a convex body and thus, obviously, (5) implies linear separation (even proper)

between C and S.

(B) 0 ≤ s ≤ p−1. Let BC and BS be bases for aff C and aff S, respectively; dim BC = n−p,

dim BS = s and dim (BC ∪BS) ≤ n−p+s ≤ n−1. This shows that there exists a hyperplane

of Rn which contains C and is parallel to aff S, so that separation holds.

(C) 1 ≤ p ≤ s. If C⊥ is a coordinated subspace, then by Lemma 2.1 it results that C

and S are linearly separable and, moreover, that the separation is proper. If C⊥ is not a

coordinated subspace, then by its definition we have that there exists a suitable rotation ρ

which transforms C into a cone Cρ such that (Cρ)⊥ is a coordinated subspace and, after

having applied the rotation ρ, by Lemma 2.1 we obtain (proper) separation between C and

S.

Only if. By assumption, ∃a ∈ Rn \ {O} and b ∈ R, such that

〈a, x〉 ≥ b, ∀x ∈ C and 〈a, y〉 ≤ b, ∀y ∈ S.

Since O ∈ cl C, we can put b = 0. Set H0 := {x ∈ Rn : 〈a, x〉 = 0}. If no set of s + 1 affinely

independent vectors of S exists, such that (4) is satisfied, then the thesis is trivial. Let us

assume that there exists a set {z1, ..., zs+1} of affinely independent vectors of S such that (4)
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holds while (5) is not valid, i.e.

O ∈ ri conv {proj z1, ...,proj zs+1}, (8)

and

(ri C) ∩ ri conv {z1, ..., zs+1} 6= ∅. (9)

Let z̄ belong to the left-hand side of (9); thus there exist αi > 0, i = 1, ..., s+1 with
s+1
∑

i=1

αi = 1

such that z̄ =
s+1
∑

i=1

αiz
i ∈ ri C. From z̄ ∈ri C we have proj z̄ = O and from (8) we have that

there exists J ⊆ {1, ..., s + 1} with card J = p + 1 such that proj zi 6= O for i ∈ J . Therefore,

it results proj z̄ = proj (
s+1
∑

i=1

αiz
i) =

s+1
∑

i=1

αiproj zi =
∑

i∈J

αiproj zi = O. Since z1, ..., zs+1 ∈ S,

then 〈a, zi〉 ≤ 0, i = 1, ..., s + 1 and hence 〈a,
s+1
∑

i=1

αiz
i〉 ≤ 0. On the other hand, z̄ ∈ ri C and

thus 〈a,
s+1
∑

i=1

αiz
i〉 ≥ 0. It follows z̄ ∈ H0. From z̄ ∈ ri C and C convex, we have that ∃βi > 0,

i = 1, ..., n − p + 1 with
n−p+1

∑

i=1

βi = 1 and ∃ki ∈ C, i = 1, ..., n − p + 1 affinely independent,

such that z̄ =
n−p+1

∑

i=1

βik
i. Since z̄ ∈ H0, then

n−p+1
∑

i=1

βi〈a, ki〉 = 0, which implies 〈a, ki〉 = 0,

i = 1, ..., n − p + 1. Thus, conv {k1, ..., kn−p+1} ⊆ H0 and, consequently, C ⊆ H0; it follows

that a ∈ C⊥. Moreover, from S ⊆ H− we have proj S ⊆ H−. Using O = proj z̄, we obtain

〈a,O〉 = 〈a,proj z̄〉 = 〈a,
s+1
∑

i=1

αiproj zi〉 =
s+1
∑

i=1

αi〈a,proj zi〉.

Since αi > 0, i = 1, ..., s + 1, we get 〈a,proj zi〉 = 0, i = 1, ..., s + 1; hence we have also

{proj z1, ...,proj zs+1} ⊆ H0 and, obviously, conv {proj z1, ...,proj zs+1} ⊆ H0. Let us

denote by B(On, ε) an open ball of center On and radius ε > 0 in Rn such that dim B(On, ε) =
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p. From (8) we have that ∃ ε̄ > 0 such that

B(On, ε̄) ⊆ conv {proj z1, ...,proj zs+1} ⊆ H0,

i.e. 〈a, y〉 = 0, ∀y ∈ B(On, ε̄). By assumption a 6= O; hence, for γ := ε̄
‖a‖ > 0, it turns out

ȳ := 1

2
γa ∈ B(On, ε̄). Consequently, we have

0 = 〈a, ȳ〉 =
γ

2
〈a, a〉 =

γ

2
‖a‖2,

which contradicts the assumption a 6= O. �

A classic result about separation and proper separation between convex sets is given by

the following theorem (see Theorem 2.39 of [9]).

Theorem 2.3. Two nonempty, convex sets C1 and C2 in Rn are linearly separable, if and

only if O /∈ int (C1 − C2). The separation must be proper if also int(C1 − C2) 6= ∅.

Remark 2.4. Obviously

O /∈ int(conv S − C) (10)

is equivalent to Condition 2.1, because both are equivalent to the linear separation between

conv S and the (convex) cone C. Hence, it is necessary to compare such two conditions. The

introduction of Condition 2.1 is motivated by the study of necessary optimality conditions in

constrained optimization by means of the separation approach. In view of applying separation

results to the constrained extremum problem (1), the cone C that we will consider is H :=

{u ∈ R : u > 0}×D. Condition 2.1 is articulated in such a way of distinguish the case where

int C is empty from the case where it is nonempty. Hence, when int C = ∅, Condition 2.1 can
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be used, while (10) cannot. Obviously, if int D = ∅ then also int C = ∅. A particular case

where int D = ∅ is given by (2) with p > 0; in fact, in this case we have D = {Op} ×R
m−p
+ .

Nevertheless, in general, Condition 2.1 does not require that the cone D be the cartesian

product between a suborthant and the origin of its orthogonal complement.

Remark 2.5. Both in Theorem 2.2 and Theorem 2.3 there is a sufficient condition for proper

separation. First of all, observe that the sufficient condition int (conv S − C) 6= ∅ implies

0 ≤ p ≤ s; in fact, if this double inequality does not hold, then p ≥ s + 1 > 0 so that

int (conv S − C) = ∅. In general, the converse implication does not hold, as can be easily

shown by choosing C = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 ≥ 0, x3 = 0} and S = {(x1, x2, x3) ∈

R
3 : x1 = −x2, x3 = 1}. Nevertheless, in this example, the distance between S and C is

positive and this implies the strict separation, and hence, trivially, the proper separation. A

different example could be the one where C = {(x1, x2, x3) ∈ R
3 : x1 > 0, x2 ≥ 0, x3 = 0} and

S = {(x1, x2, x3) ∈ R3 : x1 = −x2, x3 = 0}; also this case is not very interesting, since it is

enough to consider the smallest linear subspace containing both S and C and there Theorem

2.3 does apply. No other cases are included in the condition 0 ≤ p ≤ s and not in the condition

int (conv S − C) 6= ∅, as it is proved in the next proposition.

Proposition 2.6. Let us suppose that C and S are linearly separable and moreover that

0 ≤ p ≤ s and int (conv S − C) = ∅. Then one of the following conditions holds:

(i) d(conv S, C) > 0 and hence the separation between S and C is strict;

(ii) the smallest linear subspace containing conv S and C has dimension < n and in this
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subspace int (conv S − C) 6= ∅.

Proof. If d(conv S, C) > 0, then (i) is proved. Hence, let us suppose d(conv S, C) = 0.

Since int (conv S − C) = ∅, we have that s < n and n − p < n. These two inequalities

and d(conv S, C) = 0 imply that the smallest linear subspace containing conv S and C has

dimension k < n and dim S = k or dim C = k. Therefore, we obtain int (conv S −C) 6= ∅ in

the subspace. �

3 Regular separation between a set and a face of a cone

As already observed, the separation approach based on the analysis in the image space can be

applied to the study of necessary optimality conditions for the constrained extremum problem

(1). In this approach, the image Kx̄ is replaced by a suitable approximation of Kx̄, as, for

example, its linearization or, more generally, its homogenization [3]. If the approximation of

Kx̄ contains Hu, then it can happen that the existence of a minimum point of (1) does not

imply the existence of Lagrange multipliers; in other words, a necessary optimality condition

is not fulfilled in correspondence of a minimum point. A condition which guarantees the

existence of Lagrange multipliers is called regularity condition (or constraint qualification if

the condition does not involve the objective function).

In [4] Giannessi states a special separation theorem, namely a disjunctive separation be-

tween a face F of a convex cone C and a set S by means of a hyperplane which does not

contain the face; referring to the above problem, such a separation will be called regular (with

respect to the face F ). In this section, we will generalize to the nonconvex case the results
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established by Giannessi in [4].

Let us consider Theorem 2.2.7 of [4].

Theorem 3.1. Let C ⊆ Rn be a nonempty and convex cone, with apex at O /∈ C such that

C + cl C = C, and F be any face of C. Let S ⊆ R
n be nonempty with O ∈ cl S and such

that S − cl C is convex. F is contained in every hyperplane which separates C and S, if any,

if and only if

F ⊆ TC(S − cl C),

where TC(S − cl C) is the tangent cone to S − cl C at O.

Theorem 3.1 assumes the convexity of S − cl C. The following example shows that if we

remove such an assumption, then the necessity in the theorem does not hold.

Example 3.2. Let C be the following convex cone in R3:

C = {x ∈ R3 : x1 > 0, x2 = 0, x3 = 0}

and

S = {x ∈ R3 : x1 = x2 ≥ 0, x3 = −x2
1 − x2

2}∪

{x ∈ R3 : x1 = −x2 ≥ 0, x3 = −x2
1 − x2

2}.

Choose F = C. Obviously S and S − cl C are not convex. The plane H0 = {x ∈ R3 : x3 = 0}

is the unique plane which separates C and S and it contains the face F , nevertheless F is not

contained in TC(S − cl C).
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In order to extend Theorem 3.1 to nonconvex case, we have to consider TC(conv (S−cl C))

instead of TC(S − cl C). Before giving the result that extend Theorem 3.1, let us state a

preliminary property by means of the following lemma.

Lemma 3.3. Let C ⊆ R
n be a nonempty and convex cone with apex at O and S be a

nonempty subset of Rn with O ∈ cl (S − cl C). The following statements are equivalent:

(i) a hyperplane separates C and S;

(ii) the same hyperplane separates C and TC(conv (S − cl C)).

Proof. (i) ⇒ (ii) Let H0 be any hyperplane which separates C and S. By Lemma 2.2.1 of [4],

we have that H0 separates C and S − cl C and hence, obviously also C and conv (S − cl C);

i.e., C ⊆ H+ and conv (S − cl C) ⊆ H−. Now we will prove that conv (S − cl C) ⊆ H−

implies TC(conv (S− cl C)) ⊆ H−. Let t ∈ TC(conv (S− cl C)); then there exist a sequence

{xn}n≥1 ⊆ conv (S − cl C) with lim
n→+∞

xn = 0 and a sequence {αn}n≥1 ⊂ R+ \ {0} such that

lim
n→+∞

αnxn = t. Since xn ∈ conv (S − cl C), ∀n ≥ 0, then 〈a, xn〉 ≤ 0, and hence 〈a, αnxn〉 ≤

0, ∀n ≥ 0. Letting n → +∞ we obtain 〈a, t〉 ≤ 0 and thus TC(conv (S − cl C)) ⊆ H−.

(ii) ⇒ (i) This is an obvious consequence of the inclusions S ⊆ S − cl C ⊆ conv (S − cl C) ⊆

TC(conv (S − cl C)). �

Now, we give the generalization of Theorem 3.1 to nonconvex case.

Theorem 3.4. Let C ⊆ R
n be a nonempty and convex cone with apex at O and S be a

nonempty subset of Rn with O ∈ cl (S − cl C). Let F be any face of C. The following

statements are equivalent:
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(i) There exists at least one hyperplane which separates S and C and does not contain F ;

(ii) F * TC(conv (S − cl C)).

Proof. (i) ⇒ (ii) The hypotheses imply the existence of a hyperplane of equation H0 :=

{x ∈ Rn : 〈a, x〉 = 0}, such that 〈a, x〉 ≤ 0, ∀x ∈ S and 〈a, x〉 ≥ 0, ∀x ∈ C and that there

exists f̄ ∈ F with 〈a, f̄〉 > 0.

Ab absurdo, suppose F ⊆ TC(conv (S − cl C)). From Lemma 3.3 we have that H0 separates

also TC(conv (S − cl C)) and C, i.e. 〈a, x〉 ≤ 0, ∀x ∈ TC(conv (S − cl C)). Thus also

〈a, f〉 ≤ 0, ∀f ∈ F , which contradicts the hypothesis.

(ii) ⇒ (i) From F * TC(conv (S − cl C)) it follows that ∃f0 ∈ F \ TC(conv (S − cl C)).

Since TC(conv (S−cl C)) is closed and convex, then there exists a hyperplane H0 of equation

〈a, x〉 = b with a ∈ Rn\{O} such that 〈a, x〉 ≤ b < 〈a, f0〉, ∀x ∈ TC(conv (S−cl C)). Because

of O ∈ TC(conv (S − cl C)), we can set b = 0 and thus we have

〈a, x〉 ≤ 0 < 〈a, f0〉, ∀x ∈ TC(conv (S − cl C)). (11)

The inclusion S − cl C ⊆ TC(conv (S − cl C)) implies that 〈a, x〉 ≤ 0, ∀x ∈ S − cl C. Now

we prove that 〈a, x〉 ≥ 0, ∀x ∈ C. Ab absurdo, suppose that ∃k ∈ C such that 〈a, k〉 < 0 and

let s ∈ S. Then we have s − αk ∈ S − cl C, ∀α ∈ R+ so that lim
α→+∞

〈a, s − αk〉 = +∞, which

contradicts 〈a, x〉 ≤ 0, ∀x ∈ S − cl C. Therefore H0 separates C and S − cl C; obviously, H0

separates also C and S and from (11) it does not contain F . �

We call the separation between S and C regular with respect to the face F , iff F is not

contained in at least one separating hyperplane.
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Notice that in Theorem 3.4 the tangent cone TC(conv (S − cl C)) can be replaced by

cl cone conv (S − cl C); in fact, if A is a convex set, then TC(A) = cl cone A. Moreover,

observe that in Theorem 3.4 it is not possible to replace TC(conv (S−cl C)) by conv TC(S−

cl C)); in such a case, without the convexity assumption, it may exist a hyperplane which

separates C and TC(S − cl C) but does not separate C and S − cl C. This situation is

illustrated by the following example.

Example 3.5. Let C be the following convex cone in R3 :

C = {x ∈ R3 : x1 > 0, x2 = 0, x3 = 0} and

S = {x ∈ R3 : x1 = x2 ≥ 0, x3 ≤ 0, x3 = (x1 − 1)2 + (x2 − 1)2 − 2}∪

{x ∈ R3 : x1 = −x2 ≥ 0, x3 ≤ 0, x3 = (x1 − 1)2 + (x2 + 1)2 − 2}.

Choose F = C. Obviously S and S − cl C are not convex. The plane H0 = {x ∈ R3 : x3 = 0}

is the unique plane which separates C and S and it contains the face F . It results:

TC(S − cl C) = {x ∈ R3 : x1 = x2, x3 ≤ 0, x3 ≤ −4x1}∪

{x ∈ R3 : x1 = −x2, x3 ≤ 0, x3 ≤ −4x1}.

TC(S − cl C) is not convex and we have that F * conv TC(S − cl C). Moreover, every plane

Ha = {x ∈ R3 : ax1 +x3 = 0}, with 0 < a ≤ 4, separates C and TC(S−cl C) (and hence also

C and conv TC(S − cl C) ), but does not separate C and S and does not contain the face F .

Both in Example 3.2 and 3.5 we have int C = ∅. Similar examples with int C 6= ∅ can

be given by putting C = {x ∈ R3 : x1 ≥ 0,−10x1 ≤ x2 ≤ 0, 0 ≤ x3 ≤ 10x1} and choosing

F ⊂ C, F = {x ∈ R3 : −10x1 ≤ x2 ≤ 0, x3 = 0} ⊂ C .
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4 Concluding remarks

We have considered a generalized format of a constrained extremum problem and we have

stressed the fact that, for the investigation of optimality conditions, it is of fundamental

importance the study of the separation between two suitable sets. In particular, we have

given a condition equivalent to the linear separation between a convex cone C and a generic

set S. Moreover, we have proposed a regularity condition for the linear separation between C

and S; this condition includes also the nonconvex case and it is finalized to the application to

constrained optimization. In fact, given a constrained optimization problem, the application

of the separation results obtained in this work to the convex cone H and the image set Kx̄,

allows to achieve the existence of regular saddle points; i.e., a regularity condition that plays

the role of a sufficient optimality condition [6]. On the other hand, the regular separation can

be applied to a constrained extremum problem also by replacing the image of the problem with

its homogenization. In this alternative approach, it is possible to prove that it is equivalent to

the existence of Lagrangian multipliers with a positive multiplier associated to the objective

function; i.e., to a necessary optimality condition [7].
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