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Abstract

One of the major virtues of panel data models is the possibility to control for unobserved and
unobservable heterogeneity at the unit (individual, firm, sector...) level, even when this is
correlated with the variables included on the right hand side of the equation. By assuming an
additive error structure, identification of the model parameters spans from transformations
of the data that wipe out the individual component. We propose an alternative identification
strategy, where the equation of interest is embedded in a structural system that properly
accounts for the endogeneity of the variables on the right hand side (without distinguishing
correlation with the individual component or the idiosyncratic term). We show that, under
certain conditions, the system is identified even in the case where no exogenous variable
is available, due to the presence of cross-equation restrictions. Estimation of the model
parameters can rely on an iterated Zellner-type estimator, with remarkable performance
gains over traditional GMM approaches.
Keywords: panel data, identification, cross-equation restrictions.
JEL Codes: C23, C33.

1 Introduction

In this paper we propose a new approach for the identification of linear panel data models of N
units (individuals, firms, countries, regions, etc.) observed over T ≥ 2 time periods:1

yit = x′

itβ + εit, i = 1, ..., N ; t = 1, ..., T (1)

The error term εit is usually decomposed into two independent sources: αi + eit, in which αi

captures unit ‘unobserved heterogeneity’, constant over time and different across units, and eit
is an idiosyncratic component varying over time and across units. We focus on cases in which
the exogeneity of xit is ruled out.2 One of the major virtues of panel data is that they al-
low the identification of β even in cases when the regressors xit are correlated with the error
term. Arellano and Honoré (2001) discusses the identification strategies of linear panel data

∗Department of Economics, Università di Verona, <laura.magazzini@univr.it>
†Department of Statistics, Università di Firenze, <calzolar@ds.unifi.it>
1For simplicity a balanced panel dataset is considered. No differences in results appear with unbalanced panel

with no attrition, where a different number of observation, Ti, is available (at random) for each unit. Our focus
is on the case where N is large and T is small.

2Put it differently, we set aside the early distinction between the fixed effect and random effect approaches
(Mundlak, 1978), and focus the discussion on the identification of β in cases in which xit is correlated with the
error term (αi or eit – or its past values – or both).
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models under various assumptions on the structure of correlation. In the simple case in which
xit is correlated with αi, identification is achieved imposing a “strict exogeneity” assumption,
i.e. E∗(eit|xi1, xi2, ...xiT ) = 0 (with E∗ denoting a linear projection), and considering a transfor-
mation of the data that removes the αi from the equation (either within group or first difference
transformation). The strict exogeneity assumption also assures identification of partial adjust-
ment models when T ≥ 3 (Arellano and Honoré, 2001). If xit is treated as a predetermined
variable, identification spans from restrictions on the correlation structure of eit, namely, lack
of autocorrelation is imposed on eit (Arellano and Honoré, 2001; Anderson and Hsiao, 1981;
Anderson and Hsiao, 1982; Arellano and Bond, 1991; Ahn and Schmidt, 1995 – see also Arellano
and Bover, 1995; Blundell and Bond, 1998).
In this paper we propose an alternative strategy that treats the linear panel data model in (1)
as a system of T equations over N observations (Bhargava and Sargan, 1983). In Section 2 we
show that, under certain conditions, the system is identified even in the case when no exogenous
variable is available (besides the constant term). Identification is achieved trough cross-equation
restrictions, spanning from the assumption of time-invariant coefficients in the equation of interest
(Wegge, 1965; Kelly, 1975). In Section 3 a Monte Carlo experiment is undertaken to show that,
when the detected identification conditions are met, a general pattern of endogeneity is allowed
for between the regressors included in the equation and the error term (both the idiosyncratic
component αi, and the individual component eit), and estimation can rely on iterated Zellner-
type estimation. Even though the discussion in the paper focuses on the static framework, the
identification conditions are easily generalized to dynamic models.

2 Identification without exogenous variables

Let us consider the static linear panel data model of equation (1): yit = x′

itβ+εit, with i = 1, ..., N
and t = 1, ..., T .3 This can be written as a system of T equations and N observations, in which
coefficients are assumed to be constant over time and across units (Bhargava and Sargan, 1983).















yi1 = x′

i1β + εi1
yi2 = x′

i2β + εi2
. . .
yiT = x′

iTβ + εiT

(2)

If x is exogenous, i.e. there is no contemporaneous correlation between xit and εit, the vector of
coefficient β is identified, and estimation can be easily performed using standard methodology.
More interestingly, consider the case when the right hand side variable is endogenous, i.e. xit

and εit are allowed to be correlated.4 The system in (2) is no longer identified, unless a set
of identifying exogenous variables exists. In case those variables exist,5 we can write the full
structural system of equations as a system of “simultaneous” equations, simultaneity meaning
“same individual”, rather than “same time”. In order to simplify the notation consider the case
when xit is a scalar and we allow the model to contain an intercept.6 We change standard

3Even though the discussion focuses on the static framework, the proposed strategy is easily generalized to
dynamic models, i.e. models in which yit−1 is included in xit.

4Let the reader think of εit as εit = αi + eit, as it is customarily assumed in panel data applications. Note
that we allow xit to be correlated both with αi and eis for some s = 1, ..., T . Furthermore, (even if this is never
discussed in panel data applications) we can relax the assumption that the decomposition of εit into αi and eit
is unique, not imposing lack of correlation between the two error terms (Berzeg, 1979).

5Unlikely in practice, but the discussion is still useful for our proposal.
6The discussion does not change if a set of endogenous variables is considered. Main differences from our

baseline case will be discussed when needed.
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notation in the panel literature in order to resemble the notation that is used in simultaneous
equation systems, i.e. all coefficients are denoted as βc with c a progressive number (c = 1, ..., C
with C the total number of coefficients in the system), and all error terms are denoted as uiE

where E is the number of the corresponding equation (as we have 2T endogenous variables,
E = 1, ..., 2T ; i = 1, ..., N , number of units in the panel dataset):















































xi1 = β1 + zi1β2 + ui1

xi2 = β3 + zi2β4 + ui2

...
xiT = β2T−1 + ziTβ2T + uiT

yi1 = β2T+1 + xi1β2T+2 + ui,T+1

...
yiT = β2T+2T−1 + xiTβ2T+2T + ui,2T

(3)

We assume that zit is exogenous,
7 therefore E[z′ituit] = 0 for t = 1, ..., T ; whereas any pattern of

correlation is allowed between the error terms, as well as between xit and the error terms.
As the coefficient of the relationship between yit and xit is constant over time, the following
restriction holds: β(2T+2τ) = β for each τ = 1, 2, ..., T . If also the intercept in the regression of
yit on xit is not allowed to vary over time, we can add the following restriction: β(2T+2τ−1) = β0

for each τ = 1, 2, ..., T .
The interest is in the conditions that allow us to identify the relationship between yi and xi, i.e.
the parameter β, when z is not observed. This is likely to be the case, because the availability
of external instruments is severely limited in empirical applications. We show that, if further
(reasonable in some cases) restrictions are imposed on the system parameters, identification of
β does not rely on availability of the external instruments z. β can be identified even if z is not
available.
Let us start with the case T = 2.8 The full system can be written as:















xi1 = β1 + zi1β2 + ui1

xi2 = β3 + zi2β4 + ui2

yi1 = β5 + xi1β6 + ui3

yi2 = β7 + xi2β8 + ui4

(4)

In matrix notation we have:
BYi + CZi = Ui (5)

with Yi = (xi1, xi2, yi1, yi2)
′, Zi = (1, zi1, zi2)

′, Ui = (ui1, ui2, ui3, ui4)
′,

B =









1 0 0 0
0 1 0 0

−β6 0 1 0
0 −β8 0 1









, C =









−β1 −β2 0
−β3 0 −β4

−β5 0 0
−β7 0 0









(6)

with β6 = β8 = β. If time effects are ruled out, we can also write β5 = β7 = β0.
We ask under which conditions we can identify β when z is not available, i.e. under which
conditions we can recover the value of β from the reduced form coefficients in the case Zi = 1,
i.e. when observations about zi1 and zi2 are not available (and therefore (β1, β2) and (β3, β4) are
not separately identifiable).

7Without loss of generality assume that zi have mean zero.
8General conditions will be set forth in the Section 2.1.
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Put it differently, we ask under which conditions it is possible to identify the coefficients β6 and
β8 (where β6 = β8 = β) in the following system:















xi1 = β1 + ũi1

xi2 = β3 + ũi2

yi1 = β5 + xi1β6 + ui3

yi2 = β7 + xi2β8 + ui4

(7)

with ũi1 = zi1β2 + ui1 and ũi2 = zi2β4 + ui2. Without further restrictions the system (7), is not
identified. However, as cross-equations constraints are available, these could aid identification
(Wegge, 1965; Kelly, 1975).
In matrix form, the system (7) can be written as BYi + C·1Zi = Ui, with C·1 denoting the first
column of C and Zi = 1 (all the other matrices and vectors as previously defined). The reduced
form parameters can be obtained as:

Π·1 = B−1C·1 =









1 0 0 0
0 1 0 0
β6 0 1 0
0 β8 0 1

















−β1

−β3

−β5

−β7









=









−β1

−β3

−β1β6 − β5

−β3β8 − β7









(8)

As β6 = β8, we have a system of 4 equations in 5 unknowns:

(i) π11 = −β1

(ii) π21 = −β3

(iii) π31 = −β1β − β5

(iv) π41 = −β3β − β7

Without further restrictions the system is not identified. However, if time effects are ruled out,
we can also assume

(v) β5 = β7 = β0,

and the system is identified if β1 6= β3.
9 If these conditions are met, availability of exogenous

variables z is not necessary for the identification of β.
This condition can be recovered by exploiting the rank condition in Wegge (1965) and Kelly
(1975). It is possible to show that the cross-equation constraints in the equations of interest
allow identification of the parameter of interest β in the full system (7), if further assumptions
are made either on the time evolution of y or on the absence of homoschedasticity.10

In the next Section, we set forth the identifiability conditions in the general case. The Monte
Carlo experiment reported in Section 3 will allow us to compare the performance of Zellner-type
estimation of the system (7) with the case when the external instruments are available, as well
as with respect to traditional estimation methods.11

9See Appendix A for details.
10As for estimation, the argument by Lahiri and Schmidt (1978) guarantees consistency of an iterated SURE,

because the right hand side variable in the first equation is exogenous (the first equation only contains a constant
term on the right hand side) and the model is linear. However, as the system is misspecified (z are omitted),
the estimates are not equivalent to the ML estimation of the full system (i.e. the system that also exploits the
information in the variable z). Consistency is nonetheless achieved as, by assumption, the omitted variable (z) is
truly exogenous.

11 From a practical point of view, the model is easily estimated by standard econometric software by iterating
to convergence a FGLS estimator of the reduced system, imposing proper cross-equation constraints. Of course,
convergence is not guaranteed. Line search maximization of the likelihood, analogous to Dagenais (1978) and
Calzolari et al. (1987) would be helpful in order to improve convergence.
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2.1 Identifiability criteria in a general context

The works of Wegge (1965) and Kelly (1975) set forth a necessary and sufficient condition for the
identification of a simultaneous system of equations. Let us consider the general case of a system
of M equations involving K variables. Adopting Wegge (1965)’s formulation and notation,
the system can be written as ui = Awi, with ui a M -component column vector of structural
disturbances with variance covariance matrix Σ, A = {aij}, i = 1, ..,M , j = 1, ...,K, and wi a
K-component vector of variables (both endogenous and exogenous variables are included in wi).
As the total number of variables in the model needs to be greater than the number of endogenous
variables, we require K > M .
Wegge (1965) considers the general case in which the model parameters (both the components
of the matrix A or the components of the variance covariance matrix of the error terms Σ) are
subject to a priori restrictions (i.e. continuous differentiable functions). Kelly (1975) specifies
the general approach to the case of linear cross-equation constraints. In this section we apply the
identifiability conditions proposed by Wegge (1965) and Kelly (1975) to the panel data context.12

Let us consider the matrix P = [A Σ]. The vector of parameters can be built by considering the
vectorization of matrix P , vP (i.e. vP is a row vector whose elements are taken row-wise from
P ):13

vP = [a11, ..., a1K , σ11, ..., σ1M , a21, ..., a2K , σ21, ..., σ2M , ..., aM1, ..., aMK , σM1, ..., σMM ]

The a priori restrictions (normalizing conditions, exclusion restrictions, and cross-equation con-
straints) can be written as

ϕr(vP ) = 0 with r = 1, ..., R (9)

The true set of parameters v0P satisfies the system: ϕr(v
0
P ) = 0 (r = 1, ..., R).

Let us consider a non-singular matrix F , and the transformed system FAwi = FA. The
transformed system needs to satisfy the a priori restrictions, i.e. ϕr(vFP ) = 0, in which
FP = [FA FΣF ′]. The system is identified if the only admissible matrix is F = I.
Wegge (1965) provides a solution based upon the rank of the R×M2 Jacobian matrix

J(F ) =

[

∂ϕr(FP )

∂vF

]

(10)

in which vF denotes the row-vectorization of matrix F .
If the matrix J(I) has rank M2, then the system is identified.14

In the case of panel data with T available time periods, the ‘restricted’ system (7) can be written
as:















































xi1 = β1 + ũi1

xi2 = β3 + ũi2

...
xiT = β2T−1 + ũiT

yi1 = β2T+1 + xi1β2T+2 + ui,T+1

...
yiT = β2T+2T−1 + xiTβ2T+2T + ui,2T

(11)

with ũit = zitβ2t + uit (t = 1, ..., T ), M = 2T endogenous variables, and K = 2T +1 variables in
the system.

12Please refer to Wegge (1965) and Kelly (1975) for details and proofs.
13The variance covariance matrix Σ is assumed to be symmetric, i.e. σij = σji. Further, restrictions are

assumed to be symmetric in the arguments σij and σji (see Wegge, 1965 for details).
14Therefore the number of restrictions R needs to be at least equal to M2.
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For the general case of T observations, the following constraints can be imposed on the matrix
of coefficients:

(a) 2×T normalization constraints (aii−1 = 0, i = 1, ...,M), one for each endogenous variable
in the system;

(b) [T + (T − 1)]× T + [(T − 1) + (T − 1)]× T exclusion restrictions, as the T equations that
characterize x exclude all the y (T ) and the x in the other time periods (T − 1); and the
T equations that characterize y exclude all the y and x in the other time periods (T − 1 in
both cases);

(c) (T − 1) cross-equation constraints as β2T+2τ = β for each τ = 1, ..., T (the coefficient of
the variable x is constant over time).15

Overall, the number of constraints (a) + (b) + (c) sums to 4T 2 − 1, whereas at least 4T 2

constraints would be needed to achieve identification.16

Therefore, we need to impose at least one more constraint. Two options are viable.
First, if time evolution independent from x can be excluded in y, T−1 cross-equation restrictions
arise in system (11), i.e. we also have:17

(d) (T − 1) cross-equation constraints on β2T+2τ−1, τ = 1, ..., T : β2T+1 = β2T+3 = ... =
β2T+2T−1.

therefore allowing identification.
As a drawback, the rank of the matrix J(I), built exploiting the constraints (a) to (d), depends
on the value of the parameters β2t−1, t = 1, ..., T .18

In particular, if the condition β2T+2t−1 = β2T+2s−1 (t 6= s) is imposed on the system parame-
ters,19 then the condition β2t−1 6= β2s−1 is needed for system identification.
As an alternative option, the structure of the variance covariance matrix can be exploited. Under
an assumption of homoschedasticity in αi and eit, the following T − 1 conditions hold:

(d’) (T − 1) cross-equation constraints on the variance of the error term of the equation de-
scribing y: V (ui,T+1) = V (ui,T+2) = ... = V (ui,T+T ).

In this case, the rank of the matrix J(I) depends on the relationship between the error terms in
ũis and in ui,T+t at different points in time. Particularly, if the condition V (ui,T+t) = V (ui,T+s)
(t 6= s) is imposed, then E(ũisui,T+s)− E(ũitui,T+t) 6= 0 is needed for identification.

15Let us denote k the number of endogenous regressors included in the model among the explanatory variables
(i.e. excluding y). In the case of k > 1 endogenous variables we have: (a) (k+1)T normalization constraints, (b)
kT [T +(k−1)T +(T −1)]+T [k(T −1)+(T −1)] exclusion restrictions; (c) k(T −1) cross-equation restrictions on
β, for a total of (k+1)2T 2 − k restrictions in which at least (k+1)2T 2 would be needed to achieve identification.

16The number of exclusion restrictions available is different if a dynamic framework is considered. Particularly,
when the AR(1) specification is considered, i.e. yit = γyit−1 + x′

itβ + εit, the number of restrictions is equal to
the number of restrictions we count in the static framework minus T −1 exclusion restrictions due to the presence
of yit−1 in the equations (t = 2, ...T ). T −2 additional restrictions are available as the autoregression coefficient γ
is constant over time. As a result, when xit is a scalar, the sum of exclusion restrictions in a dynamic framework
is 4T 2 − 2.

17Therefore if k > 1, we need k ≤ T − 1 to achieve consistency, as we need the number of constraints to be at
least (k + 1)2T 2: (k + 1)2T 2 − k + (T − 1) ≥ (k + 1)2T 2.

18As an example, when T = 2 in order to achieve identification of the system we need to impose that the
intercepts of the equation linking y to x does not change over time. The matrix J(I) is of full rank if β1 −β3 6= 0,
i.e. we are imposing time variation in x, whereas time variation (independent of x) is not allowed in y. See
Appendix A for details.

19Recall that β2T+2t−1 represent the intercept of the equation that relates yit to xit.
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3 Estimation performance: Monte Carlo experiments

In this Section we perform a set of Monte Carlo experiments in order to show that, in cases
when the conditions set forth in Section 2 are satisfied, Zellner-type estimation of the system
of equations (11) can also provide performance gains in finite sample with respect to the most
widely adopted estimation techniques.
We will take into consideration a linear static model in which both the strict exogeneity assump-
tion and the orthogonality condition are violated, as the regressor is contemporaneously related
to both the individual effect and the idiosyncratic component, and it exhibits a trend over time.
Estimation is performed using fixed effect (FE) estimator (expected to be biased), GMM esti-
mators that properly account for the endogeneity issue, along with a Zellner-type estimator of
the system of equations (11), labeled SIM-EQ. Full Maximum Likelihood (FIML) estimator is
reported as a benchmark (infeasible, as it considers full observability of the instruments z).
The dependent variable is defined as in equation (1) with εit = αi+eit with αi and eit distributed
as a N(0, 1) independent of each other. The data generating process is set as follows:

xit = γ1 + γ2zit + αi + eit + wit (12)

yit = β1 + β2xit + αi + eit, i = 1, ..., N ; t = 1, ..., T (13)

where β1 = β2 = γ1 = γ2 = 1, zit is a strictly exogenous variable exhibiting a trend over time
(zit = 1 + t + ωit), and wit and ωit are independent and normally distributed with mean zero
and unit variance. As a result xit is contemporaneously related to αi and eit.
When z are not observable, the FE estimator will provide biased estimates of the regression
coefficient β2, whereas it is possible to solve the endogeneity bias by applying a GMM framework.
Results of Monte Carlo experiments are reported in Table 1. The estimation method based on
the proposed identification strategy is labeled ‘SIM-EQ’, whereas ‘GMM-AB’ and ‘GMM-BB’
denote respectively the GMM approach proposed by Arellano and Bond (1991) and Blundell and
Bond (1998).20

The Table also reports the Monte Carlo mean and standard error of the FIML estimator that
considers the full structure of the system of equations, i.e. it also exploits the information about
zit (therefore, it is an “infeasible FIML”). This is the efficient estimator when information about
zit is available (and the error terms are normally distributed). Unfortunately, this is unlikely to
be the case with real data, in which the availability of external instruments is usually severely
limited, and the availability of repeated observations on the same unit is a source of “internal”
instruments. Still, it provides an useful benchmark to compare the performance of the different
estimators.

FE GMM-AB GMM-BB SIM-EQ FIML
T = 3 Mean 1.249 .9974 1.003 .9998 .9998

Std.Dev. .0094 .0534 .0479 .0208 .0146
T = 5 Mean 1.182 1.001 1.002 .9999 .9999

Std.Dev. .0059 .0168 .0162 .0101 .0086
T = 10 Mean 1.082 1.000 1.001 1.000 1.000

Std.Dev. .0028 .0045 .0044 .0035 .0034

Table 1: Mean and standard error of Monte Carlo experiments: estimates of β2 (true value equal
to 1), N = 1, 000.

20See also Arellano and Bover (1995). As error terms are homoschedastic, first stage estimates are considered.
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FE GMM-AB GMM-BB SIM-EQ FIML
T = 3 Mean 1.126 .9986 .9986 .9999 .9998
ρ = 0.5 Std.Dev. .0080 .0307 .0199 .0108 .0095
T = 5 Mean 1.067 1.000 1.001 .9998 .9998
ρ = 0.5 Std.Dev. .0041 .0089 .0067 .0049 .0047
T = 10 Mean 1.023 1.000 1.000 1.000 1.000
ρ = 0.5 Std.Dev. .0017 .0024 .0022 .0017 .0017

T = 3 Mean 1.047 1.000 .9991 1.000 1.000
ρ = 0.9 Std.Dev. .0061 .0172 .0101 .0068 .0062
T = 5 Mean 1.015 1.000 1.000 .9999 .9999
ρ = 0.9 Std.Dev. .0025 .0042 .0030 .0026 .0025
T = 10 Mean 1.003 1.000 1.000 1.000 1.000
ρ = 0.9 Std.Dev. .0007 .0008 .0008 .0007 .0007

Table 2: Mean and standard error of Monte Carlo experiments: estimates of β2 (true value equal
to 1), x follows an autoregressive structure, N = 1, 000

As expected, the FE approach provides biased estimates, with the magnitude of the bias decreas-
ing as T increases. When endogeneity is properly accounted for, the bias disappears.21 However,
the SIM-EQ estimator exhibits lower standard errors than GMM-AB and GMM-BB. In the case
of T = 10, system estimator matches the performance of the “infeasible FIML” estimator that
also employs additional information (i.e. the instruments zit).
As a second experiment, we consider an autoregressive process for the generation of xit:

xit = ρxit−1 + 1 + zit + αi + eit + wit (14)

The first observation is generated as: xi0 = (1 + αi)/(1 − ρ) + (wi0 + ei0)/
√

1− ρ2, and then
discarded during estimation. Results of Monte Carlo experiments are reported in Table 2. We
consider two different values of the autoregressive parameter: ρ = 0.5, 0.9. Results from the
previous experiment are largely confirmed.
In this case the “infeasible FIML” estimator considers the relationship between xit and xit−1 and
zit, as well as the equation of xi0. In this framework, the performance of the SIM-EQ estimator
is better the larger is the value of ρ, as the loss of information due to ignoring the presence of
xit−1 as a determinant of xit is smaller when the autocorrelation parameter is larger (the larger
ρ, the larger the information contained in xit−1 that is ‘passed’ to xit).

3.1 Dynamic case

Consider the dynamic model

yit = γyit−1 + αi + eit = γyit−1 + εit (15)

in which we suppose that yit is observed for t = 0, 1, ..., T (i.e. T + 1 observations on y are
available).

21When running GMM estimation, all available instruments are considered. Estimation is performed using
own-written programs in Fortran 77. Also STATA has been used, and the command xtabond2 is considered for
GMM estimation (Roodman, 2006). The SIM-EQ strategy is easily implemented in STATA using the sureg

command with suitable constraints on the model parameters.
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Of course, if αi = 0 for each i and eit is not correlated over time, the system of T equations
defined by (15) is recursive and therefore identified (e.g., Lahiri and Schmidt 1978, switching the
role of i and t).
If αi 6= 0, then we can expect yi0 to be endogenous due to correlation with αi. Endogeneity of yi0
can also arise in cases when eit is autocorrelated over time. In both cases, the variance-covariance
matrix of ei is full and identification of the system is not ensured (e.g., Greene 2003, ch. 15).
By exploiting the cross-equation constraints, coming from the time-invariant coefficient γ, it is
possible to show that identification is achieved also in this case if the mean of yi0 is different
from zero (see Appendix B for details).
The intuition in this case is to add an equation for the linear projection of the first observation

yi0 = γ0 + εi0 (16)

If γ0 6= 0 the system is identified.22 Observability of yi0 and yi1 is enough for identification of γ.
In a more general case with intercept

yit = µ+ γyit−1 + αi + eit = µ+ γyit−1 + εit (17)

with an endogenous yi0, at least T = 2 (observability of yi0, yi1 and yi2) is needed for identi-
fication. Still, equation (16) is added to the system. In Appendix B we show that the system
defined by (16) and (17) for t = 1, ..., T is identified if γ0 6= µ/(1− γ).

22See also Calzolari and Magazzini (2011).
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A Identification when T=2

The ‘restricted’ system is (see text – system 7):















xi1 = β1 + ũi1

xi2 = β3 + ũi2

yi1 = β5 + xi1β + ui3

yi2 = β7 + xi2β + ui4

(18)

In Wegge (1965) and Kelly (1975) notation, the structural system of equations can be written
as:

Awi = ui (19)

where wi = [xi1, xi2, yi1, yi2, 1]
′, ui = [ũi1, ũi2, ui1, ui2]

′, and

A =











a11 a12 . . . a15
a21 a22 . . . a25
...

...
. . .

...
a41 a42 . . . a45











=









1 0 0 0 −β1

0 1 0 0 −β3

−β 0 1 0 −β5

0 −β 0 1 −β7









(20)

In order to apply the identification conditions set forth in Wegge (1965) and Kelly (1975), we
need at least M2 conditions, where M is the number of endogenous variables in the system (in
our case equal to 4: xi1, xi2, yi1, yi2). The available restrictions are: (a) 4 normalizing conditions:
aii − 1 = 0, i = 1, ..., 4, corresponding to the ones in the matrix A, (b) 10 exclusion restrictions,
corresponding to the zeros in the matrix A: a12 = a13 = a14 = 0, a21 = a23 = a24 = 0,
a32 = a34 = 0, and a41 = a43 = 0; (c) one cross equation restriction spanning from standard
panel data modeling in which the parameter β of the relationship between y and x is assumed
to be constant over time: a31 = a42 or a31 − a42 = 0. The total number of available restrictions
is 15, whereas the rank condition requires at least 16 restrictions.
In order to identify the system one additional condition is needed, and we rule out trend in y
(once x is accounted for): (d) a35 = a45.
By building the Jacobian matrix of restrictions J as described in Kelly (1975),23 that specifically
consider the case of linear cross-equation constraints, a necessary and sufficient condition for
identification (named Wegge’s criterion in Kelly’s paper), is that the rank of J equals M2.

23Please refer to the original paper by Wegge (1965) and Kelly (1975) for details about the computation of the
Jacobian matrix.
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In our case, matrix J (M2 ×M2 = 16× 16) is:24

J(I) =

























































1 0 −β 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −β 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 −β 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −β 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −β 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −β 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 −β 0 0 −1 0 β
0 0 0 0 0 0 0 0 −β1 −β3 −β0 −β0 β1 β3 β0 β0

























































By applying the Sarrus rule, it is possible to show that the det(J) = β1 − β3, therefore J is full
rank (and the system parameters are identified) unless β1 = β3.
Let us consider the case when we allow a35 and a45 to differ and the additional condition to
achieve identification is built on the basis of the variance covariance matrix of the error terms in
the system.
Denote σjk = E(uju

′

k), with u denoting irrespectively u and ũ. We write the condition V (ui3) =
V (ui4) as σ33 = σ44.
Only the last row of the matrix J(I) is affected by the change in the restriction set and it is
changed to:

J(I)[16,·] =
(

0 . . . 0 0 . . . 0 2σ13 2σ23 2σ33 2σ43 −2σ14 −2σ24 −2σ34 −2σ44

)

The condition for full rank of J(I) now becomes σ24 − σ13 6= 0.

B Dynamic modeling

Let us consider the dynamic model

yit = γyit−1 + αi + eit = γyit−1 + εit (21)

Let us start with T = 1, i.e. two observations are available on the dependent variable yi0 and
yi1.
As previous observations on y are not available we are not allowed to write the dynamic equation
that characterizes yi0, however we can consider the linear projection yi0 = γ0+εi0. We investigate
the identification of the following system:

yi0 = γ0 + εi0
yi1 = γyi0 + εi1

(22)

24The row ordering corresponds to one of constraints (a)-(d) listed in the text.
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By using the notation in Wegge (1965) and Kelly (1975) we can write the system as Awi = εi
where

A =

(

1 0 −γ0
−γ 1 0

)

wi = (yi0, yi1, 1)
′ εi = (εi0, εi1)

′

The matrix J(I) introduced in Appendix A is:

J(I) =









1 −γ 0 0
0 0 0 1
0 1 0 0
0 0 −γ0 0









As det(J(I)) = −γ0, the system (22) is identified if γ0 6= 0.
Now let us consider the case in which we allow an intercept in the model. In this case, if we are
not willing to impose covariance restrictions, at least T = 2 is needed to achieve identification.
We consider the system:

yi0 = γ0 + εi0
yi1 = µ+ γyi0 + εi1
yi2 = µ+ γyi1 + εi2

(23)

We let wi = (yi0, yi1, yi2, 1) and

A =





1 0 0 −γ0
−γ 1 0 −µ
0 −γ 1 −µ





We have:

J(I) =





























1 −γ 0 0 0 0 0 0 0
0 0 0 0 1 −γ 0 0 0
0 0 0 0 0 0 0 0 1
0 1 −γ 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −γ 0
0 0 0 1 −γ 0 0 −1 γ
0 0 0 −γ0 −µ −µ γ0 µ µ





























with det(J(I)) = γ0(1− γ)− µ, that is, the system (23) is identified if γ0 6= µ/(1− γ).
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