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Abstract. This paper is concerned with the problem of ranking and quantifying the extent of 

deprivation exhibited by multidimensional distributions, where the multiple attributes in 

which an individual can be deprived are represented by dichotomized variables. To this end 

we first aggregate deprivation for each individual into a “deprivation count” indicating the 

number of dimensions for which the individual suffers from deprivation. Then we compare 

distributions of deprivation counts through summary measures of deprivation, by drawing on 

the rank-dependent social evaluation framework (Sen 1974, Yaari 1987). This approach 

proves to allow decomposition of the summary measures into extent of and dispersion in the 

distribution of multiple deprivations. To provide a normative justification of the proposed 

deprivation measures, an intervention principle affecting the association between the different 

deprivation indicators is adopted. Moreover, we introduce a family of measures of 

concentration in the distribution of deprivation experienced by the population. Concentration 

is defined to occur if dispersion in the observed distribution of deprivation is higher than the 

dispersion attained when the single deprivation indicators are treated as independent random 

variables, under the constraint of unchanged marginal distributions. 
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1. Introduction 
 

Since the seminal papers of Kolm (1968) and Atkinson (1970), a flourishing literature has 

been trying to extend the normative approach of inequality measurement to the 

multidimensional case. We address the reader to Weymark (2004) and Trannoy (2006) for 

overviews on multidimensional inequality indices and partial orderings, respectively. In this 

paper we focus on multidimensional poverty measurement, in the specific case where the 

multiple attributes in which an individual can be deprived are represented by dichotomized 

variables. This practice is conventionally adopted by statistical agencies accounting for 

“material deprivation”, defined as having or not basic goods or performing or not basic social 

activities. For example, information may be collected on how many people have income 

below a poverty threshold, suffer from poor health, lack social network etc. (see e.g. Guio et 

al., 2009, or Alkire and Santos, 2010). The number of dimensions for which each individual 

suffers from deprivation may be summarised in a “deprivation count”.  Atkinson (2003) 

labelled “counting approach” to multidimensional deprivation the analysis of the distribution 

of the “deprivation count” across the population.  Bossert et al. (2006) use the counting 

approach to analyse social exclusion in a dynamic context. Alkire and Foster (2010), Bossert 

et al. (2009) and Lasso de La Vega and Urrutia (2010) provide different axiomatic 

foundations of deprivation measures based on the counting approach.  

 

Being deprived on a single dimension could result from the combination of a threshold and a 

continuous or discrete variable (e.g. income, or number of healthy days for year). In what 

follows we suppose to be always able to determine if an individual is or is not deprived on 

each dimension, but also that this is all the available information. This simplification allows 

us to delve into the question underlying the “identification” of the poor. Should we define 

poor only as those people suffering from deprivation on all dimensions or those that suffer 

from at least one dimension? These two opposite views correspond to the so-called 

“intersection” and “union” approaches in multidimensional poverty assessment. A related 

issue associated with multidimensional poverty analysis concerns the sequence in which the 

individual observations are aggregated (see Weymark 2004). Let us consider n individuals 

and r dimensions. Aggregating first individuals’ deprivation on each dimension, the resulting 

indicators can be subsequently aggregated over the r dimensions generating an overall 

deprivation measure. The Human Development Index (HDI) is a prominent example of this 

approach
1
. This paper relies on an alternative approach: First, by aggregating across the 

single dimensions for each individual a “deprivation count” is identified, indicating the 

number of dimensions for which the individual suffers from deprivation. Second, an overall 

measure of deprivation summarizes the distribution of deprivation counts across individuals. 

As apposed to the HDI this approach captures the association between the single deprivation 

indicators. 

 

Atkinson (2003) investigated the relationship between expected utility type of summary 

measures of deprivation and the correlation between different attributes.
2
 In the spirit of 

Bourguignon and Chakravarty (2003), Atkinson stressed the relevance of the sign of the cross 

derivatives of the individual “utility” function with respect to its arguments, leaving several 

doubts on the expected utility approach as the most attractive method for analysing counting 

data. However, by drawing on the rank-dependent normative theory of inequality 

                                                 
1
 See Anand and Sen (1993). 

2
 See also Duclos et al. (2006). 
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measurement (Yaari 1987, Aaberge 2001) we introduce alternative ranking criteria for 

distributions of deprivation counts that do not suffer from similar drawbacks,  simply because 

the conditions on the derivatives of the utility function arising from the expected utility 

model can be replaced by simple conditions on a weight function used to distort probabilities 

in the rank-dependent framework. Starting from a broad family of rank-dependent deprivation 

measures, we introduce two new criteria: the second-degree upward and downward count 

distribution dominance, to refine the trivial ranking imposed by Pareto dominance (or first order 

stochastic dominance) over the set of deprivation count distributions. We show that second-

degree upward and downward dominance criteria generalize the union and intersection 

approaches in measuring deprivation. We also identify two alternative principles of 

association (correlation) rearrangements that are consistent with these criteria. Using the 

rearrangement principles allows us to disentangle the impact of the association between 

deprivations from different dimensions on the overall evaluation of deprivation. The rank-

dependent approach proves to offer a description of several facets of multidimensional 

deprivation: its prevalence, extent and concentration. 

 

The paper is organized as follows: In Section 2 we use an axiomatic characterization of the 

rank-dependent criteria  to introduce suitable partial orders on deprivation count distributions. 

We also illustrate the importance of the shape of the “distortion function” to generalize the 

“union” and intersection” views. In Section 3 we identify the association principles linked to 

second-degree upward and downward dominance criteria. We also disentangle the 

contribution to the deprivation measure from the average deprivation share and from the 

dispersion of the total number of deprivations across the population.  In Section 4 we assess 

the concentration of deprivation comparing the actual distribution of deprivation counts with 

an ideal distribution. The benchmark is obtained considering the single deprivation indicators 

as independent random variables and using the observed marginal distributions to generate a 

counterfactual distribution. In Section 5 we conclude the paper summarising the main results 

and discussing the main questions still open. Proofs are gathered in Appendix 1, while in 

Appendix 2 we provide hints on how to allow for different weights.  

 

2. Ranking distributions of deprivation counts 
 

We consider a situation where individuals might suffer from r different dimensions of 

deprivation. Let Xi be equal to 1 if an individual suffers from deprivation in the dimension i 

and 0 otherwise. Moreover, let 
1

r

i

i

X X
?

?Â  with cumulative distribution function F and mean 

o , and let 1F /  be the left inverse of F. Thus, 1X ?  means that the individual suffers from 

one deprivation, 2X ?  means that the individual suffers from two deprivations, etc. We call 

X the deprivation count. Moreover, let * +Prkq X k? ? . Thus, 

 

(2.1)    
0

( ) , 0,1, 2...,
k

j

j

F k q k r
?

? ?Â  

 

and 

 

(2.2)     
1

r

k

k

kqo
?

?Â . 
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Next, let F denotes the family of deprivation count distributions. A social planner’s ranking 

over F may be represented by a preference relation Z , which will be assumed to satisfy the 

following axioms: 

 

Axiom 1 (Order). Z  is a transitive and complete ordering on F. 

 

Axiom 2 (Continuity). For each F ŒF the sets } ’** FF:F ZFŒ  and } ’FF:F ** ZFŒ  are 

closed (w.r.t. L1-norm). 

 

Axiom 3 (Dominance). Let 1 2,F F Œ F .  If 1 2( ) ( )F k F k‡  for all 0,1, 2,...,k r?  then .FF 21Z  

 

Axiom 4 (Dual Independence). Let F1, F2 and F3 be members of F and let cŒ 0,1] _ . Then 

21 FF Z  implies * +* + * +* +1 1
1 1 1 1

1 3 2 31 1F F F Fc c c c
/ // / / /- / - /Z , 

 

Yaari (1987, 1988) introduced Axiom 4 as an alternative to the independence axioms of the 

expected utility theory. This axiom requires that the ordering of distributions is invariant with 

respect to certain changes in the distributions being compared. If F1 is weakly preferred to F2, 

then Axiom 4 states that any mixture on 1

1F /  is weakly preferred to the corresponding 

mixture on 1

2F / . The intuition is that identical mixing interventions on the inverse distribution 

functions being compared do not affect the ranking of distributions. To illustrate this 

averaging operation, let us consider the problem of evaluating the average deprivation within 

couples obtained by matching men and women with the same rank in the male and female 

deprivation count distributions (in other terms, the most deprived man is matched with the 

most deprived woman, the second deprived man with the second deprived woman, and so 

on). Dual independence means that, given any initial distribution F3 of deprivation over the 

female population, if within the male population, distribution F1 is deemed to contain less 

deprivation than distribution F2, this judgement is preserved after the matching with the 

women. Axiom 4 requires this property regardless of the initial patterns of deprivation and of 

the weights associated to male and female deprivation counts computing the average 

deprivation at the household level. 

 

THEOREM 2.1. A preference relation Z  on F satisfies Axioms 1-4 if and only if there exists 

a continuous and non-decreasing real function ( )I ©  defined on the unit interval, such that 

for all 1 2,F F Œ F  

 
1 1

1 2 1 2

0 0 0 0

r k r k

j j

k j k j

F F ( q ) ( q )I I
/ /

? ? ? ?

± ‡Â Â Â ÂZ    

Moreover, I  is unique up to a positive affine transformation. 
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For a proof of Theorem 2.1 we refer to Yaari (1987). Note, however, that Axiom 3 differs 

from the dominance axiom of Yaari (1987) and explains why I  is non-decreasing.
3
 

 

Theorem 2.1 shows that a social planner who supports Axioms 1 – 4 will rank count 

distributions of deprivation according to the criterion DI  defined by  

 (2.3) DI (F ) ? r / I
k ?0

r /1

Â ( q
j
)

j ?0

k

Â , 

where I , with (0) 0I ?  and (1) 1I ? , is a non-decreasing function that represents the 

preferences of the social planner. The social planner considers the distribution F that 

minimizes ( )D FI  to be the most favorable among those being compared. Since F denotes the 

distribution of the deprivation count, ( )D FI  can be considered as a summary measure of 

deprivation exhibited by the distribution F.  

 

Atkinson et al. (2002) and Atkinson (2003) call attention to the distinction between the union 

and intersection approaches for measuring deprivation. A social planner who supports the 

union approach is particularly concerned with the number of people who suffer from at least 

one dimension of deprivation, whereas a social planner in favour of the intersection approach 

will focus attention on people deprived on all dimensions. By choosing the following 

specification for I  

 

(2.4)    

0

0 0

0

0 0

1 1

if t q

( t ) q if t q

if q t ,

I
~ >Ê

Í? ?Ë
Í > ~Ì

    

 

it results: 01D ( F ) qI ? / , which means that the union measure is a member of the DI -family 

of deprivation measures. Alternatively, choosing the preference function 

 

(2.5)     

0 0 1

1 1

1 1 1

r

r r

r

if t q

( t ) q if t q

if q t ,

I
~ > /Ê

Í? / ? /Ë
Í / > ~Ì

 

 

yields 1 rD ( F ) r qI ? / - , which means that the intersection measure also belongs to the DI -

family of deprivation measures. 

 

Since deprivation count distributions might intersect each other, it will be useful to identify 

what restrictions a weaker dominance criterion than first-degree dominance (Axiom 3) places 

on the preference function I . Let us first introduce the “second-degree downward  

dominance” criterion:
4
  

 

                                                 
3
 Since the ordering relation defined on  the set of inverse distribution functions is equivalent to the ordering 

relation defined on F, the proof of Theorem 2.1 might alternatively be derived from the proof of the expected 

utility theory for choice under uncertainty.  
4
 Note that second-degree downward dominance is analogous to the notion of second-degree downward Lorenz 

dominance introduced by Aaberge (2009). 
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DEFINITION 2.1A. A deprivation count distribution 1F  is said to second-degree downward 

dominate a deprivation count distribution 2F  if 

 

   

1 1

1 1

1 2( ) ( )
u u

F t dt F t dt/ /~Ð Ð  for all [0,1]uŒ  

 

and the inequality holds strictly for some 0,1uŒ . 

 

A social planner who implements second-degree downward count distribution dominance is 

especially concerned about those people who suffer from deprivation over many dimensions. 

However, an alternative ranking criterion that focuses attention on those who suffer 

deprivation from few dimensions can be obtained by aggregating the deprivation count 

distribution from below.  

 

DEFINITION 2.1B. A deprivation count distribution 1F  is said to second-degree upward 

dominate a deprivation count distribution 2F  if: 

 

   1 1

1 2

0 0

( ) ( )

u u

F t dt F t dt/ /~Ð Ð  for all [0,1]uŒ , 

 

and  strict inequality holds strictly for some 0,1uŒ . 

 

Note that second-degree downward as well as upward count distribution dominance preserves 

first-degree dominance (Axiom 3) since first-degree dominance implies second-degree 

downward and upward dominance. A social planner who supports the condition of second-

degree downward count distribution dominance will consider a distribution 1F  where 

individual i suffers from h deprivations and individual j from l (l<h) deprivations to be 

preferable to a distribution 2F  where individual i suffers from h+1 deprivations and 

individual j from l-1 deprivations, provided that the remaining individuals of the population 

have identical status in 1F  and 2F . By contrast, a social planner who supports the condition 

of second-degree upward count distribution dominance will prefer 2F  to 1F . Accordingly, 

second-degree upward and downward count distribution dominance might be considered as 

generalizations of the union and the intersection approach, respectively.  

Let 1Y  be a family of preference functions related to DI  and defined by 

 Y
1
? I : |I (t ) @ 0, ||I (t ) @ 0 for t Œ 0,1 ,  and |I (0) ? 0} ’ .  

 

Note that |I (0) ? 0  can be considered as a normalization condition. The following result 

provides a characterization of second-degree downward distribution dominance. 

 

THEOREM 2.2A. Let F1 and F2 be members of F. Then the following statements are 

equivalent: 

(i) F1 second-degree downward dominates F2 
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(ii) 1 2 1( ) ( )D F D F for allI I I Y> Œ . 

(Proof in Appendix). 

 

To ensure equivalence between second-degree downward deprivation dominance and DI -

measures as ranking criteria, Theorem 2.2A shows that it is necessary to restrict the 

preference function I  to be increasing and convex. If, by contrast, I  is increasing and 

concave then Theorem 2.2B provides the analogy to Theorem 2.2A for upward dominance. 

Let 2Y  be defined by 

 

} ’2 : ( ) 0, ( ) 0 0,1 , (1) 0t t for t andY I I I I| || |? @ > Œ ? . 

 

THEOREM 2.2B. Let F1 and F2 be members of F. Then the following statements are 

equivalent: 

(i) F1 second-degree upward dominates F2 

(ii) 1 2 2( ) ( )D F D F for allI I I Y> Œ . 

(Proof in Appendix). 

 

To ease the comparability of data from different years and countries and to quantify various 

aspects of the distribution of multidimensional deprivation, the measures of extent of 

deprivation presented above will be complemented in next section by a framework for 

measuring the prevalence, the dispersion and the concentration in distributions of 

multidimensional deprivation.  

 

3. Summary measures of deprivation 
 

The following example motivates the methods introduced in this section: 

 

Example 1. Two alternative policies produce the following distributions of two-dimensional 

deprivation: 1F , where 50% of the population suffers from one dimension and the remaining 

50% suffers from the other dimension, and 2F  where 50% of the population does not suffer 

from any deprivation and the remaining 50% suffers from both dimensions. Thus, the mean 

number of deprivation is 1 for both distributions, but the intersection measure ranks 1F  to be 

preferable to 2F  whereas the union measure ranks 2F  to be preferable to 1F . An interesting 

question is which restrictions on I  guarantee that DI  ranks 1F  to be preferable to 2F  or vice 

versa.  

 

As it will be demonstrated below, the ranking of 1F  and 2F  provided by DI  depends on 

whether I is convex or concave, which according to Theorems 2.2A and 2.2B depend on 

whether the social planner favors second-degree downward or upward count distribution 

dominance. This judgment can be equivalently expressed in terms of the mean and the 
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dispersion of the deprivation count distributions: the intuition of this result is now presented 

through the two-dimensional case, then the general r-dimensional case follows. 

 

3.1. The two dimensional case 

 

Let 2r ? , i.e. 1 2X X X? - , and let  

* + * +* +1 2ijp Pr X i X j? ? ̨ ? , * +1Prip X i- ? ? , * +2Prjp X j- ? ? .  

Thus, * +Prkq X k? ?  can be expressed by , , 1,2ijp i j ?  in the following way: 

(3.1) 

0 00

1 10 01

2 11.

q p

q p p

q p

?
? -
?

 

The 2x2 case can be illustrated by the following table: 

 

Table 3.1. The distribution of deprivation in two dimensions 

X2 

             0                             1  

0 

1 

           00p                          01p  

           10p                          11p  
0p -  

1p -  

 

 

X1 

 
0p-                           1p-  1 

 

The distribution F of X is given by  

 

(3.2)   
0

( ) Pr( ) , 0,1,2,
k

j

j

F k X k q k
?

? ~ ? ?Â   

 

where (2) 1F ?  and the mean  1 22q qo ? - . 

 

In this case ( )D FI  defined by (2.3) is given by 

 

 

(3.3)    2 0( ) 2 (1 ) ( )D F q qI ? /I / /I . 

 

 

Note that I  can be interpreted as a preference function of a social planner that assigns lower 

weights for one than for two deprivation counts.   

 

To supplement the information provided by ( )D FI  and o , it will be useful to introduce the 

following measure of dispersion, 
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(3.4)

1

0 0 2 2

0 0 0

1

0 0 2 2

0 0 0 0

1 1

1 1

k k

j j

k j j

k k k

j j

k j j j

q ( q ) q ( q ) ( q ) ( q ) when is convex

( F )

( q ) q ( q ) q ( q ) ( q ) when is concave

I

I I I I

F

I I I I

? ? ?

? ? ? ?

Ê Ç ×
/ ? / - / / /Í È Ù

Í É Ú? Ë
Ç ×Í / ? / - / / /È ÙÍ
É ÚÌ

Â Â Â

Â Â Â Â
 

It can easily be observed from (3.4) that ( ) 0FIF ?  if and only if 0 1,q q  or 2q  is equal to 1, 

which means that every individual suffers from 0, 1 or 2 deprivations. Since 

0 2 1 2(1 ) 2 2 2q q q q o- / ? / / ? / , by inserting (3.4) in (3.3) it results that the deprivation 

measure DI  admits the following decomposition: 

 

(3.5)   
( )

( )
( ) .

F when is convex
D F

F when is concave

I
I

I

o F I
o F I
-Ê

? Ë /Ì
 

 

Thus, by using (3.5) we may identify the contribution to DI  from the average number of 

deprivations  ( o ) as well as from the dispersion of deprivations across the population. 

Moreover, expression (3.5) demonstrates that a social planner who is concerned about 

reducing the mean number of deprivations as well as the dispersion of deprivations across the 

population will use the criterion DI  with a convex I ; i.e. in this case the social planner pays  

particular attention to people who suffer from many deprivations. By contrast, when the 

social planner uses criterion DI  with a concave I he/she is more concerned about the 

number of people who are deprived on at least one dimension (the union approach) than 

about those deprived on all dimensions (the intersection approach). In this case DI  can be 

expressed as the difference between the mean number of deprivations in the population and 

the dispersion of deprivations across the population, which means that employment of DI  

with a concave I  corresponds to making a trade-off between reducing the total number of 

deprivations ( o ) and their relative dispersion across the population (1 IF o/ ). Thus, DI  

decreases if IF  increases. By employing the criterion ( )D FI  defined by (3.5) for Example 1, 

it follows that 1F  is preferred if the social planner relies on a convex I . By contrast, 2F  is 

considered to be preferable if a concave I  represent the preferences of the social planner. 

 

By inserting for  2( ) 2t t tI ? / or 2( )t tI ?  in (3.3) and (3.4) we get the following expressions 

for the Gini measure of deprivation and the Gini measure of dispersion
5
 corresponds to Gini’s 

mean difference 1F( x )( F( x ))dx/Ð ), 

 

(3.6)   

2

1 1 2 2 1 2

2

1 1 2 2 1 2

(1 ) 2 (1 ) 2 ( )
( )

(1 ) 2 (1 ) 2 ( ) 2

q q q q q q when t t
D F

q q q q q q when t t t
I

o I

o I

Ê - / - / / ?Í? Ë
/ / / / - ? /ÍÌ

 

 

and 

 

(3.7)   0 0 2 2 1 1 2 2 1 2( ) (1 ) (1 ) (1 ) 2 (1 ) 2G F q q q q q q q q q qF ? / - / ? / - / / . 
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Note that GF  takes its maximum value when 0 2

1

2
q q? ? . 

 

 

 

3.2. The r dimensional case 

 

This sub-section considers the r dimensional case formed by the multinomial distribution of r 

deprivation indicators 1 2, ,..., rX X X . In this case 
0

1
r

k

k

q
?

?Â  and the mean o  is given by (2.2). 

Similarly as in the 2x2 case we get that ( )D FI  admits the decomposition  

 

(3.8)   
( )

( )
( ) ,

F when is convex
D F

F when is concave

I
I

I

o F I
o F I
-Ê

? Ë /Ì
 

 

where the dispersion measure ( )FIF  is defined by   

 

 

(3.9)   

1

0 0 0

1

0 0 0

( )

( )

( ) ,

r k k

j j

k j j

r k k

j j

k j j

q q when is convex

F

q q when is concave

I

I I

F

I I

/

? ? ?

/

? ? ?

Ê Ç ×
/Í È Ù

Í É Ú? Ë
Ç ×Í /È ÙÍ
É ÚÌ

Â Â Â

Â Â Â
 

 

 

Note that 
1

0 0

( )
r k

j

k j

D F r qI o
/

? ?

‡ / ?ÂÂ  and ( )D F rIo ~ ~  when is convexI , and 

0 ( )D F oI~ ~  when is concaveI . When is convexI  the minimum value of ( )D FI  is 

attained when ( ) 0FIF ? ; i.e. when each individual of the population suffers from the same 

number of deprivations. By contrast, the maximum value of ( )D FI  is attained when 

( ) 1 2FIF ? ; i.e. when 50 per cent of the population does not suffer from any deprivation 

and the remaining 50 per cent suffer from every dimension of deprivation. By contrast, for 

concave I  the minimum and maximum values of ( )D FI  are attained when ( )FIF  is equal 

to 1 2  and 0 .   

 

As for the two-dimensional case we get by inserting for 2( )t tI ?  and 2( ) 2t t tI ? /  in (3.8) 

and (3.9) the following convenient expressions for the Gini measures of deprivation and 

dispersion, 

 

 

(3.10)    

2

2

( ) ( )
( )

( ) ( ) 2 .

G

G

F when t t
D F

F when t t t
I

o F I

o F I

Ê - ?Í? Ë
/ ? /ÍÌ
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where 

 

(3.11)    
1 1 1

0 0 1

1 2
r r r

G k k j k

k j k j

( F ) kq ( q ) jkq qF
/ / /

? ? ? -

? / /Â Â Â . 

 

 

The decomposition (3.8) suggests that ( )D FI  obeys the principle of mean preserving spread 

whenI  is convex;  i.e. ( )D FI  increases when the number of deprivations at the middle of 

the count distribution is shifted towards the tails, under the condition of fixed total number of 

deprivations. However, when I is concave, the summary measure ( )D FI  decreases as a 

consequence of a mean preserving spread. This is due to the fact that such an operation will 

increase the number of people who don’t suffer from any deprivation and/or suffer from a 

few dimensions of deprivation. The next sub-section will clarify the relationship between a 

mean preserving spread, second-degree upward and downward count distribution dominance 

and association rearrangements. 

 

3.2. Principles of association rearrangements 

 

To provide a normative justification of upward and downward count distribution dominance 

as well as for employing the deprivation measures DI  for concave and convex I , a 

correlation intervention principle will be introduced as in Epstein and Tanny (1980), Boland 

and Proschan (1988) and Tsui (1999, 2002). However, the previous literature does not 

distinguish between positive and negative association (or correlation). A distinction will be 

made between whether an association rearrangement comes from a distribution characterized 

by positive or negative association between two or several deprivation indicators, in he spirit 

of the statistical literature on measurement of association in multidimensional contingency 

tables (formed by two or several 0-1 variables). Various authors (see e.g. Yule, 1910 and 

Mosteller, 1968) have emphasized the importance of separating the information of a 2x2 

table provided by the association between the social indicators X1 and X2 from the 

information provided by the marginal distributions 0 1( p , p )- -  and 0 1( p , p )- - . For 2x2 tables 

(see Table 3.1) this objective corresponds to introducing measures of association that are 

invariant under the transformation  

 

(3.12) ij i j ijp a b p›  

 

for any set of positive numbers ia  and jb  such that 
1 1

i j ij

i 0 j 0

a b p 1 . 

 

The cross-product g introduced by Yule (1900) and defined by 

 

(3.13)  00 11

01 10

p p

p p
c , 
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is a measure of association that satisfies the invariance condition (3.12), whereas the 

correlation coefficient does not.  Thus, the association measure g and the marginal 

distributions 0 1( p , p )- -  and 0 1( p , p )- -  together provide complete information of Table 3.1. 

Note that ] +0,c Œ ¢ , 1c ?  if the indicators X1 and X2 are independent, 0c  when 

00 11p p 0  and c  when 01 10p p 0 . In the former case there is perfect negative 

association between the two indicators, whereas it is perfect positive association in the latter 

case. Accordingly, it is required to make a distinction between positive association increasing 

rearrangements, positive association decreasing rearrangements, negative association 

increasing rearrangements and negative association decreasing rearrangements
6
.  

 

DEFINITION 3.1A. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where 

ijp 1 and 1c . The following marginal-free change 00 01 10 11( p , p , p , p )f f f f  is 

said to provide marginal distributions preserving positive association increasing 

(decreasing) rearrangement if 0f  ( 0f ). 

 

  

DEFINITION 3.1B. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where 

ijp 1 and 1c . The following marginal-free change 00 01 10 11( p , p , p , p )f f f f  is 

said to provide a marginal distributions preserving negative association increasing 

(decreasing) rearrangement if 0f  

( 0f ). 

 

An illustartion is provided in the tables below, where the right (left) panel of Table 3.2 is 

obtained from the left (right) panel by a positive association increasing (decreasing) 

rearrangement, whereas the right (left) panel of Table 3.3 can be obtained from the left (right) 

panel by a negative association increasing (decreasing) rearrangement. 

 

Table 3.2. Rearrangements that modify positive association 

 0 1   0 1  

0 

1 

.30           

.20 

.20           

.30 

.50 

.50 

0 

1 

.31           

.19 

.19           

.31 

.50 

.50 

 .50 .50 1 

 

 0.50 0.50 1 

 

 

Table 3.3. Rearrangements that modify negative association 

 0 1   0 1  

0 

1 

.20             

.30 

.30             

.20 

.50 

.50 

0 

1 

.19             

.31 

.31             

.19 

.50 

.50 

 .50 .50   .50 .50 1 

 

The association increasing/decreasing rearrangement principles defined by Definitions 3.1A 

and 3.1B will be proved to support second-degree downward/upward dominance under the 

condition of unchanged marginal distributions; i.e. the number of people suffering from each 

of the deprivation indicators are kept fixed. However, since real world interventions normally 

                                                 
6
 For similar definitions of association increasing rearrangements based on the correlation coefficient we refer to 

Atkinson and Bourguignon (1982), Dardanoni (1995) , Tsui (1999, 2002), Bourguignon and Chakravarty 

(2003), Duclos et al. (2006) and Kakwani and Silber (2008). See also Tchen (1980) who deal with positive 

association (or concordance) between bivariate probability measures. 
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concern trade-offs that allows reduction in one deprivation indicator at the cost of a rise in 

another deprivation indicator, we find it attractive to introduce association 

increasing/decreasing rearrangement principles that rely on the condition of fixed number of 

total deprivations rather than on the condition of keeping the number suffering from each of 

the indicators fixed. The more general mean preserving versions of Definitions 3.1A and 

3.1B are defined as follows.  

 

DEFINITION 3.2A. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where 

ijp 1 and 1c . The following change  00 01 10 11( p , p , p 2 , p )f f f  is said to provide 

a mean preserving positive association increasing (decreasing) rearrangement if 0f  

( 0f ). 

 

  

DEFINITION 3.2B. Consider a 2x2 table with parameters 00 01 10 11( p , p , p , p ) where 

ijp 1 and 1c . The following marginal-free change  00 01 10 11( p , p , p 2 , p )f f f  is 

said to provide a mean preserving negative association increasing (decreasing) 

rearrangement if 0f ( 0f ). 

 

It follows straightforward from Definitions 3.2A and 3.2B that the mean preserving 

association principles make a mean preserving rearrangement that reduces the number of 

people suffering from indicator X1 at the cost of increasing the number of people suffering 

from indicator X2 when 0f  and vice versa when 0f . As illustrated by Table 3.4 the right 

(left) panel can be obtained from the left (right) panel by a mean preserving positive 

increasing (decreasing) rearrangement, since the association is negative and the mean is kept 

fixed equal to 1 under the rearrangement where .01f ? .    

 

 

Table 3.4. Illustration of mean preserving decreasing negative association rearrangements  

 0 1   0 1  

0 

1 

.20             

.30 

.30             

.20 

.50 

.50 

0 

1 

.21             

.28 

.30             

.21 

.51 

.49 

 .50 .50 1  .49 .51 1 

 

 Since the condition of fixed marginal distributions also implies that the means are kept fixed, 

it follows that Definitions 3.1A and 3.1B can be considered as a special case of Definitions 

3.2A and 3.2B, respectively. Thus, we will focus attention on Definitions 3.2A and 3.2B 

below. 

 

 

Definitions 3.2A and 3.2B can readily be extended to higher dimensions. However, for a 

large number of dimensions the standard subscript notation becomes cumbersome. Thus, we 

find it convenient to introduce the following simplified subscript notation ijkp , where i and j 

represents two arbitrary chosen deprivation dimensions and m represents the remaining s-2 

dimensions and ijmc  is defined by  

 

(3.14)      
iim jjm

ijm

ijm jim

p p

p p
c ? , 

 



 

 14

where m is a s-2 dimensional vector of any combination of zeroes and ones. In this case 

association is defined by s(s-1)/2 cross-products.  

 

 

In order to deal with s-dimensional counting data we introduce the following generalization 

of Definitions 3.2A and 3.2B, 

 

DEFINITION 3.3A. Consider a 2x2x…x2 table formed by s dichotomous variables with 

parameters iim ijm jim jjm( p , p , p , p ) where ijmp 1and ijm 1c . The following change  

iim ijm jim jjm( p , p , p 2 , p )f f f  is said to provide a mean preserving positive association 

increasing (decreasing) rearrangement if 0f  ( 0f ). 

 

  

DEFINITION 3.3B. Consider a 2x2x…x2 table formed by s dichotomous variables with 

parameters iim ijm jim jjm( p , p , p , p ) where ijmp 1  and ijm 1c . The following change  

iim ijm jim jjm( p , p , p 2 , p )f f f  is said to provide a mean preserving negative association 

increasing (decreasing) rearrangement if 0f ( 0f ). 

 

As is demonstrated by Theorems 3.1A below a social planner who is in favour of second-

degree downward dominance will consider a mean preserving positive association increasing 

rearrangement as well as a mean preserving negative association decreasing rearrangement as 

a rise in overall deprivation. By contrast, a planner who favours upward second-degree 

dominance will consider such rearrangement as a reduction in the overall deprivation.  

Moreover, it is proved that the principles of mean preserving association 

increasing/decreasing rearrangement are equivalent to the mean preserving spread/contraction 

defined by  

 

DEFINITION 3.4. Let F1 and F2 be members of the family F of count distributions based on 

s deprivation indicators and where F1 and F2 are assumed to have equal means. Then F2 is 

said to differ from F1 by mean preserving spread (contraction) if 2 1( F ) ( F )I IF F@  for all 

convex I   ( 2 1( F ) ( F )I IF F>  for all concave I ). 

 

Note that Definition 3.4 is equivalent to a sequence of the mean preserving spread introduced 

by Rothschild and Stiglitz (1970). This is easily seen by combining statements (ii) and (iii) of 

Theorem 3.1A and equation (A5) of the Appendix. 

 

THEOREM 3.1A. Let F1 and F2 be members of the family F of count distributions based on s 

deprivation indicators and assume that F1 and F2 have equal means. Then the following 

statements are equivalent: 

(i) F1 second-degree downward dominates F2 

(ii) F2 can be obtained from F1 by a sequence of mean preserving positive association 

increasing rearrangements when 1c  and a sequence of mean preserving negative 

association decreasing rearrangements when 1c  

(iii) F2 can be obtained from F1 by a mean preserving spread. 
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(Proof in Appendix). 

 

THEOREM 3.1B. Let F1 and F2 be members of the family F of count distributions based on s 

deprivation indicators and assume that F1 and F2 have equal means. Then the following 

statements are equivalent: 

(i) F1 second-degree upward dominates F2 

(ii) F2 can be obtained from F1 by a sequence of mean preserving positive association 

decreasing rearrangements when 1c and a sequence of mean preserving negative 

association increasing rearrangements when 1c . 

(iii) F2 can be obtained from F1 by a mean preserving contraction 

 

(Proof in Appendix). 

The links between the extent, the dispersion and the concentration of deprivation will be 

illustrated in the next section. 

4. Measures of concentration 
 

Development of measures of concentration in the multivariate distribution of deprivations 

calls for a definition of the state of no concentration.  The state of “no concentration” is 

defined to occur if the observed extent of deprivation is equal to the extent attained when the 

single deprivation indicators are treated as independent random variables, under the 

constraint of fixed marginal distributions equal to the observed ones. Thus, concentration is 

defined to occur if the observed extent of deprivation is higher than the extent of deprivation 

attained under the state of “no concentration”.   

 

4.1. The two dimensional case 

 

This section relies on the notation introduced in Section 3.2. If X1 and X2 are stochastically 

independent, then ij i jp p p- -? . In this case DI  obeys the following expression: 

 

(4.1)  0 0 1 1( ) 2 ( ) (1 )independD F p p p pI - - - -? /I /I / . 

 

Thus, concentration can be measured as the deviation between ( )D FI  and ( )independD FI , 

where F is the observed deprivation distribution. A normalized ] _0,1  version is obtained by 

dividing the difference between ( )D FI  and ( )independD FI  by the difference between ( )D FI  

and max( )D FI , where maxF  is the hypothetical extreme distribution that produces the highest 

deprivation (largest value of DI ), given that the marginal distributions ( 0 1,p p- -  and 

0 1,p p- - ) are kept fixed. To this end, assume that the probability of suffering from deprivation 
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1 ( 1 1X ? ) is larger than the probability of suffering from deprivation 2 ( 2 1)X ? , i.e. 

1 1p p- -@ . Under the constraint of fixed marginal distributions, DI  will attain its largest value 

when 2 1q p-? , 1 1 1q p p- -? /  and 0 11q p -? / . Thus, max( )D FI  is given by  

 

 

(4.2)  max 1 1( ) 2 (1 ) (1 )D F p pI - -? /I / /I / , 

 

and the normalized measure of concentration of deprivation is defined by 

 

 

(4.3)      00 0 0 11 1 1

max 0 0 0 1 1 1

( ) ( ) ( ) ( ) (1 ) (1 )
( )

( ) ( ) ( ) ( ) (1 ) (1 )

indep

indep

D F D F p p p p p p
C F

D F D F p p p p p p

I I - - - -
I

I I - - - - - -

/ I /I -I / /I /
? ?

/ I /I -I / /I /
. 

 

Since the mean o  is identical for F ,  F
indep

 and maxF , it follows from (3.10) that the 

concentration measure ( )C FI  also can be expressed in terms of the dispersion measure IF , 

 

 

(4.4)   
max

( ) ( )
( )

( ) ( )

indep

indep

F F
C F

F F

I I
I

I I

F /F
?
F /F

. 

 

For the Gini case, where 2( )t tI ?  we get  

 

(4.5)  

 

00 00 0 0 0 0 11 11 1 1 1 1 00 0 0 11 1 1

1 1 1 1 1 1 0 0 0 1 1 1

(1 ) (1 ) (1 ) (1 ) ( ) ( )
( )

(1 ) (1 ) ( ) ( )
G

p p p p p p p p p p p p p p p p p p
C F

p p p p p p p p p p p p

- - - - - - - - - - - -

- - - - - - - - - - - -

/ / / - / / / - / / /
?

/ / / - / / /
 

 

4.2. The r dimensional case 

 

Let * +Prkq X k? ? ; i.e. 0 00...0q p? , 1 100...0 010...0 000...01q p p p? - - ©©©- ,…, 1111...1rq p? . Under the 

condition of independence we have that 

 

(4.6)    ... ... ... ... ...ijk t i j k tp p p p p-- - - - - -- - ---? ©©© .  

 

Thus, ( )independD FI  is formed by inserting for (4.6) in (2.3), where ... 0 ... ...0o oq p p p-- - - ---? ©©© , 

1 1 ... 00... 0... ...0 0 ... 0 ... ...1q p p p p p p p-- - -- -- -- - - --? ©©© © © © © © © , etc.  

 

Next, let jp  denote the probability of suffering from deprivation j, and assume that  

1 2 rp p p@ @ ©©© @ , i.e 1 1 ... 2 1 ...,p p p p-- - -? @ ? etc. Under the constraint of unchanged 

marginal distributions DI  will attain its maximum value when 
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1 1 2 2 1 1, , , ., . .r r r r r r r r j j jq p q p p q p p etc i e q p p/ / / / / -? ? / ? / ? /  for 1, 2,..., 1, r rj r q p? / ? , 

0 11q p? /  and 1

0

1 , 0,1,..., 1.
k

k k

j

q p k r-
?

? / ? /Â  Thus, in this case DI  is given by 

 

(4.7)     
1

max

0

( ) (1 )
r

k

k

D F r p
/

I
?

? / I /Â , 

 

and the measure of concentration CI  is given by 

 

 

(4.8)   

1 1

,

0 0 0 0

1 1

,

0 0 0

( ) ( )

( )

(1 ) ( )

r k r k

j j indep

k j k j

r r k

k j indep

k k j

q q

C F

p q

/ /

? ? ? ?
I / /

? ? ?

I / I
?

I / / I

Â Â Â Â

Â Â Â
. 

 

 

 

5. Summary and discussion 
The conventional approach in official statistics as well as in most empirical studies of 

multidimensional deprivation is focusing on the distribution of the number of dimensions in 

which people suffer from deprivation. This paper is concerned with the problem of ranking 

and quantifying the extent of deprivation exhibited by multidimensional distributions of 

deprivation where the multiple attributes in which an individual can be deprived are 

represented by dichotomized variables. To this end summary measures of deprivation are 

proposed, by drawing on the rank-dependent social evaluation framework that originates 

from Sen (1974) and Yaari (1988). This approach proves to allow decomposition of the 

summary measures into extent of and dispersion in the distribution of multiple deprivations. 

To provide a justification of the proposed deprivation measures two intervention principles 

affecting respectively the association (correlation) between the different deprivation 

indicators and the spread of the deprivation counts are adopted. Moreover, a family of 

measures of concentration in the distribution of deprivations experienced by the population is 

introduced, where concentration is defined to occur if dispersion in the observed distribution 

of deprivations is higher than the dispersion attained when the single deprivation indicators 

are treated as independent random variables, under the constraint of unchanged marginal 

distributions. 

 

Notice that that the deprivation indicators are assumed to be perfect substitutes by 

construction, since the counting approach attaches an equal weight to each of the single 

indicators. An interesting question is whether or not the framework in this paper can be 

extended to allow for different weighting profiles across the multidimensional distribution of 

deprivations. Appendix 2 offers a first positive answer, showing the computational 

difficulties implied by this extension. 
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Appendix 1- Proofs 

 
 

LEMMA 1. Let H be the family of bounded, continuous and non-negative functions on [0,1] 

which are positive on 0 1,  and let g be an arbitrary bounded and continuous function on 

] _0 1, . Then 

 0g( t )h( t )dt for all h H@ ŒÐ  

implies 

 ] _0 0 1g( t ) for all t ,‡ Œ  

and the inequality holds strictly for at least one 0 1t ,Œ . 

 

 

Proof of Theorems 2.2A and 2.2B. Using integration by parts, we get:  

 
1 1 1 1

1 1 1 1 1 1

2 1 2 1 2 1 2 1

0 0 0

( ) ( ) (1 ( )) ( ( ) ( )) (0) ( ( ) ( )) ( ) ( ( ) ( )) .
u

D F D F t d F t F t F t F t dt u F t F t dtduI I I I I/ / / / / /| ||/ ? / / ? / / - /Ð Ð Ð Ð  

 

Thus, if (i) holds then 1 2 1( ) ( )D F D F for allI I I Y> Œ . 

 To prove the converse statement we restrict to preference functions 1I YŒ . Hence, 

 
1 1

1 1

2 1 2 1

0 u

D ( F ) D ( F ) ( u ) ( F ( t ) F ( t ))dtduI I I / /||/ ? /Ð Ð , 

 

and the result is obtained by applying Lemma 1. 

 
The proof of Theorem 2.2B is analogous to the proof of Theorem 2.2A, and is based on the 

expression 

 
1 1 1

1 1 1 1 1 1

2 1 2 1 2 1 2 1

0 0 0 0

( ) ( ) (1 ( )) ( ( ) ( )) (1) ( ( ) ( )) ( ) ( ( ) ( ))

u

D F D F t d F t F t F t F t dt u F t F t dtduI I I I I/ / / / / /| ||/ ? / / ? / / / /Ð Ð Ð Ð , 

  

which is obtained by using integration by parts. Thus, by using arguments like those in the 

proof of Theorem 2.2A the results of Theorem 2.2B are obtained.  

 

 

 

Proof of Theorems 3.1A and 3.1B. 

 

As demonstrated by Hardy, Littlewood and Polya (1934) an equivalent condition of 

Definition 2.1A is given by 
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(A1) ] +0
y y

F( x )dx F( x )dx for all y ,

¢ ¢

‡ Œ ¢Ð Ð # , 

 

where 1 2

0 0

k k

j j

j j

F( k ) F ( k ) q and F( k ) F ( k ) q
? ?

? ? ? ?Â Â# # . 

 

By inserting for F and #F  in (A1) we get that F second-degree downward dominates F#  if 

and only if 

 

(A2) 
1 1

0 0

0 1 1
j jr r

k k

j i k j i k

q q for i , ,...,r
/ /

? ? ? ?

‡ ? /ÂÂ ÂÂ # . 

 

Next, assume that (ii) is true; i.e. 

2iim iim ijm ijm jim jim jjm jjmp p , p p , p p and p pf f f? - ? ? / ? -# # # #  which we assume corresponds 

to changes in the number of people suffering from t iim( p ) ,  t+1 ijm jim( p p )  and t+2 

jjm( p )deprivations such that 

 

 

(A3) 1 1 2 22 1 2t t t t t t k kq q , q q , q q and q q for all k t ,t ,tf f f- - - -? - ? / ? - ? ” - -# # # # , 

which means that the mean of F#  is equal to the mean of F. 

Inserting for (A3) in F#  yields 

 

(A4) 

0

0

0

0

0

0 1 1

1

2 3

k

j

j

k

j
k

j

j k
j

j

j

k

j

j

q for k , ,...,t

q for k t

F( k ) q

q for k t

q for k t ,t ,...,r.

f

f

?

?

?

?

?

Ê ? /Í
Í
Í

- ?Í
Í? ? Ë
Í / ? -
Í
Í
Í ? - -ÍÌ

Â

Â
Â

Â

Â

# #  

It follows by straightforward calculations that (A4) implies (A2) and thus that (ii) implies (i). 

 

To prove the converse statement, assume that (i) is true, i.e. that (A2) is valid. Since F and 
#F  are step functions it can be demonstrated that there exists a sequence of discrete 

distribution functions 0 1 sF ,F ,...,F, , ,  such that 0F F ,? , sF F ,?#  and i 1F ,
-  differs from iF ,  by a 

mean preserving positive association increasing rearrangement, i.e. i 1 iF F, ,
- /  is given by  
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 (A5) 1

0 0 1 1

1

0 2 3

i i

for k , ,...,t

for k t
F ( k ) F ( k )

for k t

for k t ,t ,...,r.

f
f

, ,
-

? /Ê
Í ?Í/ ? Ë/ ? -Í
Í ? - -Ì

 

 

 

 

Next, we use (A5) to construct 1F ,  from F , 2F ,  from 1F ,  and finally F#  from s 1F ,
/ . The 

required number of iterations (s) depends on the number of steps exhibited by the difference  

F F/# .  

 

The equivalence between (i) and (iii) follows directly from Theorem 2.2 A. 

 

 

The proof of Theorem 3.1B is analogous to the proof of Theorem 3.1A. Thus, by using 

arguments like those in the proof of Theorem 3.1A the results of Theorem 3.1B are obtained.  
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Appendix 2- Accounting for different weights 

 
Replacing 1 by the weights w1 and w2 as outcomes for the marginal indicator distributions in 

the two-dimensional case, the distribution of deprivation for two dimensions is given by the 

following table, 

 

 

Table 5.1. The distribution of weighted deprivation in two dimensions 

1X#  

             0                             w2  

0 

w1 

           00p                          01p  

           10p                          11p  
0p -  

1p -  

 

 

2X#  

 
0p-                           1p-  1 

 

 

Next, by assuming that 1 2w w~  the variable X#  defined by 1 2 1 1 2 2X X X w X w X? - ? -# # #   might 

be considered as a weighted counting variable. The distribution F#  of X#  is given by 

 

 

(A6)    

00

00 10 1

00 10 01 2

1 2

0

1

p if z

p p if z w
F( z )

p p p if z w

if z w w .

?Ê
Í - ?Í? Ë - - ?Í
Í ? -Ì

#  

 
Theorem 2.1 shows that a social planner who supports Axioms 1 – 4 will rank count 

distributions of deprivation according to the criterion DI  defined by  

 (A7) 1D ( F ) ( ( F( z )))dzI I? /Ð# # # , 

where I , with (0) 0I ?  and (1) 1I ? , is a non-decreasing function that represents the 

preferences of the social planner. Thus, the social planer considers the distribution F#  that 

minimizes D ( F )I
# #  to be the most favorable among those being compared. Since F denotes 

the weighted count variable distribution of deprivation, D ( F )I
# #  can be considered as a 

measure of the extent of deprivation exhibited by the distribution F# . Now, by inserting the 

mean 1( F( z ))dzo ? /Ð ##  in (A7) we obtain the following decomposition 

 

 

(A8)    
( F ) when is convex

D ( F )
( F ) when is concave

I
I

I

o F I

o F I

Ê -Í? Ë
/ÍÌ

#### #
###

  

 

where  ( F )IF ##  is defined by   
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(A9)   
* +
* +
F( z ) ( F( z )) dz when is convex

( F )
( F( z )) F( z ) dz when is concave.

I

I I
F

I I

Ê /Í? Ë
/ÍÌ

Ð
Ð

# #
##

# #
 

 

Expressions (A8) and (A9) demonstrate that Theorems 2.2A, 2.2 B, 3.1A and 3.1B are valid 

for weighted count distributions as well. However, by extending the dimensions from 2 to r it 

becomes cumbersome to provide a convenient formal description of the weighted count 

distribution F# . 
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