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Abstract

To model intraday stock price movements we propose a class of marked doubly stochastic Poisson

processes, whose intensity process can be interpreted in terms of the effect of information release

on market activity. Assuming a partial information setting in which market agents are restricted

to observe only the price process, a filtering algorithm is applied to compute, by Monte Carlo

approximation, contingent claim prices, when the dynamics of the price process is given under

a martingale measure. In particular, conditions for the existence of the minimal martingale

measure Q are derived, and properties of the model under Q are studied.
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1 Introduction

Traditionally, in the literature, almost all financial models for asset prices have focused on

processes with continuous sample paths, sometime allowing for the presence of jumps. In recent

years, however, with the increasing availability of intraday information, in particular ultra-high-

frequency (UHF), on financial asset price quotes, a part of the literature has moved its attention

to pure jump models based on marked point processes (MPP) (see, for monographs on point

processes in time, Cox and Isham (1980), Brémaud (1981) and Last and Brandt (1995)), in

which price changes are assumed to take place only at discrete (generally irregularly spaced)

instants of time. In this article we propose a framework for UHF stock price movements and

for contingent claim pricing based on a particular class of MPP, namely on doubly stochastic

Poisson processes (DSPP) with marks.

In the class of DSPP with marks, an early model for asset prices has been proposed by

Rogers and Zane (1998). Subsequently, Frey and Runggaldier (2001) considered a ‘shadow’

logprice process given by a stochastic volatility model depending on a state variable which is

assumed to be a diffusion which, in turn, drives the intensity process of the DSPP and when

a jump occurs the logprice equals the shadow process. Within this model, the filtering of

the underlying intensity is tackled following a so called ‘reference probability’ approach. A

different model in which the intensity process is still driven by a diffusion, but the jumps are

independently and identically distributed (i.i.d.), is considered instead in Frey (2000). In this last

article, assuming that market agents cannot observe the intensity process, the hedging problem

is tackled in the special case in which the price process is a martingale. Under the assumption

of partial information, optimal (minimum quadratic risk) hedging strategies are computed using

the filtering method described in Frey and Runggaldier (2001). A different interesting model in

which the stochastic intensity is given by a non-Gaussian Ornstein-Uhlenbeck process has been
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proposed in Rydberg and Shephard (2000). There, the Authors approach the filtering problem

(after time discretization in intervals of equal length) using a particle filter on the counting

observations, based on a sampling importance resampling algorithm. Other works dealing with

MPP but more concerned with option pricing and hedging can be found in Kirch and Runggaldier

(2004), Prigent (2000) and Prigent et al. (2004). In Kirch and Runggaldier (2004), assuming

a model in which the asset price follows a geometric Poisson process with unknown constant

intensity, the optimal hedging strategy is constructed using stochastic control techniques. On

the other hand, in Prigent (2000), in a very general context, the equivalent martingale measures

are characterized by their Radon-Nykodim derivatives with respect to the natural probability,

whereas in Prigent et al. (2004) the problem of option pricing is considered in the case in which

the (dynamic) portfolios are adjusted only after fixed relative changes in the stock prices.

Following a different modelling strategy, in our model the intensity process δ of the DSPP

with marks is characterized as a function of time and of another underlying MPP. To describe

the logprice process, we associate to the marked DSPP a continuous time process with piecewise

constant trajectories whose value, at any given time instant, is equal to the sum of the marks

(logprice changes) associated to all past time events. This means that we are here referring

mainly to the situation of a market maker updating her/his posted price at irregularly spaced

time instants, where the price is constant between two successive adjustments (we do not consider

here any bid-ask spread and we may think at the bid-ask mean value). This framework is rich

enough to model many of the features of UHF data. For example, the dependence of δ upon time

allows to incorporate deterministic seasonalities in the model without calling for ad-hoc methods,

and it will be seen that by appropriately choosing the intensity process we can effectively capture

the behavior of less liquid assets. At the same time the class proposed is mathematically tractable

since a trajectory of the price process in any bounded time interval is characterized by a finite
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(although random) number of changes.

An interesting feature of the framework proposed is that it can be interpreted to account

for the link between the information release and the changes in price volatility and trading

activity, whose existence has been many times suggested in the economic literature (see, among

others, Engle and Ng (1993) and Kalev et al. (2004)). In our model, this link is embodied

by the intensity process δ governing the speed of price changes. In particular, if δ is a shot

noise process, its sudden increases can be interpreted as perturbations in market activity caused

by pieces of news reaching the market, being the size of each increase due to the importance

and unexpectedness of the news, and its consequent exponential decays can be interpreted as

progressive normalizations due to the absorption of the effect of the news by the market.

As far as the problem of pricing a contingent claim is concerned, a basic result of mathemat-

ical finance states that for a stochastic process S, representing the discounted stock price, the

existence of an equivalent martingale measure, that is, of a measure equivalent to the ‘natural’

probability P, such that S is a local martingale, is essentially equivalent to the absence of arbi-

trage opportunities (see, for example, Harrison and Kreps (1979), Delbaen and Schachermayer

(1994)). If the price of the risky asset follows a marked point process, the market model is in gen-

eral incomplete and it can be shown that there exist more then one of such equivalent measures.

Thus, the problem of pricing a contingent claim, under the no arbitrage assumption, is reduced

to taking expected values under the ‘right’ measure among all existing equivalent martingale

measures. One possibility is to choose the so called minimal martingale measure Q introduced

by Föllmer and Schweizer (1991) which arises very often in the financial literature (see Prigent

et al. (2004) for a discussion and for further references). In our probabilistic setting, for the

case of partial information, in which market agents are allowed to observe only the history of the

stock price (that is, all past times and sizes of price changes, but not the history of the intensity
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process), we propose to use as a pricing measure the restriction to the filtration representing

the available information of the measure Q derived in the case of complete information. Indeed,

this restriction is still a martingale measure and it can be seen as the best projection of Q over

the coarser filtration.

With this choice, to effectively implement the pricing of a contingent claim, that is, to take

expected values in the case of partial information, we can use a Monte Carlo procedure based

on the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm (first introduced in a

Bayesian inferential context by Green(1995)), which allows the Monte Carlo evaluation of the

conditional distribution of the intensity of the marked DSPP representing the stock prices, given

a past realization of the times and sizes of price changes. This conditional evaluation can be

reconduced to a nonlinear filtering problem similar to that considered in Centanni and Minozzo

(2006a,b) since, under some conditions, the probabilistic structure of our model is the same

under the natural measure and the probability measure Q.

The paper is organized as follows. In Section 2 we introduce our modelling framework,

derive some fundamental properties and detail a basic class of models, which is particularly

tractable and detains pleasant properties. In Section 3, conditions for the existence of the

minimal martingale measure are given, and, under it, properties of the price and intensity

processes of the discounted stock price are investigated. Then, considering a stylized market in

which the only two assets available for trading are the stock and the bank account, in Section 4

we consider the computational problem of the pricing of a contingent claim in the case of partial

information and propose a Monte Carlo procedure which involves the use of an RJMCMC

algorithm. In Section 5 we illustrate the pricing algorithm by means of a simulation study in

the case of the basic class of models. Finally, Section 6 concludes the paper.
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2 The modelling framework

Given a probability space (Ω,G,P) and a complete right continuous filtration {Gt}t≥0, let us

consider an adapted marked point process Φ = (Ti, Zi)i∈N, where Ti are positive random variables

satisfying Ti < Ti+1 and Zi are R-valued random variables; let us denote with N the counting

process defined by Nt = #{i : Ti ≤ t}. Let also µ denote the counting measure associated to the

point process Φ which, for all A ∈ B(R), is equal to µ(ω, (0, t] × A) =
∑Nt

i=1 1{Zi∈A} (with the

convention that the sum over an empty set is equal to 0). We assume in particular that Φ is a

doubly stochastic marked Poisson process with respect to {Gt}t≥0 (see Last and Brandt (1995),

Chapter 6).

Definition 2.1 A marked point process Φ adapted to the filtration {Gt}t≥0 is a doubly stochastic

marked Poisson process if there exists a G0-measurable random measure υ on R
+ × R such that

P (µ ((s, t] × A) = k| Gs) =
(υ ((s, t] × A))k

k!
e−υ((s,t]×A),

almost surely (a.s.), for every A ∈ B(R).

It is implicit in the definition that υ is a {Gt}-compensator of Φ, that is, a {Gt}-predictable

random measure such that

(2.1) E

(∫ t

0

∫

R

f(s, z) µ(ds,dz)

)
= E

(∫ t

0

∫

R

f(s, z) υ(ds,dz)

)
,

for all predictable f : Ω×R
+ ×R → R. Also, the process Φ has a finite number of points in any

bounded interval and no fixed point of jump, and the compensator υ admits the disintegration

(2.2) υ(dt, dz) = υ(dt)K(t, dz),

where υ(·) = υ(·×R) and K is a G0 ⊗B(R+)-measurable stochastic kernel (see Last and Brandt

(1995), Appendix A2) from (Ω × R
+) to R.
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Let us assume that Dt = υ((0, t]) has the form Dt =
∫ t
0 δsds, and so that under the above

assumptions the counting process N is a doubly stochastic Poisson process with intensity δ.

Then, given the whole history of δ, the number of points in any time interval (s, t] is a Poisson

random variable (independent of Gs) with mean Dt − Ds. Moreover,

P(TNs+1 > t| Gs) = P(Nt − Ns = 0| Gs) = exp

(
−

∫ t

s
δudu

)
,

and P(ZNs+1 ∈ B| Gs, TNs+1) =
∫
B K(TNs+1,dz), for all B ∈ B(R).

Here, we are interested in using the marked point process Φ to model the logreturn changes

of a given financial asset, for example, of a stock. That is, the price of the stock will be described

by a process S = (St)t∈R+ having the form St = S0e
Yt , where Yt =

∑Nt

i=0 Zi (Z0 = 0), represents

the logreturn process and the random variables Zi and the process N are defined by the marked

doubly stochastic Poisson process Φ. In our probability framework, the random variables Ti and

Zi represent the time and the size of the ith logreturn change whereas Nt represents the number

of changes occurred up to time t. Applying Ito’s formula to eYt and observing that Y is a finite

variation process, which implies that its continuous martingale part is zero, we can write

eYt = 1 +

∫ t

0
eYs− dYs +

∑

0<s≤t

(
eYs − eYs− − eYs−∆Ys

)
,

and so

(2.3) dSt = St− dYt + St−

(
e∆Yt − 1 − ∆Yt

)
= St− dỸt,

where

Ỹt = Yt +
∑

0<s≤t

(
e∆Ys − 1 − ∆Ys

)
=

Nt∑

i=0

Zi +

Nt∑

i=0

(eZi − 1 − Zi)

=

Nt∑

i=0

(eZi − 1) =

∫ t

0

∫

R

(ez − 1) µ(ds,dz).(2.4)

In other words, we have St = S0E(Ỹ )t where, as usual, we denote with E(X) the stochastic

exponential of a process X, that is, the unique solution to the stochastic differential equation
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dLt = Lt− dXt, which is given by

(2.5) E(X)t = exp

(
Xt −

1

2
〈Xc〉t

)
·
∏

0<s≤t

(1 + ∆Xs)e
−∆Xs

(see, for example, Protter (1992) and Bühlmann et al. (1996)).

Under mild integrability assumptions, the process S admits a semimartingale representation.

Proposition 2.1 If S is locally integrable, then it admits the decomposition S = S0 + M + B,

where M is a local martingale given by

Mt =

∫ t

0

∫

R

Ss−(ez − 1) (µ − υ)(ds,dz),

and the locally finite variation process B is given by

Bt =

∫ t

0

∫

R

Ss−(ez − 1) υ(ds,dz).

Moreover, the quadratic variation process is given by

[S, S]t = S2
0 +

∫ t

0

∫

R

S2
s−(ez − 1)2 µ(ds,dz).

If S is also locally square integrable, then the angle process exists and is given by

(2.6) 〈S, S〉t =

∫ t

0

∫

R

S2
s−(ez − 1)2 υ(ds,dz).

Proof If S is locally integrable then Equations (2.3) and (2.4) imply that

E

(∫ t∧Tn

0

∫

R

|Ss−(ez − 1)| υ(ds,dz)

)
< +∞,

in virtue of (2.1); then Bt is well defined and Mt is a local martingale (see Last and Brandt

(1995), p. 126).

Since S is adapted, càdlàg (that is, having trajectories which are right continuous with left

hand limits) and with trajectories of finite variation on bounded intervals, S is also a quadratic
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pure jump process (see Protter (1992), p. 63, Theorem 26), that is,

[S, S]t = S2
0 +

∑

0<s≤t

(∆Ss)
2 = S2

0 +

Nt∑

n=1

S2
Tn−(eZn − 1)2 = S2

0 +

∫ t

0

∫

R

S2
s−(ez − 1)2 µ(ds,dz),

where we used the convention that the sum over an empty set is equal to zero. Also, using Ito’s

formula we can write

S2
t = S2

0 +

∫ t

0
2Ss− dSs +

∑

0<s≤t

(S2
s − S2

s− − 2Ss−∆Ss) = S2
0 +

∫ t

0

∫

R

S2
s−(e2z − 1) µ(ds,dz);

hence if S is locally square integrable, [S, S] is locally integrable. Then 〈S, S〉 exists and (2.6)

holds since we can write

[S, S]t = S2
0 +

∫ t

0

∫

R

S2
s−(ez − 1)2 µ(ds,dz)

= S2
0 +

∫ t

0

∫

R

S2
s−(ez − 1)2 (µ − υ)(ds,dz) +

∫ t

0

∫

R

S2
s−(ez − 1)2 υ(ds,dz). QED

Remark 2.1 S is a special semimartingale since it admits a (unique) decomposition such that

the finite variation process B is also predictable.

Remark 2.2 Observing that Bt is a continuous process, we have that [M,M ] = [S, S] and also

that 〈M,M〉 = 〈S, S〉.

As far as the form of the intensity process is concerned, we assume that the intensity δ is

given by δt = h(t, Φ
′t
0 ), where Φ′ = (τj , Xj)j∈N∪{0}, with τ0 = 0, is an MPP with a finite number

of points in bounded intervals and Φ
′t
0 is the restriction of Φ′ to [0, t]. For example, δ can be a

generalization of the classical shot noise process

(2.7) δt = a(t) + bλt,

where a(·) is an integrable R
+-valued deterministic function, b is a nonnegative parameter, and

the process λ is given by

(2.8) λt =

N ′

t∑

j=0

Xj e−k(t−τj),

10



where k > 0, Xj > 0, for all j ≥ 0, N ′
t = #{j > 0 : τj ≤ t}. Hence, the integral Dt assumes the

form Dt = A(t) + bΛt, where A(t) =
∫ t
0 a(s) ds and where

Λt =

∫ t

0
λs ds =

∫ t

0

( N ′

s∑

j=0

Xje
−k(s−τj)

)
ds

=
1

k

[ N ′

t∑

j=0

Xj

(
1 − e−k(t−τj)

)]
.(2.9)

Let us observe that λ is the solution of the stochastic differential equation dλt = −kλt dt + dJt,

where Jt =
∑N ′

t

j=0 Xj .

This formulation of the stochastic part of the intensity allows a natural interpretation for the

stochastic changes of the intensity δ in terms of market perturbations caused by the arrival of

relevant news. When the jth piece of news reaches the market, a sudden increase Xj in trading

activity occurs, the size of which can be interpreted as the effect of the piece of news on the

market. After each jump, a progressive normalization of the trade activity follows, which can

be thought to be due to the absorption of the piece of news by market agents. The random

variable τj represents the time of arrival of the jth piece of news. The parameter k expresses

the speed of absorption of the effect of the pieces of news by the market, while a(·) represents

the activity that the market would have had in absence of random perturbations caused by the

arrival of relevant news. By adequately choosing the function a(t), it is possible to take into

account the seasonalities and the other features that often characterize intraday price data (see,

for example, Guillaume et al. (1999)).

Among the many specifications allowed in the present modelling framework to account for

news arrival, for the perturbing potential of the intensity jumps, as well as for the marks of the

DSPP, we define the following simple subclass of models to which we will later refer to as the

basic class.

Definition 2.2 A marked DSPP is said to belong to the basic class if it has an intensity of the
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form (2.7) and satisfies:

A1. N ′ is a Poisson process with constant intensity ν.

A2. Xj, j > 0, are i.i.d. Exponential random variables with mean 1/γ (independent from τj).

A3. The initial value X0 of the process λ has a Gamma distribution with parameters ν/k and

γ (that is, E(X0) = ν/(kγ)).

A4. a(t) ≡ 0 and b = 1 (so that δ = λ).

A5. Zi, i ∈ N, are i.i.d. random variables (independent from the processes N and δ).

This definition specifies a class of models which, apart from their simplicity, have also some

nice properties. Indeed, under Assumptions A1 and A2, λ is an affine process (see Duffie et

al. (2003)), while under Assumptions A1–A3, λ is a stationary Ornstein-Uhlenbeck process

with univariate marginal Gamma distribution (see Barndorff-Nielsen and Shephard (2001), and

Centanni and Minozzo (2006a) for further details).

3 The minimal martingale measure

Assuming that the price dynamic of the underlying financial asset can be described in the

modelling framework presented in Section 2, in this section we discuss the existence of the

minimal martingale measure Q, and derive, under it, some properties of the model. We recall

the following definitions (see Schweizer (1995)).

Definition 3.1 A process S is said to satisfy the structure condition (SC) if its finite variation

part B is absolutely continuous with respect to 〈M, M〉, that is, St = Mt+
∫ t
0 cs d〈M, M〉s, where

the predictable process c satisfies K̃t :=
∫ t
0 c2

s d〈M, M〉s < +∞, a.s. (with respect to P), for each

t > 0.
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In this case the stochastic integral
∫

c dM is well defined and its angle process is equal to K̃.

Definition 3.2 A process q is called a martingale density for S if q is a local P-martingale with

q0 = 1 a.s. P, such that the product qS is also a local P-martingale. If q is in addition strictly

positive, q is called a strict martingale density for S.

Remark 3.1 If q is a martingale density for S, it defines a (possibly signed) measure Q that is

locally absolutely continuous with respect to P (Q
loc
≪ P) by

qt =
dQ |Gt

dP |Gt

(see Schweizer (1995) and Jacod and Shiryaev (1980)). Since every strictly positive local mar-

tingale is a supermartingale, if q is a strict martingale density for S with E(qt) = 1, ∀t > 0,

then Q is locally equivalent to P.

In the following lemma we show that, under some integrability conditions, the price process

S, as defined in Section 2, satisfies condition (SC).

Lemma 3.1 Let Φ = (Ti, Zi)i∈N be a DSPP with marks with respect to the filtration {Gt}t≥0 as

given in Section 2 and let S be defined by St = S0 exp(
∑Nt

i=0 Zi). If S is locally square integrable,

then it satisfies (SC) and the process c is given by

ct =

∫
R
(ez − 1) K(t, dz)

St−

∫
R
(ez − 1)2 K(t, dz)

,

where K is the stochastic kernel deriving from the disintegration (2.2).

Proof Since S is locally square integrable, in virtue of Proposition 2.1, S is a semimartingale

with decomposition S = S0 + M + B, the process 〈M,M〉 exists and we can write

ct :=
dBt

d〈M,M〉t
=

∫
R
(ez − 1) K(t, dz)

St−

∫
R
(ez − 1)2 K(t,dz)

.
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Moreover, being K a stochastic kernel,

∫ t

0
c2
s d〈M, M〉s =

∫ t

0

[∫
R
(ez − 1) K(s,dz)

]2

S2
s−

[∫
R
(ez − 1)2 K(s,dz)

]2 S2
s−δs

[∫

R

(ez − 1)2 K(s,dz)

]
ds

≤

∫ t

0
δs ds < +∞. QED

Let us turn now to the study of the properties of our model under the minimal martingale

measure Q. To this end, we need first to compute the Radon-Nikodym derivative of Q with

respect to P. If the process S satisfies the (SC) condition, we can define the process

(3.1) qt = E

(
−

∫
c dM

)

t

,

where the expression E(·) is defined in (2.5). This is a martingale density for S which defines

the minimal martingale measure; as explained in Remark 3.1 it is, in general, a signed measure.

A necessary and sufficient condition that guarantees that the process q is a strict martingale

density for S is given in the following theorem due to Schweizer (1995).

Theorem 3.1 Suppose that S is a locally square integrable special semimartingale satisfying

condition (SC). Then qt = E
(
−
∫

c dM
)

is a strict martingale density for S if and only if

(3.2) 1 − c ∆M > 0, a.s. P.

Proof See Schweizer (1995), Proposition 2. QED

Lemma 3.1 and Theorem 3.1 play a crucial role in our modelling framework (see also Prigent

(2000)).

Proposition 3.1 Under the hypotheses of Lemma 3.1, let us define the process U by

U(t, z) =

∫
R
(ez − 1) K(t, dz)∫

R
(ez − 1)2 K(t, dz)

· (ez − 1) .

Then Condition (3.2) can be expressed as

(3.3) U(Ti, Zi) < 1 ∀i ∈ N, a.s. P.
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Moreover, when this is satisfied, the compensator υ̃ of Φ, under Q, assumes the form

(3.4) υ̃ = (1 − U)υ.

Proof Observing that

∆Mt =
∑

i

1{t=Ti}St−(eZi − 1),

and recalling that

ct =

∫
R
(ez − 1) K(t, dz)

St−

∫
R
(ez − 1)2 K(t,dz)

,

we can write

1 − ct ∆Mt = 1 −
∑

i

1{t=Ti}

∫
R
(ez − 1) K(Ti,dz)∫

R
(ez − 1)2 K(Ti,dz)

(eZi − 1).

Then (3.2) holds if and only if U(Ti, Zi) < 1. Moreover, since

E

(
−

∫ t

0
cs dMs

)
= E

(
−

∫ t

0

∫

R

∫
(ez − 1) K(t, dz)∫
(ez − 1)2 K(t, dz)

· (ez − 1) (µ − υ)(dt,dz)

)
,

by the very definition of stochastic exponential and applying Theorem 10.2.2 in Last and Brandt

(1995), relation (3.4) can be derived. QED

The following proposition states that the process δ has the same distribution under both P

and Q. Let us note that, since, under P, δ is defined trajectory-wise by δt = h(t, Φ
′t
0 ), we can

focus our attention on the distributional properties of the MPP Φ′, that is, on its compensator.

Proposition 3.2 Let us consider the counting random measure m, together with its P-compensator

n, associated to the point process Φ′ = (τj , Xj)j∈N∪{0}. Under the hypotheses of Lemma 3.1, let

us assume that Condition (3.3) is satisfied. Then n is also the Q-compensator of m.

Proof For each B ∈ B(R+) let the process LB be defined by LB
t = m(·, (0, t], B)−n(·, (0, t], B).

Then LB is a local P-martingale for each B ∈ B(R+). Applying Girsanov’s theorem for general
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semimartingales (see Protter (1992), p. 109), the process L̃B given by

L̃B
t = LB

t −

∫
1

qt
d[q, LB]t

must be a Q-martingale. So, since LB and q are pure jump local martingales without common

jumps, we have d[q, LB] = 0 and n is also the compensator of Φ′ under Q. QED

As far as the process Φ of the logerturn changes is concerned, let us now assume that the

random variables Zi are i.i.d (independent also from Ti and δ) with finite first and second

exponential moments. In this case it can be shown that E(qt) = 1, for all t ≥ 0, and that, under

Q, the process Φ is still a DSPP with marks and Zi are still independent.

Corollary 3.1 Under the hypotheses of Proposition 3.2, let us assume that Zi are i.i.d with

common distribution G(dz) such that E(exp(Zi)) = α < ∞ and E(exp(2Zi)) = ς < ∞. Then

the process U is given by

(3.5) U(ω, t, z) = U(z) =
α − 1

ς2 − 2α + 1
(ez − 1),

whereas the density process q is given by

qt = exp

(
(1 − R)

∫ t

0
δu du

)
·

Nt∏

i=0

(1 − U(Zi)),

where R = 1 − (α − 1)2/(ς2 − 2α + 1), and E(qt) = 1, ∀ t ≥ 0.

Proof The independence assumption implies that
∫

(ez −1) K(t, dz) =
∫

(ez −1) dG(z) = α−1,

for each t > 0, and that
∫

(ez − 1)2 K(t, dz) = (ς2 − 2α + 1), and so that (3.5) holds true.

Moreover, observing that
∫∫

U d(µ − υ) is a finite variation process, and so that its continuous
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martingale part is equal to zero (see, for example, Protter (1992)), from (2.5) we have

qt = E

(
−

∫ t

0
cs dMs

)
= E

(
−

∫ t

0

∫

R

U(z) (µ − υ)(ds,dz)

)

= exp

(
−

∫ t

0

∫

R

U(z) (µ − υ)(ds,dz)

) ∏

i:Ti≤t

(1 − U(Zi))e
U(Zi)

= exp

(
−

∫ t

0

∫

R

U(z) (µ − υ)(ds,dz)

)
· exp

(∫ t

0

∫

R

U(z) µ(ds,dz)

)∏

i:Ti≤t

(1 − U(Zi))

= exp

(∫ t

0

∫

R

U(z) υ(ds,dz)

) ∏

i:Ti≤t

(1 − U(Zi)) = exp

(
(1 − R)

∫ t

0
δu du

) Nt∏

i=0

(1 − U(Zi));

moreover

E(qt|Gt) = E

[
exp

(
(1 − R)

∫ t

0
δu du

)
·

Nt∏

i=0

(1 − U(Zi))

∣∣∣∣Gt

]

= exp

(
(1 − R)

∫ t

0
δu du

)
· exp

(
−

∫ t

0
δu du

)

·

[
1 +

∞∑

k=1

(∫

Rk

k∏

i=1

(1 − U(zi))

(∫ t
0 δu du

)k

k!
G(dz1) . . . G(dzk)

)]

= exp

(
−

∫ t

0
Rδu du

)
·

∞∑

k=0

(∫ t
0 Rδu du

)k

k!
= 1. QED

Corollary 3.2 Under the hypotheses of Corollary 3.1, Φ is still a marked DSPP whose intensity

process is given by δ̃t = R δt, and Zi are i.i.d. random variables with common distribution

G̃(dz) =
1 − U(z)

R
G(dz).

Proof By Proposition 3.1, under Q, the compensator of Φ is given by dυ̃ = δt dt(1−U(z))G(dz),

which admits the disintegration υ̃(dt, dz) = δ̃t dt · G̃(dz), where δ̃t = R δt and G̃(dz) = R−1(1−
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U(z))G(dz); hence Zi are i.i.d. and independent from Ti, also under Q. Moreover

Q(Nt − Ns = k| Gs) = EP

(
1{Nt−Ns=k}

qt

qs

∣∣∣∣ Gs

)

= EP

(
1{Nt−Ns=k} exp

(
(1 − R)

∫ t

s
δu du

) k∏

i=0

(1 − U(Zi))

)

= exp

(
(1 − R)

∫ t

s
δu du

)∫

Rk

k∏

i=1

(1 − U(zi))

(∫ t
s δu du

)k

k!
exp

(
−

∫ t

s
δu du

)
G(dz1) . . . G(dzk)

=

(∫ t
s Rδu du

)k

k!
exp

(
−

∫ t

s
Rδu du

)
,

where EP denotes the expected value under P, with the convention that the product on an

empty set is equal to 1. QED

4 Pricing through the RJMCMC algorithm

Let us consider a stylized market in which a risky asset (the stock) and a riskless bank account

are available for trading. For the bank account, we will assume, without loss of generality, that

it has constant value equal to one. In this market, we will also consider an European contingent

claim with fixed maturity T ∈ R
+ and payoff of the form H = H(ST ). Assuming that the price of

the stock is described by a process S satisfying the hypotheses of Corollary 3.1 under the natural

probability measure P, in a complete information setting we could use as a pricing measure the

minimal martingale measure Q analyzed in Section 3. However, in a financial context it is much

more reasonable to assume that market agents are restricted to observe only the history of the

stock price S, that is, all past times and sizes of price changes, and not the history of the

intensity process δ. Due to this partial information constrain, we are actually restricted to the

filtration {FS
t }t≥0 , where FS

t = σ(Su, 0 ≤ u ≤ t), generated by the price process. Though Q

is not minimal with respect to {FS
t }t≥0, here we suggest to perform derivative pricing resorting

to the pricing measure defined by the Radon-Nykodym derivative E
(

dQ
dP

∣∣∣FS
t

)
, which provides
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the best projection of the minimal martingale measure Q on the filtration {FS
t }t≥0 generated

by the observations. Indeed, in virtue of what observed at the end of Section 3 and since we

assume that the bank account, which is the numeraire, is a constant (and therefore adapted

to the partial information filtration), this pricing measure is a martingale measure for S with

respect to the new filtration {FS
t }t≥0. Thus an arbitrage-free value for the contingent claim at

a given time instant t < T is given by EQ(H(ST )|FS
t ). In the following, to solve our pricing

problem, we will need to filter the intensity under Q of the DSPP Φ, that is δ̃ = Rδ (or its

stochastic part δ), that is, to evaluate the conditional distribution of δ, given a past realization

of Φ. This is a nonlinear filtering problem which can be solved by stochastic simulation using

an RJMCMC algorithm run on the space of the trajectories of the intensity process (see also

Centanni and Minozzo (2006a)).

Given a measurable space (X,X ), let π(dx) denote a target distribution of interest (which

will be in our case the conditional distribution, under Q, of δ from 0 to t, given the observed price

history FS
t ). Markov chain Monte Carlo techniques are based on the construction, through the

Metropolis-Hastings algorithm, of a Markov chain with an aperiodic and irreducible transition

kernel P (x,dx) satisfying the detailed balance condition

(4.1)

∫

A

∫

B
π(dx)P (x,dx′) =

∫

B

∫

A
π(dx′)P (x′,dx),

for all A, B ∈ X , having π(dx) as its limiting distribution. The simulation of this chain will pro-

vide, after a sufficiently long initial run (burn in), an approximate sample (generally dependent)

from π(dx).

In detail, in our case, the sample space X is the subspace of the Skorokhod space of càdlàg

functions in a given time interval [0, t]. In particular, this is the space of all the trajectories

of δ from 0 to t, which we denote with δt
0, which are of the form δt

0(s) = h(s, φ
′s
0 ), where

φ
′t
0 = (τj , xj)j∈{0,...,n}, n ∈ N, xj ∈ R, j = 0, . . . , n, τj ∈ R

+, j = 1, . . . , n, and τ0 = 0 <
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τ1 < τ2 < · · · < τn ≤ t. Before proceeding, we identify each trajectory x ∈ X with the vector

β(n) = (τ1, . . . , τn, x0, . . . , xn) ∈ R
2n+1, and the price history with the vector of the times and

sizes of logreturn jumps Φ = (T1, . . . , TN , Z1, . . . , ZN ) ∈ R
2N . In this way we can equivalently

consider, instead of X and of π(dx), the space C =
⋃∞

n=0 Cn, where Cn = {n} × R
2n+1
+ , so that

each element x ∈ C is of the form x = (n, β(n)), n = 0, 1, 2, . . . , and the target distribution

π(dx;Φ) on the space C depending on the vector Φ representing the observations which is

assumed to be known.

With this identification, to obtain a random sample from the conditional distribution of δ,

given a past realization of the MPP Φ, we can implement a particular version of the Metropolis-

Hastings algorithm called RJMCMC, which allows for efficient transitions between spaces of

different dimension, that is, between trajectories of δ having a different number of jumps. To

this end, we define a set of types of transition moves taking the chain from the current state x to

the state dx′, which is proposed with an essentially arbitrary probability qm(x,dx′) depending on

the type m of move. As usual with Metropolis-Hastings algorithms, the proposed new state is not

automatically accepted; it is instead accepted with probability αm(x, x′), which is constructed

in such a way that (4.1) is satisfied. Under the assumption that π(dx;Φ)qm(x,dx′) has a finite

density fm(x, x′) with respect to a symmetric measure ξm on C × C, in Green (1995) it is shown

that such an acceptance probability is given by

αm(x, x′) = min

{
1,

fm(x′, x)

fm(x, x′)

}
.

Let us now suppose that the distribution π can be characterized through proper densities

π(β(n)|n;Φ) on the subspaces R
2n+1, n = 0, 1, . . . , that the current state of the chain is

x = (n, β(n)), and that we have defined one or more different move types allowing transi-

tions between states of the chain belonging to different-dimensional spaces. Then the RJMCMC

update proceeds with the following steps:
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1. With probability p(m|n) choose to perform a move of type (m).

2. Generate a random vector u from a specified proposal density q(u|m, n,β(n)).

3. Set (x′,u′) = gm,n,n′(x,u), where x′ = (n′,β′(n′)) and gm,n,n′ is an invertible function with

(2n + 1) + dim(u) = (2n′ + 1) + dim(u′).

4. Accept x′ as the new state of the chain with probability min{1, A}, where the acceptance

probability ratio A is given by

(4.2)
p(Φ|n′, β′(n′))

p(Φ|n, β(n))

p(n′,β′(n′))

p(n, β(n))

p(m|n)q(u|m, n,β(n))

p(m′|n′)q(u′|m′, n′, β′(n′))

∣∣∣∣∣
∂gm,n,n′(β(n),u)

∂(β(n),u)

∣∣∣∣∣,

and where p(Φ|n, β(n)) is the conditional distribution under Q of the data Φ given the

intensity x, and p(n, β(n)) is the distribution under Q of x.

Observe that, borrowing from the Bayesian terminology, the acceptance ratio is expressed as

the product of four terms: likelihood ratio, prior ratio, proposal ratio and Jacobian.

Thus, denoting with QT (ds,dx;Φ) the joint distribution under Q of ST and δt
0, given the past

observations Φ, and with QT (ds;x,Φ) πT (dx;Φ) its factorization, to evaluate the conditional

expectation EQ(H(ST )|FS
t ), where t < T , we can proceed as follows:

(i) draw a sample δ
t(1)
0 , . . . , δ

t(M)
0 of size M from π(dx;Φ) using the RJMCMC filtering algo-

rithm just described;

(ii) simulate a continuation of each of these trajectories δ
t(i)
0 , i = 1, . . . ,M , from t to T ,

according to the law (under Q) of the intensity process, obtaining a sample δ
T (i)
0 , i =

1, . . . ,M from πT (dx;Φ);

(iii) for each δ
T (i)
0 , simulate a continuation of the price S from t to T , extending the observed

trajectory Φ, and take the final value s
(i)
T assumed by the price in T , as a realization from

QT (ds;Φ);
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(iv) compute the approximation

EQ(H(ST )|FS
t ) ≈

1

M

M∑

i=1

H
(
s
(i)
T

)
.

5 Simulation experiments

To illustrate the filtering and pricing algorithms described in the previous section, we consider

here a simulation experiment assuming for the price process two models belonging to the basic

class. Let us recall that, in virtue of Assumption A4, the shot noise type intensity δ now coincides

with its stochastic part λ given by (2.8). Fixing a value for the parameters ν, k and γ, and

choosing a distribution for the random variables Zi satisfying condition (3.3), we simulated a

trajectory ST
0 of the price process from time 0 to T . In particular, we expressed time in minutes

and considered T = 2400, corresponding to one week of market activity, that is, to 5 days,

8 hours a day. Figure 1 (middle) shows a simulated trajectory of λ, whereas Figure 1 (top)

shows a simulated trajectory of the price process S for ν = 1/60, k = 0.0035 and γ = 2.50,

with a starting value of S0 = 100. For the distribution of the logreturn jumps Zi, we chose a

binomial scheme, allowing only ‘up’ and ‘down’ movements, with P(Zi = 0.0035) = 0.55 and

P(Zi = −0.0041) = 0.45.

[FIGURE 1 ABOUT HERE]

Instead, Figure 2 (middle) shows a simulated trajectory of λ, whereas Figure 2 (top) shows a

simulated trajectory of the price process S for ν = 1/150, k = 0.0030 and γ = 45.89, with a

starting value of S0 = 100. Here, for the distribution of Zi, we chose a binomial scheme with

P(Zi = 0.0275) = 0.60 and P(Zi = −0.0410) = 0.40.

22



[FIGURE 2 ABOUT HERE]

The first model, whose price process has a high intensity, might correspond to the behaviour

of a liquid asset in which the stock price changes very often, with small logreturn jumps. Instead,

the second model might correspond to an illiquid asset in which the price changes less often,

but with bigger jumps.

To show the behaviour of the pricing algorithm, under the equivalent martingale measure

Q, we now assume as the observed data the simulated trajectory of the price process ST
0 , and,

obviously, also assume that the (simulated) trajectory of λ (from which ST
0 has been generated)

is unknown and that the parameters of the model are known. To actually implement the

RJMCMC filtering algorithm, under Q, we need to detail the transition moves and to specify the

distributions in (4.2). From Assumption A5 of the basic class and Corollary 3.2 it follows that,

since Zi are independent from λ, given Ti, the target distribution π(dx;Φ) actually depends only

on the jump times T1, . . . , TN . Thus, being N a DSPP both under P and Q, the likelihood ratio

can be computed observing that, given a trajectory of λ in [0, T ], the conditional distribution

under Q of the jump times can be written as

p(T1, . . . , TN |n, β(n))=

[
N∏

i=1

f(Ti|Ti−1, n,β(n))

]
P(TN+1 >T |TN , n,β(n))=exp

(
−R

∫ T

0
λsds

) N∏

i=1

RλTi
.

Moreover, the prior ratio can be computed observing that

p(n, β(n)) = f(x0)

[
n∏

j=1

fX(xj)fτ (τj |τj−1)

]
P(τn+1 > T |τn),

where f(x0) = γν/kx
ν/k−1
0 exp(−γx0)/Γ(ν/k), fX(xj) = γ exp(−γxj) and fτ (τj |τj−1) = ν exp(−ν(τj−

τj−1)), j = 1, . . . , n (with τ0 = 0), and P(τn+1 > T |τn) = exp(−ν(T − τn)).

As for the transition moves, following the strategy of Centanni and Minozzo (2006a), let us

define the following five types of transition moves which are naturally suggested by the structure
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of the basic class:

(s) Change of the starting value of the intensity λ.

(h) Change of the height of a randomly chosen intensity jump.

(p) Change of the position in time of a randomly chosen intensity jump.

(b) Inclusion in the intensity of a new jump at a randomly chosen time in (0, T ] (‘birth’ move).

(d) Suppression from the intensity of a randomly chosen jump (‘death’ move).

At each transition of the sampler, we propose one of the five move types with probability p(m|n),

where (m) stays for (s), (h), (p), (b) or (d), such that
∑

m p(m|n) = 1; obviously, if the number

of intensity jumps n is equal to 0, the only move types available for a proposal are the change

of the starting value (s) and the birth of a jump (b), and p(m|n = 0) = 0, for m = h, p, d.

With the current specification of the model, assuming that a move of type (s) has been

selected, we draw a value at random from a Gamma distribution with mean ν/(kγ) and variance

ν/(kγ2), and accept it as the new initial value of the intensity by considering as prior ratio

exp(−γ(x′ − x))(x′/x)ν/k−1 and as proposal ratio exp(−γ(x− x′))(x/x′)ν/k−1 in the acceptance

probability ratio (4.2). For the move of type (h), we may choose a random number j in {1, . . . , n}

and draw a value x′
j from an Exponential distribution with mean 1/γ. The value x′

j is accepted

as the new size of the jth intensity jump with acceptance probability ratio A taking as prior

ratio exp(−γ(x′
j − xj)) and as proposal ratio exp(−γ(xj − x′

j)). Analogously, for the move of

type (p), we may choose a random number j in {1, . . . , n} and a random time τ ′
j uniformly

in (τj−1, τj+1), where τ0 = 0 and τn+1 = T . The new position in time τ ′
j for the jth jump

is accepted with acceptance probability ratio A taking the prior ratio and the proposal ratio

both equal to one. Note that for the moves (s), (h) and (p), which do not involve a change of

dimension, the Jacobian in (4.2) is identically equal to one.
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Now, for the move of type (b), which considers the inclusion of a new intensity jump, we can

draw a position time τ∗ uniformly in (0, T ) and a jump size x∗ from an Exponential distribution

with mean 1/γ. The new intensity jump is accepted with acceptance probability ratio (4.2) with

prior ratio νγ exp(−γx∗) and proposal ratio

p(d|n + 1) · T

(n + 1) · p(b|n)γ exp(−γx∗)
.

Lastly, for the move of type (d), regarding the suppression of one of the n intensity jumps, we

can draw uniformly a number j from {1, . . . , n} and suppress the jth jump with acceptance

probability ratio A, where the prior ratio is given by (νγ exp(−γxj))
−1 and the proposal ratio

by

p(b|n − 1)γ exp(−γxj) · n

T · p(d|n)
.

For these latter moves (b) and (d), which involve a change of dimension of the vector β(n), the

Jacobian in (4.2) is still equal to one.

Having detailed an RJMCMC sampler for our class of models, let us remember that the

last M updates (after burn in) of a run of this sampler provide a set of trajectories {λT
0

(i)
, i =

1, . . . ,M} which can be considered as a (dependent) sample from the conditional distribution,

under Q, of λ, given the data ST
0 . This sample may be viewed as the support of a discrete

distribution, assigning mass 1/M to each element, that approximates the conditional distribution

of interest and can be used to approximate many quantities of interest. For instance, for any

given time instant s ∈ [0, T ], an approximation of the conditional distribution, under Q, of λs

given the observations (up to time T ) can simply be obtained by considering the values of the

sampled trajectories in s, that is, the values λT
0

(i)
(s), i = 1, . . . ,M .

Let us now use the above filtering algorithm for the pricing of an European call expiring at

T with strike price K = 105. For the two sets of values chosen for the parameters ν, k and γ,
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Condition (3.3) is satisfied since U(Zi) ≤ 0.0214 for the first set of parameters, and U(Zi) ≤

0.0160 for the second set of parameters. Under the martingale measure Q, the distribution of the

logreturn jumps is characterized by a probability of the ‘up’ event equal to 0.5385 for the first

set of parameters, and to 0.5906 for the second set of parameters. For the actual pricing of the

call, we fixed a set of 20-minutes spaced time instants T = {0, 20, . . . , 2400} where to compute

the price of the call. For any time instant t ∈ T, considering as the observed data the simulated

price trajectory St
0, we can obtain a sample from the conditional distribution, under Q, of ST

given the observations, running the pricing algotithm of Section 4 which exploits the RJMCMC

filtering algorithm just detailed. Here, after a burn in of 5,000 updates, we run the chain for an

additional 50,000 updates. Figure 1 (bottom) and Figure 2 (bottom) show (for the two sets of

parameter values considered) the approximated (Monte Carlo) trajectory of the value process

Ct of the call for each t ∈ T, corresponding to the simulated trajectory of the stock price given

in Figure 1 (top) and Figure 2 (top). It can be noticed that in both figures the trajectory of the

value process of the call, as expected, properly captures the peculiarities of the trajectory of the

stock price process in all the time interval [0, T ]. For instance, in Figure 2 the option value falls

close to zero near to maturity when the price of the stock goes under the stike price .

6 Conclusions

In this paper we considered a model for the price evolution of a financial asset where the intraday

price movements occur only at irregularly spaced time instants. Considering a stylized market

with only a stock and a riskless bank account available for trading, we tackled the problem of

pricing a contingent claim in a partial information setting in which only the history of price

changes is available, but not the intensity process underlying the times of price changes. Among

all existing equivalent martingale measures, we chose to use as a pricing measure the restriction
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to the coarser filtration of the minimal martingale measure Q derived in the complete information

case. In order to perform the actual calculation of the contingent claim prices, we proposed a

Monte Carlo simulation approach based on a filtering procedure of the unobserved intensity,

(derived with respect to {Gt}t≥0), exploiting the capability of the RJMCMC algorithm.

Let us note that in this paper we implicitely assumed that the available data have been

generated by a stochastic process S which, under the “natural” measure P, is not, in general,

a martingale, and we tackled the pricing problem deriving, under the conditions introduced in

Section 3, a martingale measure under which the price process maintains a DSPP structure.

Alternatively, regardless of how the data have been generated, for pricing purposes we might

use directly the model introduced in Section 2 with the assumption that the (discounted) price

process is a martingale, that is, with the constraint that Bt in Proposition 2.1 is equal to 0

(since we assumed the numeraire to be constant and equal to 1). Let us remark that following

this pricing approach we do not need to impose any other condition on the model, apart from

the above martingale assumption, and we can compute contingent claim prices by Monte Carlo

simulations using a numerical procedure similar to that considered in Section 4.

As far as the parameters of the model, in this paper we assumed that they are known.

Assuming that the data have been generated under the “natural” measure P, a likelihood based

estimation procedure exploiting the RJMCMC algorithm has been developed in Centanni and

Minozzo (2006a). On the other hand, in the case in which we are using the model in Section 2

itself as a pricing measure, and we do not know the model generating the data, we could resort

to option data to estimate the parameters.

An important point which has not been taken into account in this paper is the evaluation of

the error made in the pricing of the contingent claim using the proposed Monte Carlo procedure.

We just remark that this error is affected by the length of the RJMCMC chain, as well as, in
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the case of real (non simulated) data, by the error in the estimation of the parameters of the

model.
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Pictet (1999): “From the bird’s eye to the microscope: a survey of new stylized facts of the

intra-daily foreign exchange markets.” Finance and Stochastics, 1, 95–129.

Harrison, M., and D. Kreps (1979): “Martingales and arbitrage in multiperiod security

markets.” Journal of Economic Theory, 20, 381–408.

Jacod, J., and A. N. Shiryaev (1980): Limit Theorems for Stochastic Processes. Berlin:

Springer.

Kalev, P. S., W. M. Liu, P. K. Pham, and E. Jarnecic (2004): “Public information arrival

and volatility of intraday stock returns.” Journal of Banking & Finance, 28, 1441–1467.

Kirch, M., and W. J. Runggaldier (2004): “Efficient hedging when asset prices follow a

geometric Poisson process with unknown intensities.” SIAM Journal on Control and Opti-

mization, 43, 1174–1195.

30



Last, G., and A. Brandt (1995): Marked Point Process on the Real Line: The Dynamic

Approach. Berlin: Springer.

Prigent, J. L. (2000): “Option pricing with a general marked point process.” Mathematics

of operations research, 26, 50–66.

Prigent, J. L., O. Renault, and O. Scaillet (2004): “Option pricing with discrete rebalancing.”

Journal of Empirical Finance, 11, 133–161.

Protter, P. (1992): Stochastic Integration and Differential Equations. Berlin: Springer.

Rogers, L. C. G., and O. Zane (1998): “Designing and estimating models of high-

frequency data.” Technical Report, University of Cambridge, Statistical Laboratory,

http://www.statslab.cam.ac.uk/∼chris.

Rydberg, T. H., and N. Shephard (2000): “A modelling framework for the prices and times

of trades made on the New York Stock Exchange,” in Non-Stationary and Non-Linear Signal

Extraction (Isaac Newton Institute Series), eds. W. J. Fitzgerald, R. L. Smith, A. T. Walden,

and P. C. Young. Cambridge: Cambridge University Press, 217–246.

Schweizer, M. (1995): “On the minimal martingale measure and the Föllmer-Schweizer de-
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Figure Legends

Figure 1. Simulated trajectory of the price process S (top), with starting value S0 = 100,

obtained by conditioning to a simulated trajectory of the intensity process λ (middle), assuming

a model of the basic class with ν = 1/60, k = 0.0035 and γ = 2.50, under the natural probability

P, with T = 2400. The bottom graph shows the approximated (Monte Carlo) trajectory of the

value process Ct, t ∈ T = {0, 20, . . . , 2400}, for an European call expiring at T = 2400 with

strike price K = 105.

Figure 2. Simulated trajectory of the price process S (top), with starting value S0 = 100,

obtained by conditioning to a simulated trajectory of the intensity process λ (middle), assuming

a model of the basic class with ν = 1/150, k = 0.0030 and γ = 45.89, under the natural

probability P, with T = 2400. The bottom graph shows the approximated (Monte Carlo)

trajectory of the value process Ct, t ∈ T = {0, 20, . . . , 2400}, for an European call expiring at

T = 2400 with strike price K = 105.
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